The Magnetic Field of the Earth

Paleomagnetism, the Core, and the Deep Mantle
This is Volume 63 in the
INTERNATIONAL GEOPHYSICS SERIES
A series of monographs and textbooks
Edited by RENATA DMOWSKA and JAMES R. HOLTON

A complete list of books in this series appears at the end of this volume.
The Magnetic Field of the Earth
Paleomagnetism, the Core, and the Deep Mantle

RONALD T. MERRILL
Department of Geophysics
University of Washington
Seattle, Washington

MICHAEL W. McELHINNY
Gondwana Consultants
Hat Head, New South Wales
Australia

PHILLIP L. McFADDEN
Australian Geological Survey Organisation
Canberra, Australia

ACADEMIC PRESS
San Diego  London  Boston  New York  Sydney  Tokyo  Toronto
The cover of this book shows the magnetic field for the Glatzmaier–Roberts dynamo at a time when the field is not undergoing a reversal (unpublished figure supplied to us by Glatzmaier, 1996). A change in color of the field lines indicates a change in the direction of the radial component of the magnetic field. On close inspection, the tangential cylinder is apparent in both the magnetic field (cover) and in the velocity field (Fig. 9.7).
Contents

Preface

Chapter 1 History of Geomagnetism and Paleomagnetism

1.1 Discovery of the Main Magnetic Elements
   1.1.1 The Magnetic Compass 1
   1.1.2 Declination, Inclination, and Secular Variation 5
   1.1.3 The Experiments of William Gilbert 6
   1.1.4 Magnetic Charts and the Search for the Poles 7

1.2 Fossil Magnetism and the Magnetic Field in the Past 9
   1.2.1 Early Observations 9
   1.2.2 Reversals of the Magnetic Field 10
   1.2.3 Secular Variation 10
   1.2.4 Continental Drift 11

1.3 Investigations of the External Magnetic Field 13
   1.3.1 Transient Magnetic Variations 13
   1.3.2 Early Theories of Magnetic Storms and Auroras 14
   1.3.3 The Magnetosphere 15

1.4 Origin of the Earth’s Magnetic Field 17

Chapter 2 The Present Geomagnetic Field: Analysis and Description from Historical Observations

2.1 Magnetic Elements and Charts 19

2.2 Spherical Harmonic Description of the Earth’s Magnetic Field 25
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.1 Scalar Potential for the Magnetic Field</td>
<td>25</td>
</tr>
<tr>
<td>2.2.2 Basics of Spherical Harmonics</td>
<td>26</td>
</tr>
<tr>
<td>2.2.3 Application of Spherical Harmonics to the Earth’s Magnetic Field</td>
<td>28</td>
</tr>
<tr>
<td>2.2.4 Determination of the Gauss Coefficients</td>
<td>33</td>
</tr>
<tr>
<td>2.2.5 Interpretation of Spherical Harmonic Terms</td>
<td>34</td>
</tr>
<tr>
<td>2.3 Uniqueness and Other Mathematical Problems</td>
<td>37</td>
</tr>
<tr>
<td>2.3.1 Application of Laplace’s Equation to the Earth</td>
<td>37</td>
</tr>
<tr>
<td>2.3.2 Approximation with a Truncated Series</td>
<td>38</td>
</tr>
<tr>
<td>2.3.3 Uniqueness of Source</td>
<td>41</td>
</tr>
<tr>
<td>2.3.4 Nonspherical Harmonic Representation of the Earth’s Magnetic</td>
<td>42</td>
</tr>
<tr>
<td>Field</td>
<td></td>
</tr>
<tr>
<td>2.3.5 Magnetic Annihilator</td>
<td>44</td>
</tr>
<tr>
<td>2.4 Geomagnetic Secular Variation</td>
<td>46</td>
</tr>
<tr>
<td>2.4.1 Overview</td>
<td>46</td>
</tr>
<tr>
<td>2.4.2 The Magnetic Jerk and Screening by the Mantle</td>
<td>47</td>
</tr>
<tr>
<td>2.4.3 Methods Used to Determine the Secular Variation</td>
<td>52</td>
</tr>
<tr>
<td>2.4.4 Drift of the Nondipole Field</td>
<td>53</td>
</tr>
<tr>
<td>2.4.5 Variations of the Dipole Field with Time</td>
<td>55</td>
</tr>
<tr>
<td>2.5 The External Magnetic Field</td>
<td>57</td>
</tr>
<tr>
<td>2.5.1 The Magnetosphere</td>
<td>57</td>
</tr>
<tr>
<td>2.5.2 The Ionosphere</td>
<td>60</td>
</tr>
<tr>
<td>2.5.3 Transient Magnetic Variations, Storms, and Substorms</td>
<td>61</td>
</tr>
<tr>
<td>2.5.4 Magnetic Indices</td>
<td>66</td>
</tr>
</tbody>
</table>

Chapter 3  Foundations of Paleomagnetism

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Rock Magnetism</td>
<td>69</td>
</tr>
<tr>
<td>3.1.1 Types of Magnetization Acquired by Rocks</td>
<td>69</td>
</tr>
<tr>
<td>3.1.2 Magnetic Hysteresis</td>
<td>71</td>
</tr>
<tr>
<td>3.1.3 The Demagnetizing Field and Magnetic Anisotropy</td>
<td>74</td>
</tr>
<tr>
<td>3.1.4 Single-Domain Theory for TRM</td>
<td>76</td>
</tr>
<tr>
<td>3.1.5 Classical Magnetic Domains</td>
<td>79</td>
</tr>
<tr>
<td>3.1.6 Modern Domain Concepts</td>
<td>81</td>
</tr>
<tr>
<td>3.2 Magnetic Mineralogy</td>
<td>83</td>
</tr>
<tr>
<td>3.2.1 Properties of Magnetic Minerals</td>
<td>83</td>
</tr>
<tr>
<td>3.2.2 The Magnetic Record in Rocks</td>
<td>87</td>
</tr>
<tr>
<td>3.3 Paleomagnetic Directions and Poles</td>
<td>89</td>
</tr>
<tr>
<td>3.3.1 Demagnetization Procedures, Remagnetization, and Consistency</td>
<td>89</td>
</tr>
<tr>
<td>Checks</td>
<td></td>
</tr>
</tbody>
</table>
## Contents

3.3.2 The Geocentric Axial Dipole Field Hypothesis 93  
3.3.3 Standard Statistical Methods in Paleomagnetism 98  

3.4 Paleointensity Methods 102  
3.4.1 The Problem 102  
3.4.2 Absolute Paleointensities I: The Modified Thellier Method 103  
3.4.3 Absolute Paleointensities II: Shaw’s Method 105  
3.4.4 Relative Paleointensity Measurements 108  
3.4.5 Dipole Moments 109  

3.5 Age Determinations 110  
3.5.1 Potassium–Argon and Argon Isotope Dating 111  
3.5.2 Relative Age Determinations 113  

Chapter 4  The Recent Geomagnetic Field: Paleomagnetic Observations  

4.1 Archeomagnetic Results 115  
4.1.1 Evidence for Westward Drift 115  
4.1.2 Motion of the Dipole Axis 118  
4.1.3 Variations in the Dipole Moment 119  
4.1.4 Deductions from Carbon-14 Variations 125  
4.1.5 Dipole Moments before 10,000 yr B.P. 128  

4.2 Analysis of Recent Lake Sediments 130  
4.2.1 The Recording Mechanism in Lake Sediments 130  
4.2.2 Relative Paleointensities 131  
4.2.3 Analysis of Declination and Inclination 133  
4.2.4 Westward Drift and Runcorn’s Rule 136  
4.2.5 Interpretations in Terms of Dipole Sources 139  
4.2.6 Interpretations Using Spherical Harmonic Analysis 143  
4.2.7 Interpretations in Terms of Dynamo Waves 143  
4.2.8 Uncertainties in Interpretations of Secular Variation 147  

4.3 Geomagnetic Excursions 148  
4.3.1 Definition of Excursions 148  
4.3.2 The Laschamp Excursion 149  
4.3.3 Excursions Observed in Lake and Deep-Sea Sediments 151  
4.3.4 Reversals or Excursions during the Brunhes Chron? 153  
4.3.5 Models of Geomagnetic Excursions 154  

4.4 The Geomagnetic Power Spectrum 155  
4.4.1 Time Series Analysis 155  
4.4.2 Spectrum from Historical Records 158
Chapter 5  Reversals of the Earth's Magnetic Field

5.1 Evidence for Field Reversal  163
  5.1.1 Definition of a Reversal  163
  5.1.2 Self-Reversal in Rocks  164
  5.1.3 Baked Contacts  166
  5.1.4 Development of the Polarity Time Scale for the Past 5 Myr  168
  5.1.5 Terminology in Magnetostratigraphy  171

5.2 Marine Magnetic Anomalies  172
  5.2.1 Measurement and Calculation  172
  5.2.2 Sea-Floor Spreading  175
  5.2.3 Aspects of Magnetic Anomaly Interpretation  177
  5.2.4 Extension of the Polarity Time Scale to 160 Ma  180

5.3 Analysis of Reversal Sequences  186
  5.3.1 Independence of Polarity Intervals  186
  5.3.2 Statistical Analysis of Reversal Sequences  188
  5.3.3 Superchrons  196
  5.3.4 Stability of Polarity States  197
  5.3.5 Nonstationarity and Inhibition in the Reversal Record  199
  5.3.6 Paleointensity and Reversals  203
  5.3.7 Summary  204

5.4 Polarity Transitions  204
  5.4.1 Recording Polarity Transitions  204
  5.4.2 Intensity Changes  206
  5.4.3 Directional Changes and Interpretations  209
  5.4.4 Reversals and Secular Variation  214

Chapter 6  The Time-Averaged Paleomagnetic Field

6.1 Geocentric Axial Dipole Hypothesis  217
  6.1.1 The Past Few Million Years  217
  6.1.2 The Past 600 Million Years  222
  6.1.3 Paleoclimatic Evidence  224
  6.1.4 Longevity of the field  225

6.2 Second-Order Terms  227
  6.2.1 The Problems in Time Averaging  227
  6.2.2 Spherical Harmonic Analyses  228
6.2.3 The Past Five Million Years 232
6.2.4 Extension to 200 Ma 236

6.3 Variation in the Earth’s Dipole Moment 238
   6.3.1 Paleointensities and Dipole Moments 238
   6.3.2 Absolute Paleointensities — The Past 10 Million Years 239
   6.3.3 Relative Paleointensities — The Past Four Million Years 242
   6.3.4 Variation with Geological Time 243

6.4 Paleosecular Variation from Lavas (PSVL) 247
   6.4.1 Angular Dispersion of the Geomagnetic Field 247
   6.4.2 Models of PSVL 249
   6.4.3 Angular Dispersion of the Present Geomagnetic Field 255
   6.4.4 The Past Five Million Years 257
   6.4.5 A Pacific Dipole Window? 259
   6.4.6 Variation with Geological Time 261

Chapter 7 Processes and Properties of the Earth’s Deep Interior: Basic Principles

7.1 Seismic Properties of the Earth’s Interior 265

7.2 Chemical and Physical Properties 269
   7.2.1 Composition 269
   7.2.2 Physical Properties 273
   7.2.3 Electrical Properties of the Lower Mantle 275

7.3 Thermodynamic Properties of the Earth’s Deep Interior 277

7.4 Thermal History Models 281

7.5 Nondynamo Models for the Earth’s Magnetic Field 285
   7.5.1 Permanent Magnetization 285
   7.5.2 Thermoelectric Effects 286
   7.5.3 Other Mechanisms 287

7.6 Fluid Mechanics Fundamentals 288
   7.6.1 The Navier–Stokes Equation and Boundary Conditions 288
   7.6.2 Dimensionless Numbers 292
   7.6.3 Instabilities 294
   7.6.4 Turbulence 297

7.7 Energy Sources 300
Chapter 8 Introduction to Dynamo Theory

8.1 The Dynamo Problem
8.1.1 Disc Dynamos
8.1.2 Magnetohydrodynamics and Plasma Physics
8.1.3 The Earth Dynamo Problem

8.2 The Magnetic Induction Equation
8.2.1 Introduction
8.2.2 Physical Insight

8.3 The $\alpha$- and $\omega$-Effects of Dynamo Theory
8.3.1 $\alpha$-Effect
8.3.2 The $\omega$-Effect and a Heuristic $\alpha\omega$-Dynamo
8.3.3 Dynamo numbers and $\alpha^2$- and $\omega^2$-Dynamos

8.4 Waves in Dynamo Theory
8.4.1 MHD Waves
8.4.2 Planetary Waves

8.5 Symmetries in Dynamo Theory
8.5.1 The Importance of Symmetries
8.5.2 The Dynamo Families

8.6 Theories for Geomagnetic Secular Variations and Magnetic Field Reversals
8.6.1 Secular Variation
8.6.2 Reversals

Chapter 9 Dynamo Theory

9.1 Vector Spherical Harmonics
9.1.1 The Helmholtz Theorem
9.1.2 Helmholtz Scalar Equation
9.1.3 Helmholtz Vector Equation
9.1.4 Free-Decay Modes

9.2 Kinematic Dynamos
9.2.1 Toroidal and Poloidal Fields
9.2.2 Bullard–Gellman Models
9.2.3 Fast Dynamos

9.3 Cowling’s Theorem and Other Constraints

9.4 Turbulence in the Core
9.4.1 The $\alpha$- and $\beta$-Effects
xii

11.3 Paleomagnetism and Dynamo Theory
   11.3.1 Testing Geodynamo Theory 422
   11.3.2 Constraints on Dynamo Theory 424

11.4 Variations at the Core-Mantle Boundary and the Earth’s Surface 429
   11.4.1 Spatial Variation at the CMB 429
   11.4.2 Variations of the CMB Boundary Conditions with Time 432

Appendix A  SI and Gaussian CGS Units and Conversion Factors 437

Appendix B  Functions Associated with Spherical Harmonics
   B.1 The Scalar Potential 439
   B.2 The Legendre Functions $P_l$ 440
   B.3 The Associated Legendre Functions $P_{l,m}$ 441
   B.4 Normalization of the Associated Legendre Functions 441
   B.5 Inclination Anomaly Model for Zonal Harmonics 443

References 445

Author Index 509

Index 523