Satellite Altimetry
and Earth Sciences
Contents

Contributors ix
Preface xi

CHAPTER 1
Satellite Altimetry
DUDLEY B. CHELTON, JOHN C. RIES, BRUCE J. HAINES,
LEE-LUENG FU, AND PHILIP S. CALLAHAN

1. Introduction 1
2. Radar Measurement Principles 4
 2.1. Normalized Radar Cross Section 4
 2.2. Ocean Surface Reflectivity 6
 2.3. Atmospheric Attenuation 7
 2.4. Two-Way Travel Time 11
3. Range Estimation 37
 3.1. Atmospheric Refraction 37
 3.2. Sea-State Effects 57
4. Precision Orbit Determination 64
 4.1. The Orbit Determination Concept 66
 4.2. Precision Satellite Tracking Systems 73
 4.3. Orbit Estimation 79
 4.4. Performance Assessment 82
 4.5. Future Prospects 85
5. Geophysical Effects on the Sea Surface Topography 86
 5.1. Geoid Undulations 86
 5.2. Dynamic Sea-Surface Height 87
 5.3. Ocean Tides 88
 5.4. Atmospheric Pressure Loading 90
 5.5. Aliased Barotropic Motion 91
6. Significant Wave Height Estimation 92
 6.1. Significant Wave-Height Algorithms 92
 6.2. Significant Wave Height Measurement Accuracy 93
7. Wind-Speed Estimation 95
 7.1. Wind-Speed Model Functions 95
 7.2. Wind Speed Measurement Accuracy 99
8. TOPEX/POSEIDON Mission Design and Performance 99
 8.1. Orbit Considerations and Altimeter Sampling Patterns 99
 8.2. Calibration and Validation 117
 8.3. Measurement Performance 119
9. Outlook for Future Altimeter Missions 119
Acknowledgments 121
References 122

CHAPTER 2
Large-Scale Ocean Circulation
LEE-LUENG FU AND DUDLEY B. CHELTON

1. Introduction 133
2. The Ocean General Circulation 134
3. The Temporal Variability 138
 3.1. Buoyancy-Forcing and the Heat Budget of the Ocean 140
 3.2. Atmospheric Pressure Forcing 141
 3.3. Wind Forcing 142
 3.4. Baroclinic Rossby Waves 145
 3.5. The Relation Between Sea Level and Subsurface Variability 158
 3.6. The Annual Cycle 161
 3.7. Interannual Variability 162
4. Conclusions 163
Acknowledgments 165
References 165
Ocean Currents and Eddies

P. Y. Le Traon and R. Morrow

1. Introduction

2. Altimeter Data Processing for Mesoscale Studies
 - 2.1. Ocean Signal Extraction
 - 2.2. Mapping and Merging of Multiple Altimeter Missions
 - 2.3. Surface Geostrophic Velocity Calculations
 - 2.4. Sampling Issues

3. Ocean Currents
 - 3.1. Estimating the Absolute Velocities and Transports from Altimetry
 - 3.2. Western Boundary Currents
 - 3.3. Eastern Boundary Currents
 - 3.4. Open Ocean Currents
 - 3.5. Semi-Enclosed Seas

4. Mesoscale Eddies
 - 4.1. Global Statistical Description
 - 4.2. Seasonal Variations of Mesoscale Variability Intensity
 - 4.3. Space and Time Scales of Mesoscale Variability
 - 4.4. Frequency/Wavenumber Spectral Analysis
 - 4.5. Comparison with Eddy-Resolving Models
 - 4.6. Eddy Dynamics

5. Conclusions

Acknowledgments

References

Data Assimilation by Models

Ichiro Fukumori

1. Introduction

2. Examples and Merits of Data Assimilation

3. Data Assimilation as an Inverse Problem

4. Assimilation Methodologies
 - 4.1. Inverse Methods
 - 4.2. Overview of Assimilation Methods
 - 4.3. Adjoint Method
 - 4.4. Representer Method
 - 4.5. Kalman Filter and Optimal Smoother
 - 4.6. Model Green's Function
 - 4.7. Optimal Interpolation
 - 4.8. Three-Dimensional Variation Method
 - 4.9. Direct Insertion
 - 4.10. Nudging

5. Practical Issues of Assimilation
 - 5.1. Weights, A Priori Uncertainties, and Extrapolation
 - 5.2. Verification and the Goodness of Estimates
 - 5.3. Observability
 - 5.4. Mean Sea Level

6. Summary and Outlook

Acknowledgments

References

Tropical Ocean Variability

Joel Picaud and Antonio J. Busalacchi

1. Introduction

2. Tropical Pacific
 - 2.1. Sea-level Validation
 - 2.2. Altimetry-derived Surface Current
 - 2.3. Evidence of Equatorial Waves
 - 2.4. Testing Theories of ENSO, Improving Its Prediction
 - 2.5. Changes of Mass, Heat and Salt of the Upper Ocean
 - 2.6. High-frequency Oscillations

3. Indian Ocean

4. Tropical Atlantic

5. Conclusion

Acknowledgments

References

Ocean Tides

C. Le Provost

1. Introduction

2. Mathematical Representation of Ocean Tides
 - 2.1. The Harmonic Expansion
 - 2.2. The Response Formalism
 - 2.3. The Orthotide Formalism

3. Status Before High-Precision Satellite Altimetry
 - 3.1. In Situ Observations
 - 3.2. Hydrodynamic Numerical Modeling
 - 3.3. Modeling With Data Assimilation

4. Methodologies for Extracting Ocean Tides from Altimetry
 - 4.1. Tidal Aliasing in Altimeter Data
CHAPTER 10
Applications to Geodesy
BYRON D. TAPLEY AND MYUNG-CHAN KIM

1. Introduction 371
2. Mean Sea Surface Mapping 373
 2.1. Historical Review 375
 2.2. Repeat-Track Averaging 376
 2.3. Crossover Adjustment 378
 2.4. Weighted Least-Squares Objective Analysis 382
3. Gravity Recovery 386
 3.1. Geoid Undulation and Gravity Anomaly 386
 3.2. Short-Wavelength Marine Gravity Field 389
 3.3. Global Gravity Recovery 391
 3.4. Marine Geoid Error 392
4. New Frontiers 395
 4.1. Time-Varying Gravity Field 395
 4.2. Variations in the Geocenter and Earth Rotation Parameters 397
 4.3. Roles of Satellite Gravity Data 399
5. Concluding Remarks 403
Acknowledgments 403
References 403

CHAPTER 11
Applications to Marine Geophysics
ANNY CAZENAVE AND JEAN YVES ROYER

1. Introduction 407
2. Filtering the Long-Wavelength Geoid Signal 408
3. Geoid Anomalies and Isostatic Compensation 408
 3.1. Local Compensation in the Long-Wavelength Approximation 409
 3.2. Regional Compensation 410
 3.3. Admittance Approach 411
4. Mechanical Behavior of Oceanic Plates: Flexure under Seamount Loading 411
5. Thermal Evolution of the Oceanic Lithosphere 413
6. Oceanic Hotspot Swells 416
7. Short and Medium Wavelength Lineations in the Marine Geoid 418
8. Mapping the Seafloor Tectonic Fabric 420
 8.1. Fracture Zones 420
 8.2. Seamounts 423
 8.3. Spreading Ridges 432
9. Conclusions 434
Acknowledgments 435
References 435

CHAPTER 12
Bathymetric Estimation
DAVID T. SANDWELL AND WALTER H. E SMITH

1. Introduction 441
2. Gravity Anomaly and Sea Surface Slopes 442
 2.1. Geoid Height, Vertical Deflection, Gravity Gradient, and Gravity Anomaly 442
3. Limitations of Radar Altimetry for Gravity Field Recovery 443
4. Forward Models 444
5. Inverse Approaches 445
6. Data Availability and Case Study: Bathymetric Estimation 447
 6.1. Results, Verification, and Hypsometry 448
 6.2. Effects on Ocean Currents 451
7. Prospects for the Future 452
8. Appendix: Interaction of the Radar Pulse with the Rough Ocean Surface 453
 8.1. Beam-Limited Footprint 453
 8.2. Pulse-limited Footprint 454
 8.3. Significant Wave Height 454
 8.4. Modeling the Return Waveform 456
References 456

Index 459