This page intentionally left blank
Much of the recent progress in the solid Earth sciences is based on the interpretation of a range of geophysical and geological observations in terms of the properties and deformation of Earth materials. One of the greatest challenges facing geoscientists in achieving this lies in finding a link between physical processes operating in minerals at the smallest length scales to geodynamic phenomena and geophysical observations across thousands of kilometers.

This graduate textbook presents a comprehensive and unified treatment of the materials science of deformation as applied to solid Earth geophysics and geology. Materials science and geophysics are integrated to help explain important recent developments, including the discovery of detailed structure in the Earth’s interior by high-resolution seismic imaging, and the discovery of the unexpectedly large effects of high pressure on material properties, such as the high solubility of water in some minerals. Starting from fundamentals such as continuum mechanics and thermodynamics, the materials science of deformation of Earth materials is presented in a systematic way that covers elastic, anelastic, and viscous deformation. Although emphasis is placed on the fundamental underlying theory, advanced discussions on current debates are also included to bring readers to the cutting edge of science in this interdisciplinary area.

Deformation of Earth Materials is a textbook for graduate courses on the rheology and dynamics of the solid Earth, and will also provide a much-needed reference for geoscientists in many fields, including geology, geophysics, geochemistry, materials science, mineralogy, and ceramics. It includes review questions with solutions, which allow readers to monitor their understanding of the material presented.

Shun-Ichiro Karato is a Professor in the Department of Geology and Geophysics at Yale University. His research interests include experimental and theoretical studies of the physics and chemistry of minerals, and their applications to geophysical and geological problems. Professor Karato is a Fellow of the American Geophysical Union and a recipient of the Alexander von Humboldt Prize (1995), the Japan Academy Award (1999), and the Vening Meinesz medal from the Vening Meinesz School of Geodynamics in The Netherlands (2006). He is the author of more than 160 journal articles and has written/edited seven other books.
Deformation of Earth Materials

An Introduction to the Rheology of Solid Earth

Shun-ichiro Karato
Yale University, Department of Geology & Geophysics, New Haven, CT, USA
Contents

Preface

Part I General background

1 Stress and strain
 1.1 Stress
 1.2 Deformation, strain

2 Thermodynamics
 2.1 Thermodynamics of reversible processes
 2.2 Some comments on the thermodynamics of a stressed system
 2.3 Thermodynamics of irreversible processes
 2.4 Thermally activated processes

3 Phenomenological theory of deformation
 3.1 Classification of deformation
 3.2 Some general features of plastic deformation
 3.3 Constitutive relationships for non-linear rheology
 3.4 Constitutive relation for transient creep
 3.5 Linear time-dependent deformation

Part II Materials science of deformation

4 Elasticity
 4.1 Introduction
 4.2 Elastic constants
 4.3 Isothermal versus adiabatic elastic constants
 4.4 Experimental techniques
 4.5 Some general trends in elasticity: Birch’s law
 4.6 Effects of chemical composition
 4.7 Elastic constants in several crystal structures
 4.8 Effects of phase transformations

5 Crystalline defects
 5.1 Defects and plastic deformation: general introduction
 5.2 Point defects
 5.3 Dislocations
 5.4 Grain boundaries

6 Experimental techniques for study of plastic deformation
 6.1 Introduction
 6.2 Sample preparation and characterization
6.3 Control of thermochemical environment and its characterization

6.4 Generation and measurements of stress and strain

6.5 Methods of mechanical tests

6.6 Various deformation geometries

7 Brittle deformation, brittle–plastic and brittle–ductile transition

7.1 Brittle fracture and plastic flow: a general introduction

7.2 Brittle fracture

7.3 Transitions between different regimes of deformation

8 Diffusion and diffusional creep

8.1 Fick’s law

8.2 Diffusion and point defects

8.3 High-diffusivity paths

8.4 Self-diffusion, chemical diffusion

8.5 Grain-size sensitive creep (diffusional creep, superplasticity)

9 Dislocation creep

9.1 General experimental observations on dislocation creep

9.2 The Orowan equation

9.3 Dynamics of dislocation motion

9.4 Dislocation multiplication, annihilation

9.5 Models for steady-state dislocation creep

9.6 Low-temperature plasticity (power-law breakdown)

9.7 Deformation of a polycrystalline aggregate by dislocation creep

9.8 How to identify the microscopic mechanisms of creep

9.9 Summary of dislocation creep models and a deformation mechanism map

10 Effects of pressure and water

10.1 Introduction

10.2 Intrinsic effects of pressure

10.3 Effects of water

11 Physical mechanisms of seismic wave attenuation

11.1 Introduction

11.2 Experimental techniques of anelasticity measurements

11.3 Solid-state mechanisms of anelasticity

11.4 Anelasticity in a partially molten material

12 Deformation of multi-phase materials

12.1 Introduction

12.2 Some simple examples

12.3 More general considerations

12.4 Percolation

12.5 Chemical effects

12.6 Deformation of a single-phase polycrystalline material

12.7 Experimental observations

12.8 Structure and plastic deformation of a partially molten material

13 Grain size

13.1 Introduction

13.2 Grain-boundary migration

13.3 Grain growth

13.4 Dynamic recrystallization
Contents

13.5 Effects of phase transformations 249
13.6 Grain size in Earth's interior 253

14 Lattice-preferred orientation 255
14.1 Introduction 255
14.2 Lattice-preferred orientation: definition, measurement and representation 256
14.3 Mechanisms of lattice-preferred orientation 262
14.4 A fabric diagram 268
14.5 Summary 269

15 Effects of phase transformations 271
15.1 Introduction 271
15.2 Effects of crystal structure and chemical bonding: isomechanical groups 271
15.3 Effects of transformation-induced stress-strain: transformation plasticity 280
15.4 Effects of grain-size reduction 286
15.5 Anomalous rheology associated with a second-order phase transformation 286
15.6 Other effects 287

16 Stability and localization of deformation 288
16.1 Introduction 288
16.2 General principles of instability and localization 289
16.3 Mechanisms of shear instability and localization 293
16.4 Long-term behavior of a shear zone 300
16.5 Localization of deformation in Earth 300

Part III Geological and geophysical applications 303

17 Composition and structure of Earth's interior 305
17.1 Gross structure of Earth and other terrestrial planets 305
17.2 Physical conditions of Earth's interior 306
17.3 Composition of Earth and other terrestrial planets 314
17.4 Summary: Earth structure related to rheological properties 322

18 Inference of rheological structure of Earth from time-dependent deformation 323
18.1 Time-dependent deformation and rheology of Earth's interior 323
18.2 Seismic wave attenuation 324
18.3 Time-dependent deformation caused by a surface load: post-glacial isostatic crustal rebound 326
18.4 Time-dependent deformation caused by an internal load and its gravitational signature 331
18.5 Summary 337

19 Inference of rheological structure of Earth from mineral physics 338
19.1 Introduction 338
19.2 General notes on inferring the rheological properties in Earth's interior from mineral physics 339
19.3 Strength profile of the crust and the upper mantle 342
19.4 Rheological properties of the deep mantle 358
19.5 Rheological properties of the core 361

20 Heterogeneity of Earth structure and its geodynamic implications 363
20.1 Introduction 363
20.2 High-resolution seismology 364
20.3 Geodynamical interpretation of velocity (and attenuation) tomography 370
21 Seismic anisotropy and its geodynamic implications

21.1 Introduction

21.2 Some fundamentals of elastic wave propagation in anisotropic media

21.3 Seismological methods for detecting anisotropic structures

21.4 Major seismological observations

21.5 Mineral physics bases of geodynamic interpretation of seismic anisotropy

21.6 Geodynamic interpretation of seismic anisotropy

References

Materials index

Subject index

The colour plates are between pages 118 and 119.