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From the preface to the First Edition

This book is intended to provide a survey of generalized inverses from a unified
point of view, illustrating the theory with applications in many areas. It contains
more than 450 exercises at different levels of difficulty, many of which are solved in
detail. This feature makes it suitable either for reference and self–study or for use
as a classroom text. It can be used profitably by graduate students or advanced
undergraduates, only an elementary knowledge of linear algebra being assumed.

The book consists of an introduction and eight chapters, seven of which treat
generalized inverses of finite matrices, while the eighth introduces generalized in-
verses of operators between Hilbert spaces. Numerical methods are considered in
Chapter 7 and is Section 8.5.

While working in the area of generalized inverses, the authors have had the
benefit of conversations and consultations with many colleagues. We would like to
thank especially A. Charnes, R. E. Cline, P. J. Erdelsky, I. Erdélyi, J. B. Hawkins,
A. S. Householder, A. Lent, C. C. MacDuffee, M. Z. Nashed, P. L. Odell, D. W.
Showalter, and S. Zlobec. However, any errors that may have occurred are the sole
responsibility of the authors.
· · · · · · · · ·
Finally, we are deeply indebted to Beatrice Shube, Editor for Wiley–Interscience

Division for her constant encouragement and patience during the long period of
bringing the manuscript to completion.

September 1973 A. Ben–Israel
T. N. E. Greville

Preface to the Second Edition

The field of generalized inverses has grown much since the appearance of the
first edition in 1974, and is still growing. I tried to incorporate these changes while
maintaining the informal and leisurely style of the first edition. New material was
added, including a preliminary chapter, Chapter 0, about 100 new exercises and
a 1000 new references, applications to statistics (omitted from the first edition
because these were covered in the then recent books by Albert [13] and Rao and
Mitra [1250]) and matrix volume. Otherwise, the old text is mostly unchanged.

Many colleagues helped this effort. Special thanks go to R. Bapat, R. Bhatia,
S. Campbell, J. Miao, S. K. Mitra, R. Puystjens, A. Sidi, G. Wang and Y. Wei.

Tom Greville, my friend and co–author, passed away before this project started.
His scholarship and style, that marked the first edition, are sadly missed.

May 2001 A. Ben–Israel
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Introduction

1. The inverse of a nonsingular matrix

It is well known that every nonsingular matrix A has a unique inverse, denoted
by A−1, such that

AA−1 = A−1A = I , (1)

where I is the identity matrix. Of the numerous properties of the inverse matrix,
we mention a few. Thus, (

A−1)−1
= A ,(

AT
)−1

=
(
A−1)T ,

(A∗)−1 =
(
A−1)∗ ,

(AB)−1 = B−1A−1 ,

where AT and A∗, respectively, denote the transpose and conjugate transpose of
A. It will be recalled that a real or complex number λ is called an eigenvalue of a
square matrix A, and a nonzero vector x is called an eigenvector of A corresponding
to λ, if

Ax = λx .

Another property of the inverse A−1 is that its eigenvalues are the reciprocals of
those of A.

2. Generalized inverses of matrices

A matrix has an inverse only if it is square, and even then only if it is nonsingular,
or, in other words, if its columns (or rows) are linearly independent. In recent years
needs have been felt in numerous areas of applied mathematics for some kind of
partial inverse of a matrix that is singular or even rectangular. By a generalized
inverse of a given matrix A we shall mean a matrix X associated in some way with
A that (i) exists for a class of matrices larger than the class of nonsingular matrices,
(ii) has some of the properties of the usual inverse, and (iii) reduces to the usual
inverse when A is nonsingular. Some writers have used the term “pseudoinverse”
rather than “generalized inverse”.

As an illustration of part (iii) of our description of a generalized inverse, consider
a definition used by a number of writers (e.g., Rohde [1296]) to the effect that a

1



2 INTRODUCTION

generalized inverse of A is any matrix satisfying

AXA = A . (2)

If A were nonsingular, multiplication by A−1 both on the left and on the right
would give at once

X = A−1 .

3. Illustration: Solvability of linear systems

Probably the most familiar application of matrices is to the solution of systems
of simultaneous linear equations. Let

Ax = b (3)

be such a system, where b is a given vector and x is an unknown vector. If A is
nonsingular, there is a unique solution for x given by

x = A−1b .

In the general case, when A may be singular or rectangular, there may sometimes
be no solutions or a multiplicity of solutions.

The existence of a vector x satisfying (3) is tantamount to the statement that
b is some linear combination of the columns of A. If A is m × n and of rank less
than m, this may not be the case. If it is, there is some vector h such that

b = Ah .

Now, if X is some matrix satisfying (2), and if we take

x = Xb ,

we have

Ax = AXb = AXAh = Ah = b ,

and so this x satisfies (3).
In the general case, however, when (3) may have many solutions, we may desire

not just one solution but a characterization of all solutions. It has been shown (
Bjerhammar [174], Penrose [1177]) that, if X is any matrix satisfying AXA = A,
then Ax = b has a solution if and only if

AXb = b ,

in which case the most general solution is

x = Xb + (I −XA)y , (4)

where y is arbitrary.
We shall see later that for every matrix A there exist one or more matrices

satisfying (2).
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Exercises.

Ex. 1. If A is nonsingular and has an eigenvalue λ, and x is a corresponding eigen-
vector, show that λ−1 is an eigenvalue of A−1 with the same eigenvector x.

Ex. 2. For any square A, let a “generalized inverse” be defined as any matrix X
satisfying Ak+1X = Ak for some positive integer k. Show that X = A−1 if A is
nonsingular.

Ex. 3. If X satisfies AXA = A, show that Ax = b has a solution if and only if
AXb = b.

Ex.4. Show that (4) is the most general solution of Ax = b. [Hint: First show that
it is a solution; then show that every solution can be expressed in this form. Let x
be any solution; then write x = XAx + (I −XA)x.]

Ex. 5. If A is an m × n matrix of zeros, what is the class of matrices X satisfying
AXA = A?

Ex. 6. Let A be an m × n whose elements are all zeros except the (i, j)th element,
which is equal to 1. What is the class of matrices X satisfying (2)?

Ex. 7. Let A be given, and let X have the property that x = Xb is a solution of
Ax = b for all b such that a solution exists. Show that X satisfies AXA = A.

4. Diversity of generalized inverses

From Exercises 3, 4 and 7 the reader will perceive that, for a given matrix A,
the matrix equation AXA = A alone characterizes those generalized inverses X
that are of use in analyzing the solutions of the linear system Ax = b. For other
purposes, other relationships play an essential role. Thus, if we are concerned with
least–squares properties, (2) is not enough and must be supplemented by further
relations. There results a more restricted class of generalized inverses.

If we are interested in spectral properties (i.e., those relating to eigenvalues and
eigenvectors), consideration is necessarily limited to square matrices, since only
these have eigenvalues and eigenvectors. In this connection, we shall see that (2)
plays a role only for a restricted class of matrices A and must be supplanted, in
the general case, by other relations.

Thus, unlike the case of the nonsingular matrix, which has a single unique inverse
for all purposes, there are different generalized inverses for different purposes. For
some purposes, as in the examples of solutions of linear systems, there is not a
unique inverse, but any matrix of a certain class will do.

This book does not pretend to be exhaustive, but seeks to develop and describe in
a natural sequence the most interesting and useful kinds of generalized inverses and
their properties. For the most part, the discussion is limited to generalized inverses
of finite matrices, but extensions to infinite–dimensional spaces and to differential
and integral operators are briefly introduced in Chapter 8. Pseudoinverses on
general rings and semigroups are not discussed; the interested reader is referred to
Drazin [423], Foulis [507], and Munn [1098].



4 INTRODUCTION

The literature on generalized inverses has become so extensive that it would be
impossible to do justice to it in a book of moderate size. In particular, applications
of generalized inverses in statistics will not be treated here, since they are amply
covered in the books by Rao and Mitra [1250] and Albert [13]. We have been
forced to make a selection of topics to be covered, and it is inevitable that not
everyone will agree with the choices we have made. We apologize to those authors
whose work has been slighted. A virtually complete bibliography as of 1976 is
found in Nashed and Rall [1121].

5. Preparation expected of the reader

It is assumed that the reader has a knowledge of linear algebra that would
normally result from completion of an introductory course in the subject. In par-
ticular, vector spaces will be extensively utilized. Except in Chapter 8, which deals
with Hilbert spaces, the vector spaces and linear transformations used are finite–
dimensional, real or complex. Familiarity with these topics is assumed, say at the
level of Halmos [645] or Noble [1145], see also Chapter 0 below.

6. Historical note

The concept of a generalized inverse seems to have been first mentioned in print
in 1903 by Fredholm [515], where a particular generalized inverse (called by him
“pseudoinverse”) of an integral operator was given. The class of all pseudoinverses
was characterized in 1912 by Hurwitz [761], who used the finite dimensionality of
the null spaces of the Fredholm operators to give a simple algebraic construction
(see, e.g., Exercises 8.19–8.20). Generalized inverses of differential operators, al-
ready implicit in Hilbert’s discussion in 1904 of generalized Green’s functions, [734],
were consequently studied by numerous authors, in particular Myller (1906), West-
fall (1909), Bounitzky [212] in 1909, Elliott (1928), and Reid (1931). For a history
of this subject see the excellent survey by Reid [1263].

Generalized inverses of differential and integral operators thus antedated the
generalized inverses of matrices, whose existence was first noted by E.H. Moore,
who defined a unique inverse (called by him the “general reciprocal”) for every
finite matrix (square or rectangular). Although his first publication on the subject
[1087], an abstract of a talk given at a meeting of the American Mathematical
Society, appeared in 1920, his results are thought to have been obtained much
earlier. One writer, [906, p. 676], has assigned the date 1906. Details were pub-
lished, [1088], only in 1935 after Moore’s death. Little notice was taken of Moore’s
discovery for 30 years after its first publication, during which time generalized in-
verses were given for matrices by Siegel [1361] in 1937, and for operators by Tseng
([1461]–1933, [1466],[1464],[1465]–1949), Murray and von Neumann [1103] in
1936, Atkinson ([45]–1952, [46]–1953) and others. Revival of interest in the sub-
ject in the 1950s centered around the least squares properties (not mentioned by
Moore) of certain generalized inverses. These properties were recognized in 1951
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by Bjerhammar, who rediscovered Moore’s inverse and also noted the relationship
of generalized inverses to solutions of linear systems (Bjerhammar [173], [172],
[174]). In 1955 Penrose [1177] sharpened and extended Bjerhammar’s results on
linear systems, and showed that Moore’s inverse, for a given matrix A is the unique
matrix X satisfying the four equations (1)–(4) of the next chapter. The latter dis-
covery has been so important and fruitful that this unique inverse (called by some
writers the generalized inverse) is now commonly called the Moore–Penrose inverse.

Since 1955 thousands of papers on various aspects of generalized inverses and
their applications have appeared. In view of the vast scope of this literature, we
shall not attempt to trace the history of the subject further, but the subsequent
chapters will include selected references on particular items.

7. Remarks on notation

Equation j of Chapter i is denoted by (j) in Chapter i and by (i.j) in other
chapters. Theorem j of Chapter i is called Theorem j in Chapter i, and Theorem
i.j in other chapters. Similar conventions apply to corollaries, lemmas, exercises,
definitions etc.. The left and right members of equation (i.j) are denoted LHS(i.j)
and RHS(i.j), respectively. The index set {1, 2, . . . , n} is denoted 1, n.

Suggested further reading

Section 2 . A ring R is called regular if for every A ∈ R there exists an X ∈ R
satisfying AXA = A. See von Neumann [1504] and [1508, p. 90], Murray and
von Neumann [1103, p. 299], McCoy [1009], and Hartwig [668].
Section 4 . For generalized inverses in abstract geometric setting see also Davis and
Robinson [381], Gabriel ([520], [521], [522]), Hansen and Robinson [653], Hartwig
[668], Munn and Penrose [1100], Pearl [1172], Rabson [1227] and Rado [1230].
For applications in statistics see Albert ([13], [14]), Albert and Sittler [16], Baner-
jee [65], Banerjee and Federer [66], Chernoff [325], Chipman ([326], [327]), Chip-
man and Rao ([331], [330]), Drygas ([429], [430], [431]), Goldman and Zelen
[544], Golub ([549], [550]), Golub and Styan [558], Good [562], Graybill and
Marsaglia [571], J. A. John [783], P. W. M. John [784], Meyer and Painter [1032],
Mitra [1058], Mitra and Rao ([1075], [1076]), Price [1206], Rao ([1240], [1241],
[1242]), Rao and Mitra [1250], Rayner and Pringle [1258], Rohde ([1296], [1299]),
Rohde and Harvey [1300], Tan [1419], Zacks [1624], Zyskind [1669], and Zyskind
and Martin [1670].





CHAPTER 0

Preliminaries

For ease of reference we collect here facts, definitions and notations that are
used in successive chapters. This chapter can be skipped in first reading.

1. Scalars and vectors

1.1. Scalars are denoted by low case letters: x, y, λ, . . . . We use mostly the
complex field C, and specialize to the real field R as necessary. A generic field is
denoted by F.

1.2. Vectors are denoted by bold letters: x,y,λ, . . . . Vector spaces are finite–
dimensional, except in Chapter 8. The n–dimensional vector space over a field F
is denoted by Fn, its elements by

x =

x1
...
xn

 , or x = (xi) , i ∈ 1, n , , xi ∈ F .

The n–dimensional vector ei with components

δij =

{
1 if i = j,

0 otherwise,

is called the ith unit vector of Fn. The set En of unit vectors {e1, e2, . . . , en} is
called the standard basis of Fn.

1.3. The sum of two sets L,M in Cn, denoted by L+M , is defined as

L+M = {y + z : y ∈ L, z ∈M} .
If L and M are subspaces of Cn, then L+M is also a subspace of Cn. If, in addition,
L ∩M = {0}, i.e., the only vector common to L and M is the zero vector, then
L+M is called the direct sum of L and M , denoted by L⊕M . Two subspaces L
and M of Cn are called complementary if

C
n = L⊕M . (1)

When this is the case (see Ex. 1 below), every x ∈ Cn can be expressed uniquely
as a sum

x = y + z (y ∈ L, z ∈M) . (2)

We shall then call y the projection of x on L along M .
7



8 0. PRELIMINARIES

1.4. An inner product of x,y ∈ Cn, denoted by 〈x,y〉, is defined as a
function : Cn × Cn → C that satisfies

(I1) 〈αx + y, z〉 = α〈x, z〉+ 〈y, z〉 (linearity),

(I2) 〈x,y〉 = 〈y,x〉 (Hermitian symmetry),
(I3) 〈x,x〉 ≥ 0, 〈x,x〉 = 0 if and only if x = 0 (positivity),

for every x,y, z ∈ Cn and every α ∈ C.
Note:

(a) For all x,y ∈ Cn and α ∈ C, 〈x, αy〉 = α〈x,y〉 by (I1)–(I2).

(b) Condition (I3) states, in particular, that 〈x,x〉 is real for all x ∈ Cn.

(c) The if part in (I3) follows from (I1) with α = 0, y = 0.

The standard inner product of x = (xi) and y = (yi) is

y∗x =
n∑

i=1

xi yi . (3)

See Exs. 2–4.

1.5. A (vector) norm of x ∈ Cn, denoted by ‖x‖, is defined as a
function : Cn → R that satisfies

(N1) ‖x‖ ≥ 0, ‖x‖ = 0 if and only if x = 0 (positivity),
(N2) ‖αx‖ = |α| ‖x‖ (positive homogeneity),
(N3) ‖x + y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality),

for every x,y ∈ Cn and every α ∈ C.
Note:

(a) The if part of (N1) follows from (N2).

(b) ‖x‖ is interpreted as the length of the vector x. Inequality (N3) then states, in R2, that the length of

any side of a triangle is no greater than the sum of lengths of the other two sides.

See Exs. 3–9.

Exercises and examples.

Ex. 1. Direct sums. Let L and M be subspaces of a vector space V . Then the
following statements are equivalent:
(a) V = L⊕M .
(b) Every vector x ∈ V is uniquely represented as

x = y + z (y ∈ L , z ∈M) .

(c) dimV = dimL+ dimM , L ∩M = {0}.
(d) If {x1,x2, . . . ,xl} and {y1,y2, . . . ,ym} are bases for L and M , respectively,
then

{x1,x2, . . . ,xl,y1,y2, . . . ,ym}

is a basis for V .
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Ex.2. The Cauchy–Schwartz inequality. For any x,y ∈ Cn

|〈x,y〉| ≤
√
〈x,x〉

√
〈y,y〉 (4)

with equality if and only if x = λy for some λ ∈ C.

Proof. For any complex z,

0 ≤ 〈x + zy,x + zy〉 , by (I3) ,

= 〈y,y〉|z|2 + z〈y,x〉+ z〈x,y〉+ 〈x,x〉 , by (I1)–(I2)

= 〈y,y〉|z|2 + 2<{z 〈x,y〉}+ 〈x,x〉 ,
≤ 〈y,y〉|z|2 + 2|z||〈x,y〉|+ 〈x,x〉 . (5)

Here < denotes real part. The quadratic equation RHS(5) = 0 can have at most
one solution |z|, proving that |〈x,y〉|2 ≤ 〈x,x〉 〈y,y〉, with equality if and only if
x + zy = 0 for some z ∈ C. �

Ex.3. Prove: if 〈x,y〉 is an inner product on Cn, then

‖x‖ :=
√
〈x,x〉 (6)

is a norm on Cn. The Euclidean norm in Cn

‖x‖ =

√√√√ n∑
j=1

|x|2 , (7)

corresponds to the standard inner–product. (Hint : Use (4) to verify the triangle
inequality (N3) in § 1.5.)

Ex.4. Show that to every inner product f : Cn×Cn → C there corresponds a unique
positive definite Q = [qij] ∈ Cn×n such that

f(x,y) = y∗Qx =
n∑

i=1

n∑
j=1

yi qijxj . (8)

The inner product (8) is denoted by 〈x,y〉Q. It induces a norm, by Ex. 3,

‖x‖Q =
√

x∗Qx ,

called ellipsoidal, or weighted Euclidean norm. The standard inner product (3),
and the Euclidean norm, correspond to the special case Q = I.

Solution. The inner product f and the positive definite matrix Q = [qij]
completely determine each other by

f(ei, ej) = qij, (i, j ∈ 1, n) ,

where ei is the ith unit vector. �
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Ex. 5. Given an inner product 〈x,y〉 and the corresponding norm ‖x‖ = 〈x, x〉1/2,
the angle between two vectors x,y ∈ Rn, denoted by \{x,y}, is defined by

cos\{x,y} =
〈x,y〉
‖x‖‖y‖

. (9)

Two vectors x,y ∈ Rn are orthogonal if 〈x,y〉 = 0. Although it is not obvious
how to define angles between vectors in Cn, we define orthogonality by the same
condition, 〈x,y〉 = 0, as in the real case.

Ex. 6. Let ‖ ‖(1) , ‖ ‖(2) be two norms on Cn and let α1 , α2 be positive scalars.
Show that the following functions

(a) max{‖x‖(1), ‖x‖(2)} (b) α1‖x‖(1) + α2‖x‖(2)

are norms on Cn.

Ex.7. The `p–norms. for any p ≥ 1 the function

‖x‖p =

(
n∑

j=1

|xj|p
)1/p

(10)

is a norm on Cn, called the `p–norm.
Hint : The statement that (10) satisfies (N3) for p ≥ 1 is the classical Minkowski’s
inequality; see, e.g., Beckenbach and Bellman [100].

Ex.8. The most popular `p–norms are the choices p = 1, 2, and ∞

‖x‖1 =
n∑

j=1

|xj| , the `1–norm , (10.1)

‖x‖2 =

(
n∑

j=1

|xj|2
)1/2

= (x∗x)1/2 , the `2–norm or the Euclidean norm , (10.2)

‖x‖∞ = max{|xj| : j ∈ 1, n} , the `∞–norm or the Tchebycheff norm . (10.∞)

Is ‖x‖∞ = lim
p→∞
‖x‖p?

Ex. 9. Let ‖ ‖(1) , ‖ ‖(2) be any two norms on Cn. Show that there exist positive
scalars α, β such that

α‖x‖(1) ≤ ‖x‖(2) ≤ β‖x‖(1) , (11)

for all x ∈ Cn.
Hint :

α = inf{‖x‖(2) : ‖x‖(1) = 1}

and

β = sup{‖x‖(2) : ‖x‖(1) = 1} .
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Remark 1. Two norms, ‖ ‖(1) and ‖ ‖(2) are called equivalent if there exist positive
scalars α, β such that (11) holds for all x ∈ Cn. from Ex. 9, any two norms on Cn

are equivalent. Therefore, if a sequence {xk} ⊂ Cn satisfies

lim
k→∞
‖xk‖ = 0 (12)

for some norm, then (12) holds for any norm. Topological concepts like convergence
and continuity, defined by limiting expressions like (12), are therefore independent
of the norm used in their definition. Thus we say that a sequence {xk} ⊂ Cn

converges to a point x∞ if

lim
k→∞
‖xk − x∞‖ = 0

for some norm.

2. Linear transformations and matrices

2.1. The set of m× n matrices with elements in F is denoted Fm×n. A matrix
A ∈ Fm×n is square if m = n, rectangular otherwise.

The elements of a matrix A ∈ Fm×n are denoted by aij or A[i, j]. The matrix A
is

diagonal if A[i, j] = 0 for i 6= j,
upper triangular if if A[i, j] = 0 for i > j,
lower triangular if if A[i, j] = 0 for i < j.

Given a matrix A ∈ Cm×n, its
transpose is the matrix AT ∈ Cn×m with AT [i, j] = A[j, i] for all i, j,

conjugate transpose is the matrix A∗ ∈ Cn×m with A∗[i, j] = A[j, i] for all i, j.
A matrix A ∈ Cn×n is:

Hermitian if A = A∗,
normal if AA∗ = A∗A.

2.2. Given vector spaces U, V over a field F, and a mapping T : U 7−→ V , we
say that T is linear, or a linear transformation, if T (αx + y) = αTx + Ty, for all
α ∈ F and x,y ∈ U . The set of linear transformations from U to V is denoted
L(U, V ). It is a vector space with operations T1 + T2 and αT defined by

(T1 + T2)u = T1u + T2u , (αT )u = α(Tu) , ∀ u ∈ U .

The zero element of L(U, V ) is the transformation O mapping every u ∈ U into
0 ∈ V . The identity mapping IU ∈ L(U,U) is defined by IUu = u , ∀ u ∈ U . We
usually omit the subscript U , writing the identity as I.

2.3. Let T ∈ L(U, V ). For any u ∈ U , the point Tu in V is called the image
of u (under T ). The range of T , denoted R(T ) is the set of all its images

R(T ) = {v ∈ V : v = Tu for some u ∈ U} .
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For any v ∈ R(T ), the inverse image T−1(v) is the set

T−1(v) = {u ∈ U : Tu = v} .

In particular, the null space of T , denoted by N(T ), is the inverse image of the
zero vector 0 ∈ V ,

N(T ) = {u ∈ U : Tu = 0} .

2.4. T ∈ L(U, V ) is one–to–one if for all x,y ∈ U , x 6= y =⇒ Tx 6= Ty,
or equivalently, if for every v ∈ R(T ) the inverse image T−1v is a singleton. T is
onto if R(T ) = V . If T is one–to–one and onto, it has an inverse T−1 ∈ L(V, U)
such that

T−1(Tu) = u and T (T−1v) = v , ∀ u ∈ U, v ∈ V , (13a)

or equivalently , T−1T = IU , TT−1 = IV , (13b)

in which case T is called invertible or nonsingular.

2.5. Given
• a linear transformation A ∈ L(Cn,Cm) and
• two bases U = {u1, . . . ,um} and V = {v1, . . . ,vn} of Cm and Cn, respectively,
the matrix representation of A relative to the bases {U, V } is the m × n matrix
A{U ,V} =

[
aij

]
determined (uniquely) by

Avj =
m∑

i=1

aij ui , j ∈ 1, n . (14)

For any such pair of bases {U ,V}, (14) is a one–to–one correspondence between the
linear transformations L(Cn,Cm) and the matrices Cm×n, allowing the customary
practice of using the same symbol A to denote both the linear transformation
A : Cn → Cm and its matrix representation A{U ,V}.

If A is a linear transformation from Cn to itself, and V = {v1, . . . ,vn} is a basis
of Cn, then the matrix representation A{V,V} is denoted simply by A{V}. It is the

(unique) matrix A{V} =
[
aij

]
∈ Cn×n satisfying

Avj =
n∑

i=1

aij vi , j ∈ 1, n . (15)

The standard basis of Cn is the basis En consisting of the n unit vectors

En = {e1, . . . , en} .

Unless otherwise noted, linear transformations A ∈ L(Cn,Cm) are represented in
terms of the standard bases {Em, En}.
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2.6. A (matrix ) norm of A ∈ Cm×n, denoted by ‖A‖, is defined as a
function : Cm×n → R that satisfies

‖A‖ ≥ 0 , ‖A‖ = 0 only if A = O , (M1)

‖αA‖ = |α|‖A‖ , (M2)

‖A+B‖ ≤ ‖A‖+ ‖B‖ , (M3)

for all A,B ∈ Cm×n , α ∈ C. If in addition

‖AB‖ ≤ ‖A‖‖B‖ (M4)

whenever the matrix product AB is defined, then ‖ ‖ is called a multiplicative norm.
Some authors (see, e.g., Householder [753, Section 2.2]) define a matrix norm as a
function having all four properties (M1)–(M4).

Exercises and examples.

Ex. 10. Let U and V be finite–dimensional vector spaces over a field F, and let
T ∈ L(U, V ). Then the null space N(T ) and range R(T ) are subspaces of U and
V respectively.

Proof. L is a subspace of U if and only if

x,y ∈ L , α ∈ F =⇒ αx + y ∈ L .

If x,y ∈ N(T ) then T (x + αy) = Tx + αTy = 0 for all α ∈ F, proving that N(T )
is a subspace of U . The proof that R(T ) is a subspace is similar. �

Ex.11. Let Pn be the set of polynomials with real coefficients, of degree ≤ n,

Pn = {p : p(x) = p0 + p1x+ · · ·+ pnx
n , pi ∈ R} . (16)

The name x of the variable in (16) is immaterial.
(a) Show that Pn is a vector space with the operations

p + q =
n∑

i=0

pix
i +

n∑
i=0

qix
i =

n∑
i=0

(pi + qi)x
i , αp =

n∑
i=0

(α pi)x
i

and the dimension of Pn is n+ 1.
(b) The set of monomials Un = {1, x, x2, · · · , xn} is a basis of Pn. Let T be the dif-
ferentiation operator, mapping a function f(x) into its derivative f ′(x). Show that
T ∈ L(Pn, Pn−1). What are the range and null space of T? Find the representation
of T w.r.t. the bases {Un,Un−1}.
(c) Let S be the integration operator, mapping a function f(x) into its integral∫
f(x)dx with zero constant of integration. Show that S ∈ L(Pn−1, Pn). What are

the range and null space of S? Find the representation of S w.r.t. {Un−1,Un}.
(d) Let TUn,Un−1

and SUn−1,Un
be the matrix representations in parts (b) and (c).
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What are the matrix products T{Un,Un−1} S{Un−1,Un} and S{Un−1,Un} T{Un,Un−1}? Inter-
pret these results in view of the fact that integration and differentiation are inverse
operations.

Ex. 12. Let V = {v1, . . . ,vn} and W = {w1, . . . ,wn} be two bases of Cn. Show
that there is a unique n× n matrix S =

[
sij

]
such that

wj =
n∑

i=1

sij vi , j ∈ 1, n , (17)

and S is nonsingular. Using the rules of matrix multiplication we rewrite (17) as

[w1,w2, . . . ,wn] = [v1,v2, . . . ,vn]

s11 · · · s1n
...

...
sn1 · · · snn

 = [v1,v2, . . . ,vn]S , (18)

i.e.

[v1,v2, . . . ,vn] = [w1,w2, . . . ,wn]S
−1 . (19)

Ex.13. Similar matrices. We recall that two square matrices A,B are called similar
if

B = S−1AS (20)

for some nonsingular matrix S. If S in (20) is unitary [orthogonal ] then A,B are
called called called unitarily similar [orthogonally similar ].

Show that two n×n complex matrices are similar if and only if each is a matrix
representation of the same linear transformation relative to a basis of Cn.

Proof. If. Let V = {v1,v2, . . . ,vn} and W = {w1,w2, . . . ,wn} be two bases
of Cn and let A{V} and A{W} be the corresponding matrix representations of a given
linear transformation A : Cn → Cn. The bases V and W determine a (unique)
nonsingular matrix S =

[
sij

]
satisfying (17). Rewriting (15) as

A[v1,v2, . . . ,vn] = [v1,v2, . . . ,vn]A{V} . (21)

we conclude, by substituting (19) in (21), that

A[w1,w2, . . . ,wn] = [w1,w2, . . . ,wn]S
−1A{V}S ,

and by the uniqueness of the matrix representation,

A{W} = S−1A{V}S .

Only if. Similarly proved. �

Ex. 14. Schur triangularization. Any A ∈ Cn×n is unitarily similar to a triangular
matrix.

Proof. See, e.g., Marcus and Minc [996, p. 67]. �
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Ex. 15. Perron’s approximate diagonalization. Let A ∈ Cn×n. Then for any ε > 0
there is a nonsingular matrix S such that S−1AS is a triangular matrix

S−1AS =


λ1 b12 · · · · · · b1n

0 λ2
...

... . . . . . . ...

... . . . . . . ...
0 · · · · · · 0 λn


with the off–diagonal elements satisfying∑

ij

|bij| ≤ ε (Bellman [101, p. 205]) .

Ex.16. A matrix in Cn×n is:
(a) normal if and only if it is unitarily similar to a diagonal matrix,
(b) Hermitian if and only if it is unitarily similar to a real diagonal matrix.

Ex.17. For any n ≥ 2 there is an n×n real matrix which is not similar to a triangular
matrix in Rn×n.
Hint. The diagonal elements of a triangular matrix are its eigenvalues.

Ex. 18. Denote the transformation of bases (17) by W = V S . Let {U ,V} be bases

of {Cm,Cn}, respectively, and let {Ũ , Ṽ} be another pair of bases, obtained by

Ũ = U S , Ṽ = V T ,

where S and T are m × m and n × n matrices, respectively. Show that for any
A ∈ L(Cn,Cm), the representations A{U ,V} and A{Ũ ,Ṽ} are related by

A{Ũ ,Ṽ} = S−1A{U ,V} T . (22)

Proof. Similar to thr proof of Ex. 13. �

Ex. 19. Equivalent matrices. Two matrices A,B in Cm×n are called equivalent if
there are nonsingular matrices S ∈ Cm×m and T ∈ Cn×n such that

B = S−1AT . (23)

If S and T in (23) are unitary matrices, then A,B are called unitarily equivalent.
It follows from Ex. 18 that two matrices in Cm×n are equivalent if, and only if,

each is a matrix representation of the same linear transformation relative to a pair
of bases of Cm and Cn.

Ex. 20. Let A ∈ L(Cn,Cm) and B ∈ L(Cp,Cn), and let U ,V and W be bases of
Cm,Cn and Cp, respectively. The product (or composition) of A and B, denoted
by AB, is the transformation Cp → Cm defined by

(AB)w = A(Bw) for all w ∈ Cp .
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(a) The transformation AB is linear, i.e., (AB) ∈ L(Cp,Cm).
(b) The matrix representation of AB relative to {U ,W} is

(AB){U ,W} = A{U ,V}B{V,W} ,

the (matrix) product of the corresponding matrix representations of A and B.

Ex.21. The matrix representation of the identity transformation I in Cn, relative to
any basis, is the n× n identity matrix I.

Ex.22. For any invertible A ∈ L(Cn,Cn) and any two bases {U ,V} of Cn, the matrix
representation of A−1 relative to {V, U} is the inverse of the matrix A{U ,V},(

A−1)
{V,U} =

(
A{U ,V}

)−1

Proof. Follows from Exs. 20–21. �

Ex.23. Let A ∈ L(Cm,Cn). A property shared by all matrix representations A{U ,V}
of A, as U and V range over all bases of Cm and Cn, respectively, is an intrinsic
property of the linear transformation A. Example: If A,B are similar matrices,
they have the same determinant. The determinant is thus intrinsic to the linear
transformation represented by A and B.
Given a matrix A = (aij) ∈ Cm×n, which of the following items are intrinsic
properties of a linear transformation represented by A?

(a) if m = n

(a1) the eigenvalues of A (a2) the eigenvectors of A

(b) if m,n are not necessarily equal,

(b1) the rank of A (b2)
m∑

i=1

n∑
j=1

|aij|2

Ex.24. Let Ũn = {p̃1, . . . , p̃n} be the set of partial sums of monomials

p̃k(x) =
k∑

i=0

xi , k ∈ 1, n .

(a) Show that Ũn is a basis of Pn, and determine the matrix A, such that Ũn = AUn,
where Un is the basis of monomials, see Ex. 11.
(b) Calculate the representations of the differentiation operator (Ex. 11(b)) w.r.t.

to the bases {Ũn, Ũn−1}, and verify (22).
(c) Same for the integration operator of Ex. 11(c).

Ex. 25. Let L and M be complementary subspaces of Cn. Show that the projector
PL,M , which carries x ∈ Cn into its projection on L along M , is a linear transfor-
mation (from Cn to L).
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Ex. 26. Let L and M be complementary subspaces of Cn, let x ∈ Cn, and let y
be the projection of x on L along M . What is the unique expression for x as the
sum of a vector in L and a vector in M? What, therefore, is PL,M y = P 2

L,M x, the
projection of y on L along M? Show, therefore, that the transformation PL,M is
idempotent.

Ex.27. Matrix norms. Show that the functions(
m∑

i=1

n∑
j=1

|aij|2
)1/2

= (traceA∗A)1/2 (24)

and

max{|aij| : i ∈ 1,m , j ∈ 1, n} (25)

are matrix norms. Which of these functions is a multiplicative norm?

Ex. 28. Consistent norms. A vector norm ‖ ‖ and a matrix norm ‖ ‖ are called
consistent if for any vector x and matrix A such that Ax is defined,

‖Ax‖ ≤ ‖A‖‖x‖ . (26)

Given a vector norm ‖ ‖∗ show that

‖A‖∗ = sup
x6=0

‖Ax‖∗
‖x‖∗

(27)

is a multiplicative matrix norm consistent with ‖x‖∗, and that any other matrix
norm ‖ ‖ consistent with ‖x‖∗, satisfies

‖A‖ ≥ ‖A‖∗ , for all A . (28)

The norm ‖Ax‖∗ defined by (27), is called the matrix norm corresponding to the
vector norm ‖ ‖∗, or the bound of A with respect to K = {x : ‖x‖∗ ≤ 1}; see, e.g.
Householder [753, Section 2.2] and Ex. 3.63 below.

Ex.29. Show that (27) is the same as

‖Ax‖∗ = sup
‖x‖∗≤1

‖Ax‖∗
‖x‖∗

= sup
‖x‖∗=1

‖Ax‖∗ . (29)

Ex.30. Given a multiplicative matrix norm, find a vector norm consistent with it.

Ex.31. Corresponding norms.

(a) The matrix norm on Cm×n, corresponding to the vector norm

‖x‖1 =
n∑

j=1

|xj| (10.1)
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is

‖A‖1 = max
1≤j≤n

m∑
i=1

|aij| . (30)

(b) The matrix norm on Cm×n, corresponding to the vector norm

‖x‖∞ = max
1≤j≤n

|xj| (10.∞)

is

‖A‖∞ = max
1≤i≤m

n∑
j=1

|aij| . (31)

Proof. (a) Follows from (29) since for any x ∈ Cn

‖Ax‖1 =
m∑

i=1

|
n∑

j=1

aijxj | ≤
m∑

i=1

n∑
j=1

| aij || xj |

≤
n∑

j=1

| xj |
m∑

i=1

| aij |

≤
(

max
1≤j≤n

m∑
i=1

|aij|
)

(‖x‖1)

with equality if x is the kth unit vector, where k is any j for which the maximum
in (30) is attained

m∑
i=1

|aik| = max
1≤j≤n

m∑
i=1

|aij| .

(b) Similarly proved. �

Ex.32. The matrix norm on Cm×n, corresponding to the Euclidean norm

‖x‖2 =

(
n∑

j=1

|xj|2
)1/2

(10.2)

is

‖A‖2 = max{
√
λ : λ an eigenvalue of A∗A} . (32)

Note that (32) is different from (24), which is the Euclidean norm of the mn–
dimensional vector obtained by listing all components of A in some order. The
norm ‖ ‖2 given by (32) is called the spectral norm.
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Ex. 33. For any matrix norm ‖ ‖ on Cm×n, consistent with some vector norm, the
norm of the unit matrix satisfies

‖In‖ ≥ 1 .

In particular, if ‖ ‖∗ is a matrix norm, computed by (27) from a corresponding
vector norm, then

‖In‖∗ = 1 . (33)

Ex. 34. A matrix norm ‖ ‖ on Cm×n is called unitarily invariant if for any two
unitary matrices U ∈ Cm×m and V ∈ Cn×n

‖UAV ‖ = ‖A‖ for all A ∈ Cm×n .

Show that the matrix norms (24) and (32) are unitarily invariant.

Ex.35. Spectral radius. The spectral radius ρ(A) of a square matrix A ∈ Cn×n is the
maximal value among the n moduli of the eigenvalues of A,

ρ(A) = max{|λ| : λ an eigenvalue of A} . (34)

Let ‖ ‖ be any multiplicative norm on Cn×n. Then for any A ∈ Cn×n,

ρ(A) ≤ ‖A‖ . (35)

Proof. Let ‖ ‖ denote both a given multiplicative matrix norm, and a vector
norm consistent with it; see, e.g., Ex. 30. Then

Ax = λx implies |λ|‖x‖ = ‖Ax‖ ≤ ‖A‖‖x‖ .

�

Ex. 36. For any A ∈ Cn×n and any ε > 0, there exists a multiplicative matrix norm
‖ ‖ such that

‖A‖ ≤ ρ(A) + ε (Householder [753, p. 46]) .

Ex.37. If A is a square matrix,

ρ(Ak) = ρk(A) , k = 0, 1, . . . (36)

Ex.38. For any A ∈ Cm×n, the spectral norm ‖ ‖2 of (32) equals

‖A‖2 = ρ1/2(A∗A) = ρ1/2(AA∗) . (37)

In particular, if A is Hermitian then

‖A‖2 = ρ(A) . (38)

In general the spectral norm ‖A‖2 and the spectral radius ρ(A) may be quite apart;
see, e.g., Noble [1145, p. 430].
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Ex.39. Convergent matrices. A square matrix A is called convergent if

Ak → O as k →∞ . (39)

Show that A ∈ Cn×n is convergent if and only if

ρ(A) < 1 . (40)

Proof. If: From (40) and Ex. 36 it follows that there exists a multiplicative
matrix norm ‖ ‖ such that ‖A‖ < 1. Then

‖Ak‖ ≤ ‖A‖k → 0 as k →∞ ,

proving (39).
Only if: If ρ(A) ≥ 1, then by (36), so is ρ(Ak) for k = 0, 1, . . . , contradicting
(39). �

Ex.40. A square matrix A is convergent if and only if the sequence of partial sums

Sk = I + A+ A2 + · · ·+ Ak =
k∑

j=0

Aj

converges, in which case it converges to (I − A)−1, i.e.,

(I − A)−1 = I + A+ A2 + · · · =
∞∑

j=0

Aj (Householder [753, p. 54]) . (41)

Ex.41. Let A be convergent. Then

(I + A)−1 = I − A+ A2 − · · · =
∞∑

j=0

(−1)jAj . (42)

Ex.42. Let A ∈ Cn×n be nonsingular, and let ‖ ‖ be any multiplicative matrix norm.
Then A+B is nonsingular for any matrix B satisfying

‖B‖ < 1

‖A−1‖
. (43)

Proof. From

A+B = A(I + A−1B)

and Ex. 41, it follows that A + B is nonsingular if A−1B is convergent which, by
Ex. 35, is implied by

‖A−1B‖ < 1

and hence by

‖A−1‖‖B‖ < 1 .

See also Exs. 4.57 and 6.15. �
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Ex. 43. Stein’s Theorem. A square matrix is convergent if and only if there exists
a positive definite matrix H such that A − A∗HA is also positive definite (Stein
[1396], Taussky [1435]).

3. Elementary operations and determinants

3.1. Elementary operations. The following operations on a matrix,
(1) multiplying row i by a nonzero scalar α, denoted by Ei(α),
(2) adding β times row j to row i, denoted by Eij(β) (here β is any scalar), and
(3) interchanging rows i and j, denoted by Eij, (here i 6= j),
are called elementary row operations of types 1,2 and 3 respectively1.

Applying an elementary row operation to the identity matrix Im results in ele-
mentary row matrix of the same type. We denote these elementary matrices also
by Ei(α), Eij(β), and Eij. Elementary row matrices of types 1,2 have only one
row that is different from the corresponding row of the identity matrix of the same
order. Examples for m = 4,

E2(α) =


1 0 0 0
0 α 0 0
0 0 1 0
0 0 0 1

 , E42(β) =


1 0 0 0
0 1 0 0
0 0 1 0
0 β 0 1

 , E13 =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 .

Elementary column operations, and the corresponding elementary matrices, are
defined analogously.

Performing an elementary row [column] operation is the same as multiplying on
the left [right] by the corresponding elementary matrix. For example, E25(−3)A is
the matrix obtained from A by subtracting 3× row 5 from row 2.

3.2. Permutations. Given a positive integer n, a permutation of order n is
a rearrangement of {1, 2, . . . , n}, i.e. a mapping: 1, n −→ 1, n. The set of such
permutations is denoted by Sn. It contains:

(a) the identity permutation π0{1, 2, . . . , n} = {1, 2, . . . , n},
(b) with any two permutations π1, π2, their product π1π2, defined as π1 applied

to {π2(1), π2(2), . . . , π2(n)},
(c) with any permutation π, its inverse, mapping {π(1), π(2), . . . , π(n)} back to

{1, 2, . . . , n}. The inverse of π is denoted by π−1.
Thus Sn is a group, called the symmetric group.
Given a permutation π ∈ Sn, the corresponding permutation matrix Pπ is defined

as Pπ =
[
δπ(i),j

]
, and the correspondence π ←→ Pπ is one–to–one. For example,

π{1, 2, 3} = {2, 3, 1} ←→ Pπ =

0 1 0
0 0 1
1 0 0


1Only operations of types 1,2 are necessary, see Ex. 44(b). Type 3 operations are introduced for convenience,

because of their frequent use.
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Products of permutations correspond to matrix products:

Pπ1π2
= Pπ1

Pπ2
, ∀π1, π2 ∈ Sn .

A transposition is a permutation that switches only a pair of elements, for example,
π{1, 2, 3, 4} = {1, 4, 3, 2}. Every permutation π ∈ Sn is a product of transpositions,
generally in more than one way. However, the number of transpositions in such a
product is always even or odd, depending only on π. Accordingly, a permutation π
is called even or odd, if it is the product of an even or odd number of transpositions,
respectively. The sign of the permutation π, denoted sign π, is defined as

sign π =

{
+1 if π is even,
−1 if π is odd .

The following table summarizes the situation for permutations of order 3.

permutation π inverse π−1 product of transpositions sign π
π0 {1, 2, 3} π0 π1π1, π2π2, etc. +1
π1 {1, 3, 2} π1 π1 −1
π2 {2, 1, 3} π2 π2 −1
π3 {2, 3, 1} π4 π1π2 +1
π4 {3, 1, 2} π3 π2π1 +1
π5 {3, 2, 1} π5 π5 −1

Multiplying a matrix A by a permutation matrix Pπ on the left [right] results in a
permutation π [π−1] of the rows [columns] of A. For example,0 1 0

0 0 1
1 0 0

a11 a12
a21 a22
a31 a32

 =

a21 a22
a31 a32
a11 a12

 , [
b11 b12 b13
b21 b22 b23

]0 1 0
0 0 1
1 0 0

 =

[
b13 b11 b12
b23 b21 b22

]
.

3.3. Hermite normal form. Let Cm×n
r [Rm×n

r ] denote the class of m×n complex
[real] matrices of rank r.

Definition 1. (Marcus and Minc [996, § 3.6]) A matrix in Cm×n
r is said to be in

Hermite normal form (also called reduced row–echelon form) if:
(a) the first r rows contain at least one nonzero element; the remaining rows

contain only zeros,
(b) there are r integers

1 ≤ c1 < c2 < · · · < cr ≤ n , (44)

such that the first nonzero element in row i ∈ 1, r, appears in column ci, and
(c) all other elements in column ci are zero, i ∈ 1, r. �

By a suitable permutation of its columns, a matrix H ∈ Cm×n
r in Hermite normal

form can be brought into the partitioned form

R =

[
Ir K
O O

]
(45)
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where O denotes a null matrix. Such a permutation of the columns of H can be
interpreted as multiplication of H on the right by a suitable permutation matrix
P . If Pj denotes the j th–column of P , and ej the j th–column of In, we have

Pj = ek where k = cj , j ∈ 1, r ,

the remaining columns of P are the remaining unit vectors {ek : k 6= cj , j ∈ 1, r}
in any order.

In particular cases, the partitioned form (45) may be suitably interpreted. If
R ∈ Cm×n

r , then the two right–hand submatrices are absent in case r = n, and the
two lower submatrices are absent if r = m.

Let A ∈ Cm×n, and let Ek, Ek−1, . . . , E2, E1 be elementary row operations, and
P a permutation matrix such that

E AP =

[
Ir K
O O

]
, (46)

where

E = EkEk−1 · · ·E2E1 , (47)

in which case A is determined to have rank r. A Gaussian elimination is a sequence
of elementary row operations as above, that reduce a given matrix to its Hermite
normal form. Transpositions of rows (i.e., elementary operations of type 3) are used,
if necessary, to bring the nonzero rows to the top. The pivots of the elimination
are the leading nonzeros in these rows. This is illustrated in Ex. 46 below.

3.4. Determinants. The determinant of an n × n matrix A = [aij], denoted
detA, is customarily defined as

detA =
∑
π∈Sn

sign π
n∏

i=1

aπ(i),i (48)

see, e.g. Marcus and Minc [996, § 2.4]. We use here an alternative definition.

Definition 2. (Cullen and Gale [369]). The determinant is a function
det : Cn×n → C such that

(a) det (Ei(α)) = α, for all α ∈ C , i ∈ 1, n, and
(b) det(AB) = det(A) det(B), for all A,B ∈ Cn×n.

The reader is referred to [369] for proof that Definition 2 is equivalent to (48). See
also Exs. 48–49 below.

3.5. Volume.
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Exercises and examples.

Ex.44. Elementary operations.

(a) The elementary matrices are nonsingular, and their inverses are

Ei(α)−1 = Ei(1/α) , Eij(β)−1 = Eij(−β) , (Eij)−1 = Eij . (49)

(b) Type 3 elementary operations are expressible in terms of the other two types:

Eij = Ei(−1)Eji(1)Eij(−1)Eji(1) . (50)

(c) Conclude from (b) that any permutation matrix is a product of elementary
matrices of types 1,2.

Ex.45. Describe a recursive method for listing all n! permutations in Sn.
Hint: If π is a permutation in Sn−1, mapping {1, 2, . . . , n− 1} to

{π(1), π(2), . . . , π(n− 1)} , (51)

then π gives rise to n permutations in Sn obtained by placing n in the “gaps”
{tπ(1) t π(2) t . . . t π(n− 1)t} of (51).

Ex.46. Transforming a matrix into Hermite normal form. Let A ∈ Cm×n, and T0 = [A
... Im].

A matrix E transforming A into a Hermite normal form EA can be found by Gaussian elimination on T0,
where, after the elimination is completed,

ET0 = [EA
... E] ,

E being recorded as the right–hand m×m submatrix of ET0. We illustrate this procedure for the matrix

A =

0 2i i 0 4 + 2i 1
0 0 0 −3 −6 −3− 3i
0 2 1 1 4− 4i 1

 ,

marking the pivots by square brackets.

T0 =


0 [2i] i 0 4 + 2i 1

... 1 0 0

0 0 0 −3 −6 −3− 3i
... 0 1 0

0 2 1 1 4− 4i 1
... 0 0 1

 ,

T1 = E31(−2)E1(1/2i)T0 =


0 1 1

2 0 1− 2i −1
2 i

... −1
2 i 0 0

0 0 0 [−3] −6 −3− 3i
... 0 1 0

0 0 0 1 2 1 + i
... i 0 1

 ,

T2 = E32(−1)E2(−1/3)T1 =


0 1 1

2 0 1− 2i −1
2 i

... −1
2 i 0 0

0 0 0 1 2 1 + i
... 0 −1

3 0

0 0 0 0 0 0
... i 1

3 1

 .

From T2 = [EA
... E] we read

E = E32(−1)E2(−1/3)E31(−2)E1(1/2i) =

−1
2 i 0 0
0 −1

3 0
i 1

3 1

 , and r = rank A = 2 .
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EA is a Hermite normal form of A.

Ex. 47. If A ∈ Cm×m is nonsingular, then the permutation matrix P in (46) can be
taken as the identity (i.e., permutation is unnecessary). Therefore E = A−1 and

A = E−1
1 E−1

2 · · ·E−1
k−1E

−1
k . (52)

(a) Conclude that A is nonsingular if and only if it is a product of elementary row
matrices.
(b) Compute the Hermite normal forms of

A =

1 2 3
4 5 6
7 8 8

 and B =

1 2 3
4 5 6
7 8 9

 ,

and illustrate (52).

Ex.48. (Properties of determinants).
(a) detEij(β) = 1, for all β ∈ C , i, j ∈ 1, n , and
(b) detEij = −1, for all i, j ∈ 1, n . (Hint. Use (50) and Definition 2).
(c) If A is nonsingular, and given as product (52) of elementary matrices, then

detA = det
(
E−1

1

)
det
(
E−1

2

)
· · · det

(
E−1

k−1

)
det
(
E−1

k

)
. (53)

(d) Use (53) to compute the determinant of A in Ex. 47(b).

Ex.49. (The Cramer rule). Given a matrix A and a compatible vector b, we denote
by A[j ← b] the matrix obtained from A by replacing the j th–column by b.
Let A ∈ Cn×n be nonsingular. Then for any b ∈ Cn, the solution x = [xj] of

Ax = b (54)

is given by

xj =
detA[j ← b]

detA
, j ∈ 1, n . (55)

Proof. (Robinson [1291]). Write Ax = b as

AIn[j ← x] = A[j ← b] , j ∈ 1, n ,

and take determinants

detA det In[j ← x] = detA[j ← b] . (56)

Then (55) follows from (56) since

det In[j ← x] = xj .

�

See an extension of Cramer’s rule in Corollary 5.8.





CHAPTER 1

Existence and Construction of Generalized Inverses

1. The Penrose equations

In 1955 Penrose [1177] showed that, for every finite matrix A (square or rectan-
gular) of real or complex elements, there is a unique matrix X satisfying the four
equations (that we call the Penrose equations)

AXA = A , (1)

XAX = X , (2)

(AX)∗ = AX , (3)

(XA)∗ = XA , (4)

where A∗ denotes the conjugate transpose of A. Because this unique generalized
inverse had previously been studied (though defined in a different way) by E. H.
Moore [1087],[1088], it is commonly known as the Moore–Penrose inverse, and is
often denoted by A†.

If A is nonsingular, it is clear that X = A−1 trivially satisfies the four equations.
Since the Moore–Penrose inverse is known to be unique (as we shall prove shortly)
it follows that the Moore–Penrose inverse of a nonsingular matrix is the same as
the ordinary inverse.

Throughout this book we shall be much concerned with generalized inverses that
satisfy some, but not all, of the four Penrose equations. As we shall wish to deal
with a number of different subsets of the set of four equations, we need a convenient
notation for a generalized inverse satisfying certain specified equations. Let Cm×n

[Rm×n] denote the class of m× n complex [real] matrices.

Definition 1. For any A ∈ Cm×n, let A{i, j, . . . , k} denote the set of matrices
X ∈ Cn×m which satisfy equations (i), (j), · · · , (k) from among the equations (1)–
(4). A matrix X ∈ A{i, j, . . . , k} is called1 an {i, j, . . . , k}–inverse of A, and also
denoted by A(i,j,... ,k).

1Some writers have adopted descriptive names to designate various classes of generalized inverses. However there
is a notable lack of uniformity and consistency in the use of these terms by different writers. Thus, X ∈ A{1} is called
a generalized inverse (Rao [1241]), pseudoinverse (Sheffield [1347]), inverse (Bjerhammar [174]). X ∈ A{1, 2} is
called a semi–inverse (Frame [508]), reciprocal inverse (Bjerhammar), reflexive generalized inverse (Rohde [1297]).
X ∈ A{1, 2, 3} is called a weak generalized inverse (Goldman and Zelen [544]). X ∈ A{1, 2, 3, 4} is called the
general reciprocal (Moore [1087, 1088]), generalized inverse (Penrose [1177]), pseudoinverse (Greville [579]), the
Moore–Penrose inverse (Ben-Israel and Charnes [126]). In view of this diversity of terminology, the unambiguous
notation adopted here is considered preferable. This notation also emphasizes the lack of uniqueness of many of the
generalized inverses considered.

27
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In Chapter 4 we shall extend the scope of this notation by enlarging the set
of four matrix equations to include several further equations, applicable only to
square matrices, that will play an essential role in the study of generalized inverses
having spectral properties.

Exercises.

Ex. 1. If A{1, 2, 3, 4} is nonempty, then it consists of a single element (Penrose
[1177]).

Proof. Let X,Y ∈ A{1, 2, 3, 4}. Then

X = X(AX)∗ = XX∗A∗ = X(AX)∗(AY )∗

= XAY = (XA)∗(Y A)∗Y = A∗Y ∗Y

= (Y A)∗Y = Y .
�

Ex.2. By means of a (trivial) example, show that A{2, 3, 4} is nonempty.

2. Existence and construction of {1}–inverses

It is easy to construct a {1}–inverse of the matrix R ∈ Cm×nr given by

R =

[
Ir K
O O

]
(0.45)

For any L ∈ C(n−r)×(m−r), the n×m matrix

S =

[
Ir O
O L

]
is a {1}–inverse of (0.45). If R is of full column [row] rank, the two lower [right–
hand] submatrices are interpreted as absent.

The construction of {1}–inverses for an arbitrary A ∈ Cm×n is simplified by
transforming A into a Hermite normal form, as shown in the following theorem,
where E is the product of elementary matrices (0.47), and P is a permutation
matrix.

Theorem 1. Let A ∈ Cm×n
r , and let E ∈ Cm×m

m and P ∈ Cn×n
n be such that

EAP =

[
Ir K
O O

]
. (0.46)

Then for any L ∈ C(n−r)×(m−r), the n×m matrix

X = P

[
Ir O
O L

]
E (5)

is a {1}–inverse of A. The partitioned matrices in (0.46) and (5) must be suitably
interpreted in case r = m or r = n.
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Proof. Rewriting (0.46) as

A = E−1
[
Ir K
O O

]
P−1 , (6)

it is easily verified that any X given by (5) satisfies AXA = A. �

In the trivial case of r = 0, when A is therefore the m × n null matrix, any
n×m matrix is a {1}–inverse.

We note that since P and E are both nonsingular, the rank of X as given by
(5) is the rank of the partitioned matrix in the right member. In view of the form
of the latter matrix,

rankX = r + rankL . (7)

Since L is arbitrary, it follows that a {1}–inverse of A exists having any rank
between r and min{m,n}, inclusive (see also Fisher [494]).

Theorem 1 shows that every finite matrix with elements in the complex field has
a {1}–inverse, and suggests how such an inverse can be constructed.

Exercises.

Ex. 3. What is the Hermite normal form of a nonsingular matrix A? In this case,
whet is the matrix E, and what is its relationship to A? What is the permutation
matrix P? What is the matrix X given by (5)?

Ex.4. Anm×nmatrix A has all its elements equal to 0 except for the (i, j)th element,
which is 1. What is the Hermite normal form? Show that E can be taken as a
permutation matrix. What are the simplest choices of E and P? (By “simplest”
we mean having the smallest number of elements different from the corresponding
elements of the unit matrix of the same order.) Using these choices of E and P , but
regarding L as entirely arbitrary, what is the form of the resulting matrix X given
by (5)? Is thisX the most general {1}–inverse of A? (See Exercise 6, Introduction.)

Ex.5. Show that every square matrix has a nonsingular {1}–inverse.

3. Properties of {1}–inverses

Certain properties of {1}–inverses are given in Lemma 1. For a given matrix A,
we denote any {1}–inverse by A(1). Note that, in general, A(1) is not a uniquely
defined matrix (see Ex. 8 below). For any scalar λ we define λ† by

λ† =

{
λ−1 (λ 6= 0)
0 (λ = 0)

. (8)

It will be recalled that a square matrix E is called idempotent if E2 = E. Idem-
potent matrices are intimately related to generalized inverses, and their properties
are considered in some detail in Chapter 2.
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Lemma 1. Let A ∈ Cm×n
r , λ ∈ C. Then,

(a) (A(1))∗ ∈ A∗{1}.
(b) If A is nonsingular, A(1) = A−1 uniquely (see also Ex. 7 below).
(c) λ†A(1) ∈ (λA){1}.
(d) rankA(1) ≥ rankA.
(e) If S and T are nonsingular, T−1A(1)S−1 ∈ SAT{1}.
(f) AA(1) and A(1)A are idempotent and have the same rank as A.

Proof. These are immediate consequences of the defining relation (1); (d) and
the latter part of (f) depend on the fact that the rank of a product of matrices does
not exceed the rank of any factor. �

If an m×n matrix A is of full column rank, its {1}–inverses are its left inverses.
If it is of full row rank, its {1}–inverses are its right inverses.

Lemma 2. Let A ∈ Cm×n
r . Then,

(a) A(1)A = In if and only if r = n.
(b) AA(1) = Im if and only if r = m.

Proof. (a) If : Let A ∈ Cm×n
r . Then the n×n matrix A(1)A is, by Lemma 1(f),

idempotent and nonsingular. Multiplying (A(1)A)2 = A(1)A by (A(1)A)−1 gives
A(1)A = In.
Only if : A(1)A = In =⇒ rankA(1)A = n =⇒ rankA = n, by Lemma 1(f).
(b) Similarly proved. �

Exercises and examples.

Ex.6. Computing a {1}–inverse. This is demonstrated for the matrix A of Ex. 0.46, using (5) with
E as computed in Ex. 0.46 and an arbitrary L ∈ C(n−r)×(m−r). A permutation matrix P such that

EAP =
[
Ir K
O O

]
is

P = [e2 e4 e1 e3 e5 e6]

where ej denotes the jth column of I6. (A different permutation of the last n− r = 4 columns of P results
in a different permutation of the columns of K.) Thus,

EAP =


1 0

... 0 1
2 1− 2i −1

2 i

0 1
... 0 0 2 1 + i

· · · · · · · · · · · · · · · · · · · · ·

0 0
... 0 0 0 0

 .

We take

L =


α
β
γ
δ


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with α, β, γ, δ ∈ C, since m = 3, n = 6, r = 2. Equation (5) then gives

X = P

[
Ir O
O L

]
E

=



0 0
... 1 0 0 0

1 0
... 0 0 0 0

0 0
... 0 1 0 0

0 1
... 0 0 0 0

0 0
... 0 0 1 0

0 0
... 0 0 0 1





1 0
... 0

0 1
... 0

· · · · · · · · · · · ·

0 0
... α

0 0
... β

0 0
... γ

0 0
... δ



−1
2 i 0 0
0 −1

3 0
i 1

3 1

 =


iα 1

3α α
−1

2 i 0 0
iβ 1

3β β
0 −1

3 0
iγ 1

3γ γ
iδ 1

3δ δ



Note that, in general, the scalars iα, iβ, iγ, iδ are not pure imaginaries since α, β, γ, δ are complex.

Ex.7. Let A = FHG where F is of full column rank and G is of full row rank. Then
rankA = rankH. (Hint : Use Lemma 2.)

4. Bases for the range and null space of a matrix

For any A ∈ Cm×n we denote by

R(A) = {y ∈ Cm : y = Ax for some x ∈ Cn} , the range of A ,

N(A) = {x ∈ Cn : Ax = 0} , the null space of A .

A basis for R(A) is useful in a number of applications, such as, for example, in the
numerical computation of the Moore–Penrose inverse, and the group inverse to be
discussed in Chapter 4.

The need for a basis of N(A) is illustrated by the fact that the general solution
of the linear inhomogeneous equation

Ax = b

is the sum of any particular solution x0 and the general solution of the homogeneous
equation

Ax = 0 .

The latter general solution consists of all linear combinations of the elements of
any basis for N(A).

A further advantage of the Hermite normal form EA of A (and its column–
permuted form EAP ) is that from them bases for R(A), N(A), and R(A∗) can be
read off directly.

A basis for R(A) consists of the c1 th, c2 th,. . . ,cr th–columns of A, where the
{cj : j ∈ 1, r} are as in Definition 0.1 (Willner [1601]). To see this, let P1 denote
the submatrix consisting of the first r columns of the permutation matrix P of
(0.46) and (5). Then, because of the way in which these r columns of P were
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chosen,

EAP1 =

[
Ir
O

]
. (9)

Now, AP1 is an m× r matrix, and is of rank r, since RHS(9) is of rank r. But AP1
is merely the submatrix of A consisting of the c1th, c2th, . . . ,crth columns.

It follows from (6) that the columns of the n× (n− r) matrix

P

[
−K
In−r

]
(10)

are a basis for N(A). (The reader should verify this.)
Moreover, it is evident that the first r rows of the Hermite normal form EA are

linearly independent, and each is some linear combination of the rows of A. Thus,
they are a basis for the space spanned by the rows of A. Consequently, if

EA =

[
G
O

]
, (11)

then the columns of the n× r matrix

G∗ = P

[
Ir
K∗

]
are a basis for R(A∗).

As an example, for the matrix A of Exs. 0.46 and 6, we note that in its Hermite normal form EA (as
exhibited in the left–hand portion of the matrix T2 of Ex. 0.46) the two unit vectors of C2 appear in the
second and fourth columns. Therefore, the second and fourth columns of A form a basis for R(A).

Using (10) with K and P computed as in Ex. 6, we find that the columns of the following matrix form
a basis for N(A):

P

[
−K
In−r

]
=



0 0
... 1 0 0 0

1 0
... 0 0 0 0

0 0
... 0 1 0 0

0 1
... 0 0 0 0

0 0
... 0 0 1 0

0 0
... 0 0 0 1





0 −1
2 −1 + 2i 1

2 i
0 0 −2 −1− i
· · · · · · · · · · · · · · ·
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



=


1 0 0 0
0 −1

2 −1 + 2i 1
2 i

0 1 0 0
0 0 −2 −1− i
0 0 1 0
0 0 0 1


Exercises.

Ex. 8. Show that A is nonsingular if and only if it has a unique {1}–inverse, which then coincides
with A−1.
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Proof. For any x ∈ N(A) [y ∈ N(A∗)], adding x [y∗] to any column [row] of an X ∈ A{1}
gives another {1}–inverse of A. The uniqueness of the {1}–inverse is therefore equivalent to

N(A) = {0} , N(A∗) = {0} ,
i.e., to the nonsingularity of A. �

Ex. 9. Show that if A(1) ∈ A{1}, then R(AA(1)) = R(A) , N(AA(1)) = N(A), and R((A(1)A)∗) =
R(A∗).

Proof. We have

R(A) ⊃ R(AA(1)) ⊃ R(AA(1)A) = R(A) ,

from which the first result follows.
Similarly,

N(A) ⊂ N(A(1)A) ⊂ N(AA(1)A) = N(A)

yields the second equation.
Finally, by Lemma 1(a),

R(A∗) ⊃ R(A∗(A(1))∗) = R((A(1)A)∗) ⊃ R(A∗(A(1))∗A∗) = R(A∗) .

�

Ex. 10. More generally, show that R(AB) = R(A) if and only if rankAB = rankA, and N(AB) =
N(B) if and only if rankAB = rankB.

Proof. Evidently, R(A) ⊃ R(AB), and these two subspaces are identical if and only if they
have the same dimension. But, the rank of any matrix is the dimension of its range.

Similarly, N(B) ⊂ N(AB). Now, the nullity of any matrix is the dimension of its null space,
and also the number of columns minus the rank. Thus, N(B) = N(AB) if and only if B and AB
have the same nullity, which is equivalent, in this case, to having the same rank, since the two
matrices have the same number of columns. �

Ex.11. The answer to the last question in Ex. 4 indicates that, for particular choices of E and P , one
does not get all the {1}–inverses of A merely by varying L in (5). Note, however, that Theorem 1
does not require P to be a permutation matrix. Could one get all the {1}–inverses by considering
all nonsingular P and Q such that

QAP =

[
Ir O
O O

]
? (12)

Given A ∈ Cm×n
r , show that X ∈ A{1} if and only if

X = P

[
Ir O
O L

]
Q (13)

for some L and for some nonsingular P and Q satisfying (12).

Proof. If (12) and (13) hold, X is a {1}–inverse of A by Theorem 1.
On the other hand, let AXA = A. Then, both AX and XA are idempotent and of rank r, by

Lemma 1(f). Since any idempotent matrix E satisfies E(E− I) = O, its only eigenvalues are 0 and
1. Thus, the Jordan canonical forms of both AX and XA are of the form[

Ir O
O O

]
,

being of orders m and n, respectively. Therefore, there exist nonsingular P and R such that

R−1AXR =

[
Ir O
O O

]
, P−1XAP =

[
Ir O
O O

]
.
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Thus,

R−1AP = R−1AXAXAP = (R−1AXR)R−1AP (P−1XAP )

=

[
Ir O
O O

]
R−1AP

[
Ir O
O O

]
.

It follows that R−1AP is of the form

R−1AP =

[
H O
O O

]
,

where H ∈ Cr×r
r , i.e., nonsingular. Let

Q =

[
H−1 O
O Im−r

]
R−1 .

Then (12) is satisfied. Consider the matrix P−1XQ−1. We have,[
Ir O
O O

]
(P−1XQ−1) = (QAP ) (P−1XQ−1) = QAXQ−1

=

[
H−1 O
O Im−r

] [
Ir O
O O

] [
H O
O Im−r

]
=

[
Ir O
O O

]
and

(P−1XQ−1)

[
Ir O
O O

]
= (P−1XQ−1)(QAP ) = P−1XAP

=

[
Ir O
O O

]
.

From the latter two equations it follows that

P−1XQ−1 =

[
Ir O
O L

]
for some L. But this is equivalent to (13). �

5. Existence and construction of {1, 2}–inverses

It was first noted by Bjerhammar [174] that the existence of a {1}–inverse of a matrix A implies
the existence of a {1, 2}–inverse. This easily verified observation is stated as a lemma for convenience
of reference.

Lemma 3. Let Y, Z ∈ A{1}, and let

X = Y AZ .

Then X ∈ A{1, 2}.
Since the matrices A and X occur symmetrically in (1) and (2), X ∈ A{1, 2} and A ∈ X{1, 2}

are equivalent statements, and in either case we can say that A and X are {1, 2}–inverses of each
other.

From (1) and (2) and the fact that the rank of a product of matrices does not exceed the rank
of any factor, it follows at once that if A and X are {1, 2}–inverses of each other, they have the
same rank. Less obvious is the fact, first noted by Bjerhammar [174], that if X is a {1}–inverse of
A and of the same rank as A, it is a {1, 2}–inverse of A.

Theorem 2. (Bjerhammar) Given A and X ∈ A{1}, X ∈ A{1, 2} if and only if rankX = rankA.
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Proof. If : Clearly R(XA) ⊂ R(X). But rankXA = rankA by Lemma 1(f), and so, if
rankX = rankA, R(XA) = R(X) by Ex. 10. Thus,

XAY = X

for some Y . Premultiplication by A gives

AX = AXAY = AY ,

and therefore

XAX = X .

Only if : This follows at once from (1) and (2). �

An equivalent statement is the following:

Corollary 1. Any two of the following three statement imply the third:

X ∈ A{1} ,
X ∈ A{2} ,

rankX = rankA . �

In view of Theorem 2, (7) shows that the {1}–inverse obtained from the Hermite normal form
is a {1, 2}–inverse if we take L = O. In other words,

X = P

[
Ir O
O O

]
E

is a {1, 2}–inverse of A is E and O are nonsingular and satisfy (0.46).

6. Existence and construction of {1, 2, 3}–, {1, 2, 4}– and {1, 2, 3, 4}–inverses

Just as Bjerhammar [174] showed that the existence of a {1}–inverse implies the existence of a
{1.2}–inverse, Urquhart [1480] has shown that the existence of a {1}–inverse of every finite matrix
with elements in C implies the existence of a {1, 2, 3}–inverse and a {1, 2, 4}–inverse of every such
matrix. However, in order to show the nonemptiness of A{1, 2, 3} and A{1, 2, 4} for any given A,
we shall utilize the {1}–inverse not of A itself but of a related matrix. For that purpose we shall
need the following lemma.

Lemma 4. For any finite matrix A,

rankAA∗ = rankA = rankA∗A .

Proof. If A ∈ Cm×n, both A and AA∗ have m rows. Now, the rank of any m–rowed matrix
is equal to m minus the number of independent linear relations among its rows. To show that
rankAA∗ = rankA, it is sufficient, therefore, to show that every linear relation among the rows of
A holds for the corresponding rows of AA∗, and vice versa. Any nontrivial linear relation among
the rows of a matrix H is equivalent to the existence of a nonzero row vector x∗ such that x∗H = 0.
Now evidently,

x∗A = 0 =⇒ x∗AA∗ = 0 ,

and, conversely,

x∗AA∗ = 0 =⇒ 0 = x∗AA∗x = (A∗x)∗A∗x
=⇒ A∗x = 0 =⇒ 0 = (A∗x)∗ = x∗A .

Here we have used the fact that, for any column vector y of complex elements y∗y is the sum of
squares of the absolute values of the elements, and this sum vanishes only if every element is zero.

Finally, applying this result to the matrix A∗ gives rankA∗A = rankA∗, and, of course,
rankA∗ = rankA. �
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Corollary 2. For any finite matrix A, R(AA∗) = R(A) and N(AA∗) = N(A).

Proof. This follows from Lemma 4 and Ex. 10. �

Using the preceding lemma, we can now prove the following theorem.

Theorem 3. (Urquhart) For every finite matrix A with complex elements,

Y = (A∗A)(1)A∗ ∈ A{1, 2, 3} (14)

and

Z = A∗(AA∗)(1) ∈ A{1, 2, 4} . (15)

Proof. Applying Corollary 2 to A∗ gives

R(A∗A) = R(A∗) ,

and so,

A∗ = A∗AU (16)

for some U . Taking conjugate transpose gives

A = U∗A∗A . (17)

Consequently,

AY A = U∗A∗A(A∗A)(1)A∗A = U∗A∗A = A .

Thus, Y ∈ A{1}. But rankY ≥ rankA by Lemma 1(d), and rankY ≤ rankA∗ = rankA by the
definition of Y . Therefore

rankY = rankA ,

and, by Theorem 2, Y ∈ A{1, 2}. Finally, (16) and (17) give

AY = U∗A∗A(A∗A)(1)A∗AU = U∗A∗AU ,

which is clearly Hermitian. Thus, (14) is established.
Relation (15) is similarly proved. �

A {1, 2}–inverse of a matrix A is, of course, a {2}–inverse, and similarly, a {1, 2, 3}–inverse is
also a {1, 3}–inverse and a {2, 3}–inverse. Thus, if we can establish the existence of a {1, 2, 3, 4}–
inverse, we will have demonstrated the existence of an {i, j, . . . , k}–inverse for all possible choices
of one, two or three integers i, j, . . . , k from the set {1, 2, 3, 4}. It was shown in Ex. 1 that if a
{1, 2, 3, 4}–inverse exists, it is unique. We know, as a matter of fact, that it does exist, because it
is the well–known Moore–Penrose inverse, A†. However, we have not yet proved this. This is done
in the next theorem.

Theorem 4. (Urquhart) For any finite matrix A of complex elements,

A(1,4)AA(1,3) = A† (18)

Proof. Let X denote LHS(18). It follows at once from Lemma 3 that X ∈ A{1, 2}. Moreover,
(18) gives

AX = AA(1,3) , XA = A(1,4)A .

But, both AA(1,3) and A(1,4)A are Hermitian, by the definition of A(1,3) and A(1,4). Thus

X ∈ A{1, 2, 3, 4} .
However, by Ex. 1, A{1, 2, 3, 4} contains at most a single element. Therefore, it contains exactly
one element, which we denote by A†, and X = A†. �
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7. Full–rank factorization

A non–null matrix that is not of full (column or row) rank can be expressed as the product of
a matrix of full column rank and a matrix of full row rank. Such factorizations turn out to be a
powerful tool in the study of generalized inverses.

Lemma 5. Let A ∈ Cm×n
r , r > 0. Then there exist matrices F ∈ Cm×r

r and G ∈ Cr×n
r , such that

A = FG . (19)

Proof. Let F be any matrix whose columns are a basis for R(A). Then F ∈ Cm×r
r . The matrix

G ∈ Cr×n is then uniquely determined by (19), since every column of A is uniquely representable
as a linear combination of the columns of F . Finally, rankG = r, since

rankG ≥ rankFG = r . �

The columns of F can, in particular, be chosen as any maximal linearly independent set of
columns of A. Also, G could be chosen first as any matrix whose rows are a basis for the space
spanned by the rows of A, and then F is uniquely determined by (19).

We shall call a factorization (19) with the properties stated in Lemma 5 a full–rank factorization
of A. When A is of full (column or row) rank, the most obvious factorization is a trivial one, one
factor being a unit matrix. Nevertheless, the lemma still holds in this case.

A full–rank factorization of any matrix is easily read off from its Hermite normal form. Indeed,
it was pointed out in Section 4 above that the first r rows of the Hermite normal form EA (i.e.,
the rows of the matrix G of (11)) form a basis for the space spanned by the rows of A. Thus, this
G can serve also as the matrix G of (19). Consequently, (19) holds for some F . As in Section 4, let
P1 denote the submatrix of P consisting of the first r columns. Because of the way in which these
r columns were constructed,

GP1 = Ir .

Thus, multiplying (19) on ths right by P1 gives

F = AP1 ,

and so (19) becomes

A = (AP1)G , (20)

where P1 and G are as in Section 4. (Indeed it was already noted there that the columns of AP1

are a basis for R(A).)
For example, for the matrix A of Exs. 0.46 and 6, (20) gives

A = (AP1)G =

2i 0
0 −3
2 1

[0 1 1
2

0 1− 2i −1
2
i

0 0 0 1 2 1 + i

]
.

8. Explicit formula for A†

C. C. MacDuffee apparently was the first to point out, about 1959, that a full–rank factorization
of a matrix A leads to an explicit formula for its Moore–Penrose inverse, A†. However, he did so in
private communications, and there is no published work that can be cited.

Theorem 5. (MacDuffee). If A ∈ Cm×n
r , r > 0, has a full–rank factorization

A = FG , (21)

then

A† = G∗(F ∗AG∗)−1F ∗ . (22)
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Proof. First, we must show that F ∗AG∗ is nonsingular. By (21),

F ∗AG∗ = (F ∗F )(GG∗) , (23)

and both factors of the right member are r × r matrices. Also, by Lemma 4, both are of rank r.
Thus, F ∗AG∗ is the product of two nonsingular matrices, and therefore nonsingular. Moreover,
(23) gives

(F ∗AG∗)−1 = (G∗G)−1(F ∗F )−1 .

Denoting by X the right member of (22), we now have

X = G∗(GG∗)−1(F ∗F )−1F ∗ , (24)

and it is easily verified that this expression for X satisfies the Penrose equations (1)–(4). As A† is
the sole element of A{1, 2, 3, 4}, (22) is therefore established. �

Exercises.

Ex.12. Theorem 5 provides an alternative proof of the existence of the {1, 2, 3, 4}–inverse (previously
established by Theorem 4). However, Theorem 5 excludes the case r = 0. Complete the alternative
existence proof by showing that if r = 0, (2) has a unique solution for X, and this X satisfies (1),
(3) and (4).

Ex.13. Compute A† for the matrix A of Exs. 0.46 and 6.

Ex. 14. What is the most general {1, 2}–inverse of the special matrix A of Ex. 4? What is its
Moore–Penrose inverse?

Ex.15. Show that if A = FG is a full–rank factorization, then

A† = G†F † .

Ex.16. Show that for every matrix A,

(a) (A†)† = A (b) (A∗)† = (A†)∗

(c) (AT )† = (A†)T (d) A† = (A∗A)†A∗ = A∗(AA∗)†

Ex.17. If a and b are column vectors, then

(a) a† = (a∗a)†a∗ (b) (ab∗)† = (a∗a)†(b∗b)†ba∗ .

Ex.18. Show that if H is Hermitian and idempotent, H† = H.

Ex.19. Show that H† = H if and only if H2 is Hermitian and idempotent and rankH2 = rankH.

Ex.20. If D = diag (d1, d2, . . . , dn), show that D† = diag
(
d†1, d

†
2, . . . , d

†
n

)
.

Ex.21. If U and V are unitary matrices, show that

(UAV )† = V ∗A†U∗

for any matrix A for which the product UAV is defined.

9. Construction of {2}–inverses of prescrived rank

Following the proof of Theorem 1, we desribed A.G. Fisher’s construction of a {1}–inverse of
a given A ∈ Cm×n

r having any prescribed rank between r and min(m,n), inclusive. From (2) it is
easily deduced that

rankA(2) ≤ r .

We note also that the n×m null matrix is a {2}–inverse of rank 0, and any A(1,2) is a {2}–inverse
of rank r, by Theorem 2. For r > 1, is there a construction analogous to Fisher’s for a {2}–inverse
of rank s for arbitrary s between 0 anr r? Using the principle of full–rank factorization, we can
readily answer the question in the affirmative.

Let X0 ∈ A{1, 2} have a full–rank factorization

X0 = Y Z .
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Then, Y ∈ Cm×r
r and Z ∈ Cr×n

r , and (2) becomes

Y ZAY Z = Y Z .

In view of Lemma 2, multiplication on the left by Y (1) and on the right by Z(1) gives (see Stewart
[1400])

ZAY = Ir . (25)

Let Ys denote the submatrix of Y consisting of the first s columns, and Zs the submatrix of Z
consisting of the first s rows. Then, both Ys and Zs are of full rank s, and it follows from (25) that

ZsAYs = Is . (26)

Now, let

Xs = YsZs .

Then, rankXs = s, by Ex. 7 and (26) gives

XsAXs = Xs .

Exercises.

Ex.22. For

A =


1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1


find elements of A{2} of ranks 1,2, and 3, respectively.

Ex. 23. With A as in Ex. 22, find a {2}–inverse of rank 2 having zero elements in the last two rows
and the last two columns.

Ex. 24. Show that there is at most one matrix X satisfying the three equations AX = B , XA =
D , XAX = X (Cline; see Cline and Greville [356]).

Ex.25. Let A = FG be a full–rank factorization of A ∈ Cm×n
r , i.e., F ∈ Cm×r

r , G ∈ Cr×n
r . Then

(a) G(i)F (1) ∈ A{i} , (i = 1, 2, 4) , (b) G(1)F (j) ∈ A{j} , (j = 1, 2, 3) .

Proof.
(a) i = 1:

FGG(1)F (1)FG = FG ,

since

F (1)F = GG(1) = Ir

by Lemma 2.
i = 2:

G(2)F (1)FGG(2)F (1) = G(2)F (1)

since

F (1)F = Ir , G
(2)GG(2) = G(2) .

i = 4:

G(4)F (1)FG = G(4)G = (G(4)G)∗ .

(b) Similarly proved, with the roles of F and G interchanged. �
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Ex.26. Let A,F,G be as in Ex. 25. Then

A† = G†F (1,3) = G(1,4)F † .

10. An application of {2}–inverses in iterative methods for solving nonlinear
equations

One of the best–known methods for solving a single equation in a single variable, say

f(x) = 0 , (27)

is Newton’s (also Newton–Raphson) method

xk+1 = xk −
f(xk)

f ′(xk)
, (k = 0, 1, . . . ) . (28)

Under suitable conditions on the function f and the initial approximation x0, the sequence (28)
converges to a solution of (27); see, e.g., Ortega and Rheinboldt [1153]. The modified Newton
method uses the iteration

xk+1 = xk −
f(xk)

f ′(x0)
, (k = 0, 1, . . . ) . (29)

instead of (28).
Newton’s method for solving a system of m equations in n variables

f1(x1, . . . , xn) = 0
· · ·

fm(x1, . . . , xn) = 0
or f(x) = 0 (30)

is similarly given, for the case m = n, by

xk+1 = xk − f ′(xk)
−1f(xk) , (k = 0, 1, . . . ) , (31)

where f ′(xk) is the derivative of f at xk, represented by the matrix of partial derivatives (the
Jacobian matrix)

f ′(xk) =

(
∂fi

∂xj

(xk)

)
. (32)

The reader is referred to the excellent texts by Ortega and Rheinboldt [1153] and Rall [1236], for
iterative methods in nonlinear analysis, and in particular, for the many variations and extensions
of Newton’s method (31).

If the nonsingularity of f ′(xk) cannot be assumed for every xk, and in particular, if the number
of equations (30) is different from the number of unknowns, then it is natural to inquire whether a
generalized inverse of f ′(xk) can be used in (31), still resulting in a sequence converging to a solution
of (30).

In this section we illustrate the use of {2}–inverses in a modified Newton method (Theorem 6
below) and in a Newton method (Ex. 27 below) for solving the nonlinear equations (30). Other
applications of generalized inverses in the iterative methods of nonlinear analysis are Leach [920],
Altman [19] and [20], Ben-Israel [106], [107] and [113], Rheinboldt ([1268] especially Theorem
3.5), and Fletcher [495].

Readers not familiar with vector and matrix norms used in this section may consult Exs. 0.6–0.32
for a brief introduction to norms.

Throughout this section we denote by ‖ ‖ both a given (but arbitrary) vector norm in Cn, and
a matrix norm in Cm×n consistent with it; see, e.g.., Ex. 0.28. For a given point x0 ∈ Cn and a
positive scalar r we denote by

B(x0, r) = {x ∈ Cn : ‖ x− x0 ‖< r}
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the open ball with center x0 and radius r. The closed ball with the same center and radius is

B(x0, r) = {x ∈ Cn : ‖ x− x0 ‖≤ r} ,
Theorem 6. Let the following be given:

x0 ∈ Cn , r > 0 ,

f : B(x0, r)→ Cm a function; ,

A ∈ Cm×n , T ∈ Cn×m matrices ,

ε > 0 , δ > 0 positive scalars ,

such that:

‖ f(u)− f(v)− A(u− v) ‖ ≤ ε ‖ u− v ‖
for all u,v ∈ B(x0, r) , (33)

TAT = T , (34)

ε ‖ T ‖= δ < 1 , (35)

‖ T ‖‖ f(x0) ‖ < (1− δ)r . (36)

Then the sequence

xk+1 = xk − T f(xk) (37)

converges to a point

x∞ ∈ B(x0, r) (38)

satisfying

T f(x) = 0 . (39)

Proof. Using induction on k we prove that the sequence (37) satisfies for k = 0, 1, . . .

xk ∈ B(x0, r) , (40)

‖ xk+1 − xk ‖ ≤ δk(1− δ)r . (41)

We denote by (40.k) and (41.k) the validity of (40) and (41), respectively, for the given value of k.
Now (41.0) and (40.1) follow from (36). Assuming (41.j) for 0 ≤ j ≤ k − 1 we get

‖ xk − x0 ‖≤
k−1∑
j=0

‖ xj+1 − xj ‖≤ (1− δ)r
k−1∑
j=0

δj = (1− δk)r ,

which proves (40.k). To prove (41.k) we write

xk+1 − xk = −T f(xk)

= −T f(xk−1)− T [f(xk)− f(xk−1)]

= T [A(xk − xk−1 − f(xk) + f(xk−1)] , by (34) and (37) .

From (33) and (35) it therefore follows that

‖ xk+1 − xk ‖ ≤ ‖ T ‖‖ f(xk)− f(xk−1)− A(xk − xk−1 ‖
≤ δ ‖ xk − xk−1 ‖ ,

proving (41.k). �

Remark 2. f is differentiable at x0 and the linear transformation A is its derivative at x0, if

lim
x→x0

‖ f(x)− f(x0)− A(x− x0) ‖
‖ x− x0 ‖

= 0 .
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Comparing this with (33) we conclude that the linear transformation A in Theorem 6 is an “approx-
imate derivative,” and can be chosen as the derivative of f at x0 if f is continuously differentiable
in B(x0, r).

Remark 3. The limit x∞ of the sequence (37) is a solution of (39), but in general not of (30),
unless T is of full column rank in which case (39) and (30) are equivalent. Thus, the choice of the
{2}–inverse T in Theorem 6, which by Section 9 can have any rank between 0 and rankA, will
determine the extent to which x∞ can be called a solution of (30). The “worst” choice of T is the
trivial choice T = O, in which case any x is a solution of (39) and the iterations (37) stop at x0.

Remark 4. For any nontrivial T , the inequality (36) bounds the value of f at x0 as follows

‖ f(x0) ‖<
(1− δ)r
‖ T ‖

.

Remark 5. Note that (33) needs to hold only for u,v ∈ B(x0, r) such that u−v ∈ R(T ), and the
limit x∞ of (37) lies in

B(x0, r) ∩ {x0 +R(T )} .

Exercises.

Ex.27. A Newton’s method using {2}–inverses. Let the following be given

x0 ∈ Cn , r > 0 ,

f : B(x0, r)→ Cm a function; ,

ε > 0 , δ > 0 , η > 0 positive scalars ,

and for any x ∈ B(x0, r) let

Ax ∈ Cm×n , Tx ∈ Cn×m

be matrices satisfying for all u,v ∈ B(x0, r):

‖ f(u)− f(v)− Av(u− v) ‖ ≤ ε ‖ u− v ‖ (42)

TuAuTu = Tu , (43)

‖ (Tu − Tv)f(v) ‖ ≤ η ‖ u− v ‖ , (44)

ε ‖ Tu ‖ + η ≤ δ < 1 , (45)

‖ Tx0 ‖‖ f(x0) ‖ < (1− δ)r . (46)

Then the sequence

xk+1 = xk − Txk
f(xk) (k = 0, 1, . . . ) (47)

converges to a point

x∞ ∈ B(x0, r) (38)

which is a solution of

Tx∞f(x) = 0 . (48)

Proof. As in the proof of Theorem 6 we use induction on k to prove that the sequence (47)
satisfies

xk ∈ B(x0, r) , (40.k)

‖ xk+1 − xk ‖ ≤ δk(1− δ)r . (41.k)
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Again (41.0) and (40.1) follow from (46), and assuming (41.j) for 0 ≤ j ≤ k − 1 we get (40.k). To
prove (41.k) we write

xk+1 − xk = −Txk
f(xk)

= xk − xk−1 − Txk
f(xk) + Txk−1

f(xk−1) , by (47) ,

= Txk−1
Axk−1

(xk − xk−1)− Txk
f(xk) + Txk−1

f(xk−1) ,

since TAT = T implies TAx = x for every x ∈ R(T )

= Txk−1

[
Axk−1

(xk − xk−1)− f(xk) + f(xk−1)
]
+ (Txk−1

− Txk
)f(xk) .

Therefore

‖ xk+1 − xk ‖ ≤ (ε ‖ Txk−1
‖ + η) ‖ xk − xk−1 ‖ , by (42) and (44) ,

≤ δ ‖ xk − xk−1 ‖ , by (45) ,

which proves (41.k). �

Suggested further reading

Section 2 . Rao [1241], Sheffield [1347].
Section 3 . Rao ([1240], [1243]).
Section 5 . Deutsch [400], Frame [508], Greville [586], Hartwig [666], Przeworska–Rolewicz and
Rolewicz [1209].
Section 6 . Hearon and Evans [711], Rao [1243], Sibuya [1355].
Section 7 . Hartwig [670].
Section 10 . See also Burmeister [244], Fletcher [497], Golub and Pereyra [555].





CHAPTER 2

Linear Systems and Characterization of Generalized Inverses

1. Solutions of linear systems

As already indicated in Section 3, Introduction, the principal application of {1}–inverses is to
the solution of linear systems, where they are used in much the same way as ordinary inverses in
the nonsingular case. The main result of this section is the following theorem of Penrose [1177], to
whom the proof is also due.

Theorem 1. Let A ∈ Cm×n , B ∈ Cp×q , D ∈ Cm×q. Then the matrix equation

AXB = D (1)

is consistent if and only if for some A(1), B(1),

AA(1)DB(1)B = D , (2)

in which case the general solution is

X = A(1)DB(1) + Y − A(1)AY BB(1) (3)

for arbitrary Y ∈ Cn×p.

Proof. If (2) holds, then X = A(1)DB(1) is a solution of (1). Conversely, if X is any solution
of (1), then

D = AXB = AA(1)AXBB(1)B = AA(1)DB(1)B .

Moreover, it follows from (2) and the definition of A(1) and B(1) that every matrix X of the form
(3) satisfies (1). On the other hand, let X be any solution of (1). Then, clearly

X = A(1)DB(1) +X − A(1)AXBB(1) ,

which is of the form (3). �

The following characterization of the set A{1} in terms of an arbitrary element A(1) of the set
is due essentially to Bjerhammar [174].

Corollary 1. Let A ∈ Cm×n , A ∈ A{1}. Then

A{1} = {A(1) + Z − A(1)AZAA(1) : Z ∈ Cn×m} (4)

Proof. The set described in RHS(4) is obtained by writing Y = A(1) +Z in the set of solutions
of AXA = A as given by Theorem 1. �

Specializing Theorem 1 to ordinary systems of linear equations gives:

Corollary 2. Let A ∈ Cm×n , b ∈ Cm. Then the equation

Ax = b (5)

is consistent if and only if for some A(1)

AA(1)b = b , (6)

in which case the general solution of (5) is

x = A(1)b + (I − A(1)A)y (7)

for arbitrary y ∈ Cn. �

45
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The following theorem appears in the doctoral dissertation of C. A. Rohde [1296], who attributes
it to R. C. Bose. It is an alternative characterization of A{1}.
Theorem 2. Let A ∈ Cm×n , X ∈ Cn×m. Then X ∈ A{1} if and only if for all b such that Ax = b
is consistent, x = Xb is a solution.

Proof. If : Let aj denote the jth column of A. Then

Ax = aj

is consistent, and Xaj is a solution, i.e.,

AXaj = aj (j ∈ 1, n) .

Therefore

AXA = A .

Only if : This follows from (6). �

Exercises and examples.

Ex.1. Show that the general solution of Ax = b, where A is the matrix of Ex. 0.46 and

b =

 14 + 5i
−15 + 3i
10− 15i


can be written in the form

x =


0

5
2
− 7i
0

5− i
0
0

 +


1 0 0 0 0 0
0 0 −1

2
0 −1 + 2i 1

2
i

0 0 1 0 0 0
0 0 0 0 −2 −1− i
0 0 0 0 1 0
0 0 0 0 0 1




y1

y2

y3

y4

y5

y6


where y1, y2, . . . , y6 are arbitrary.

Ex.2. Kronecker products. The Kronecker product A⊗B of the two matrices A = (aij) ∈ Cm×n , B ∈
Cp×q is the mp× nq matrix expressible in partitioned form as

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB
· · · · · · · · · · · ·
am1B am2B · · · amnB


The properties of this product (e.g., Marcus and Minc [996]) include

(A⊗B)∗ = A∗ ⊗B∗ , (A⊗B)T = AT ⊗BT , (8)

and

(A⊗B)(P ⊗Q) = AP ⊗BQ (9)

for every A,B, P,Q for which the above products are refined.
An important application of the Kronecker product is rewriting a matrix equation

AXB = D (1)

as a vector equation. For any X = (xij) ∈ Cm×n, let the vector vec(X) = (vk) ∈ Cmn be the vector
obtained by listing the elements of X by rows. In other words,

vn(i−1)+j = xij (i ∈ 1,m; j ∈ 1, n)
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For example,

vec
[
1 2
3 4

]
=


1
2
3
4


The energetic reader should now verify that

vec(AXB) = (A⊗BT )vec(X) . (10)

By using (10), the matrix equation (1) can be rewritten as the vector equation

(A⊗BT )vec(X) = vec(D) (11)

Theorem 1 must therefore be equivalent to Corollary 2 applied to the vector equation (11). To
demonstrate this we need the following two results

A(1) ⊗B(1) ∈ (A⊗ b){1} (follows from (9)) , (12)

(A(1))T ∈ AT{1} . (13)

Now (1) is consistent if and only if (11) is consistent, and the latter statement

⇐⇒ (A⊗BT )(A⊗BT )(1)vec(D) = vec(D) (by Corollary 2)

⇐⇒ (A⊗BT )(A(1) ⊗ (B(1))T ) vec(D) = vec(D) (by (12),(13))

⇐⇒ (AA(1) ⊗ (B(1)B)T ) vec(D) = vec(D) (by (9))

⇐⇒ AA(1)DB(1)B = D (by (10)) .

The other statements of Theorem 1 can be shown similarly to follow from their counterparts in
Corollary 2. The two results are thus equivalent.

Ex.3. (A⊗B)† = A† ⊗B† (Greville [581]).

Proof. Upon replacing A by A ⊗ B and X by A† ⊗ B† in (1.1)–(1.4) and making use of (8)
and (9), it is easily verified that (1.1)–(1.4) are satisfied. �

Ex.4. The matrix equations

AX = B , XD = E (14)

have a common solution if and only if each equation separately has a solution and

AE = BD .

Proof. (Penrose [1177]). If : For any A(1), D(1),

X = A(1)B + ED(1) − A(1)AED(1)

is a common solution of both equations (14) provided AE = BD and

AA(1)B = B , ED(1)D = E .

By Theorem 1, the latter two equations are equivalent to the consistency of equations (14) considered
separately.
Only if : Obvious. �

Ex.5. Let equations (14) have a common solution X0 ∈ Cm×n. Then, show that the general solution
is

X = X0 + (I − A(1)A)Y (I −DD(1)) (15)

for arbitrary A(1) ∈ A{1}, D(1) ∈ D{1}, Y ∈ Cm×n.
Hint : First, show that RHS(15) is a common solution. Then, if X is any common solution, evaluate
RHS(15) for Y = X −X0.
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2. Characterization of A{1, 3} and A{1, 4}

The set A{1} is completely characterized in Corollary 1. Let us now turn our attention to
A{1, 3}. The key to its characterization is the following theorem.

Theorem 3. The set A{1, 3} consists of all solutions for X of

AX = AA(1,3) , (16)

where A(1,3) is an arbitrary element of A{1, 3}.
Proof. If X satisfies (16), then clearly

AXA = AA(1,3)A = A ,

and, moreover, AX is Hermitian since AA(1,3) is Hermitian by definition. Thus, X ∈ A{1, 3}.
On the other hand, if X ∈ A{1, 3}, then

AA(1,3) = AXAA(1,3) = (AX)∗AA(1,3) = X∗A∗(A(1,3))∗A∗

= X∗A∗ = AX ,

where we have used Lemma 1.1(a). �

Corollary 3. Let A ∈ Cm×n , A(1,3) ∈ A{1, 3}. Then

A{1, 3} = {A(1,3) + (I − A(1,3)A)Z : Z ∈ Cn×m} . (17)

Proof. Applying Theorem 1 to (16) and substituting Z + A(1,3) for Y gives (17). �

The following theorem and its corollary are obtained in a manner analogous to the proofs of
Theorem 3 and Corollary 3.

Theorem 4. The set A{1, 4} consists of all solutions for X of

XA = A(1,4)A .

Corollary 4. Let A ∈ Cm×n , A(1,4) ∈ A{1, 4}. Then

A{1, 4} = {A(1,4) + Y (I − AA(1,4)) : Y ∈ Cn×m} .
Other characterizations of A{1, 3} and A{1, 4} based on their least squares properties will be

given in Chapter 3.

Exercises.

Ex.6. Prove Theorem 4 and Corollary 4.

Ex.7. If A is the matrix of Ex. 0.46, show that A{1, 3} is the set of matrices X of the form

X =
1

38


0 0 0
−10i 3 9

0 0 0
2i −12 2
0 0 0
0 0 0

 +


1 0 0 0 0 0
0 0 −1

2
0 −1 + 2i 1

2
i

0 0 1 0 0 0
0 0 0 0 −2 −1− i
0 0 0 0 1 0
0 0 0 0 0 1

 Z ,

where Z is an arbitrary element of C6×3.

Ex.8. For the matrix A of Ex. 0.46, show that A{1, 4} is the set of matrices Y of the form

Y =
1

276


0 0 0
0 20− 18i 42
0 10− 9i 21
0 −29− 9i −9− 27i
0 −2 + 4i 24 + 30i
0 −29 + 30i −36 + 3i

+ Z

1 −1
3
i −i

0 0 0
0 0 0

 ,
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where Z is an arbitrary element of C6×3.

Ex. 9. Using Theorem 1.4 and the results of Exs. 7 and 8, calculate A†. (Since any A(1,4) and A(1,3)

will do, choose the simplest.)

Ex.10. Give an alternative proof of Theorem 1.4, using Theorem 3 and 4. (Hint : Take X = A†).

Ex.11. By applying Ex. 5 show that if A ∈ Cm×n and A(1,3,4) ∈ A{1, 3, 4}, then

A{1, 3, 4} = {A(1,3,4) + (I − A(1,3,4)A)Y (I − AA(1,3,4)) : Y ∈ Cn×m} .
Ex.12. Show that if A ∈ Cm×n and A(1,2,3) ∈ A{1, 2, 3}, then

A{1, 2, 3} = {A(1,2,3) + (I − A(1,2,3)A)ZA(1,2,3) : Z ∈ Cn×m} .
Ex.13. Similarly, show that if A ∈ Cm×n and A(1,2,4) ∈ A{1, 2, 4}, then

A{1, 2, 4} = {A(1,2,4) + A(1,2,4)Z(I − AA(1,2,4)) : Z ∈ Cm×m} .

3. Characterization of A{2}, A{1, 2} and other subsets of A{2}.

Since

XAX = X (1.2)

involves X nonlinearly, a characterization of A{2} is not obtained by merely applying Theorem 1.
However, such a characterization can be reached by using a full–rank factorization of X. The rank
of X will play an important role, and it will be convenient to let A{i, j, . . . , k}s denote the subset
of A{i, j, . . . , k} consisting of matrices of rank s.

We remark that the sets A{2}0 , A{2, 3}0 , A{2, 4}0 and A{2, 3, 4}0 are identical and contain a
single element. For A ∈ Cm×n this sole element is the n×m matrix of zeros. Having thus disposed
of the case of s = 0, we shall consider only positive s in the remainder of this section.

The following theorem has been stated by G. W. Stewart [1400], who attributes it to R. E.
Funderlic.

Theorem 5. Let A ∈ Cm×n
r and 0 < s ≤ r. Then

A{2}s = {Y Z : Y ∈ Cn×s, Z ∈ Cs×m, ZAY = Is} . (18)

Proof. Let

X = Y Z , (19)

where the conditions on Y and Z in RHS(18) are satisfied. Then Y and Z are of rank s, and X is
of rank s by Ex. 1.7. Moreover,

XAX = Y ZAY Z = Y Z = X .

On the other hand, let X ∈ A{2}s, and let (19) be a full–rank factorization. Then Y ∈ Cn×s
s , Z ∈

Cs×m
s and

Y ZAY Z = Y Z . (20)

Moreover, if Y (1) and Z(1) are any {1}–inverses, then by Lemma 1.2

Y (1)Y = ZZ(1) = Is .

Thus, multiplying (20) on the left by Y (1) and on the right by Z(1) gives

ZAY = Is .

�

Corollary 5. Let A ∈ Cm×n
r . Then

A{1, 2} = {Y Z : Y ∈ Cn×r, Z ∈ Cr×m, ZAY = Ir} .
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Proof. By Theorem 1.2,

A{1, 2} = A{2}r .

�

The relation ZAY = Is of (18) implies that Z ∈ (AY ){1, 2, 4}. This remark suggests the
approach to the characterization of A{2, 3} on which the following theorem is based.

Theorem 6. Let A ∈ Cm×n
r and 0 < s ≤ r. Then

A{2, 3}s = {Y (AY )† : AY ∈ Cm×s
s } .

Proof. Let X = Y (AY )†, whereAY ∈ Cm×s
s . Then we have

AX = AY (AY )† . (21)

The right member is Hermitian by (1.3), and

XAX = Y (AY )†AY (AY )† = Y (AY )† = X .

Thus, X ∈ A{2, 3}. Finally, since X ∈ A{2}, A ∈ X{1}, and (21) and Lemma 1.1(f) give

s = rankAY = rankAX = rankX .

On the other hand, let X ∈ A{2, 3}s. Then AX is Hermitian and idempotent, and is of rank s by
Lemma 1.1(f), since A ∈ X{1}. By Ex. 1.18

(AX)† = AX ,

and so

X(AX)† = XAX = X .

Thus X is of the form described in the theorem. �

The following theorem is proved in an analogous fashion.

Theorem 7. Let A ∈ Cm×n
r and 0 < s ≤ r. Then

A{2, 4}s = {(Y A)†Y : Y A ∈ Cs×m
s } .

Exercises and examples.

Ex. 14. Could Theorem 6 be sharpened by replacing (AY )† by (AY )(i,j,k) for some i, j, k? (Which
properties are actually used in the proof?) Note that AY is of full column rank; what bearing, if
nay, does this have on the answer to the question?

Ex.15. Show that if A ∈ Cm×n
r ,

A{1, 2, 3} = {Y (AY )† : AY ∈ Cm×r
r }

A{1, 2, 4} = {(Y A)†Y : Y A ∈ Cr×m
r } .

(Compare these results with Exs. 12 and 13.)

Ex. 16. The characterization of A{2, 3, 4} is more difficult, and will be postponed until later in this
chapter. Show, however, that if rankA = 1, A{2, 3, 4} contains exactly two elements, A† and O.
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4. Idempotent matrices and projectors

A comparison of Eq. (1) of the Introduction with Lemma 1.1(f) suggests that the role played
by the unit matrix in connection with the ordinary inverse of a nonsingular matrix is, in a sense,
assumed by idempotent matrices in relation to generalized inverses. As the properties of idempotent
matrices are likely to be treated in a cursory fashion in an introductory course in linear algebra,
some of them are listed in the following lemma.

Lemma 1. Let E ∈ Cn×n be idempotent. Then:
(a) E∗ and I − E are idempotent.
(b) The eigenvalues of E are 0 and 1. The multiplicity of the eigenvalue 1 is rankE.
(c) rankE = traceE.
(d) E(I − E) = (I − E)E = O.
(e) Ex = x if and only if x ∈ R(E).
(f) E ∈ E{1, 2}.
(g) N(E) = R(I − E).

Proof. Parts (a) to (f) are immediate consequences of the definition of idempotency: (c) follows
from (b) and the fact that the trace of any square matrix is the sum of its eigenvalues counting
multiplicities; (g) is obtained by applying Corollary 2 to the equation Ex = 0. �

Lemma 2. (Langenhop [910]). Let a square matrix have the full–rank factorization

E = FG .

Then E is idempotent if and only if GF = I.

Proof. If GF = I, then clearly

(FG)2 = FGFG = FG . (22)

On the other hand, since F is of full column rank and G is of full row rank,

F (1)F = GG(1) = I

by Lemma 1.2. Thus if (22) holds, multiplication on the left by F (1) and on the right by G(1) gives
GF = I. �

Let PL,M denote the transformation that carries any x ∈ Cn into its projection on L along M ,
see § 0.1.3. It is easily verified that this transformation is linear (see Ex. 0.26). We shall call the
transformation PL,M the projector on L along M .

It is well known (see, e.g., Halmos [645]) that every linear transformation from one finite–
dimensional vector space to another can be represented by a matrix, which is uniquely determined
by the linear transformation and by the choice of bases for the spaces involved. Except where
otherwise specified, the basis for any finite–dimensional vector space, used in this book, is the
standard basis of unit vectors. Having thus fixed the bases, there is a one–to–one correspondence
between Cm×n, the m × n complex matrices, and L(Cn,Cm), the space of linear transformations
mapping Cn into Cm. This correspondence permits using the same symbol, say A, to denote both
the linear transformation A ∈ L(Cn,Cm) and its matrix representation A ∈ Cm×n. Thus the
matrix–vector equation

Ax = y (A ∈ C,×x ∈ Cn,y ∈ Cm)

cab equally be regarded as a statement that the linear transformation A maps x into y. The notion
of a matrix as representing a linear transformation has appeared before, see § 0.2.5 (p. 12) and
Exs. 0.13–23, and it will be utilized in an important way in Chapter 6.

In particular, linear transformations mapping Cn into itself are represented by the square ma-
trices of order n. Specializing further, the next theorem establishes a one–to–one correspondence
between the idempotent matrices of order n and the projectors PL,M where L⊕M = Cn. Moreover,
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for any two complementary subspaces L and M , a method for computing PL,M is given by (27)
below.

Theorem 8. For every idempotent matrix E ∈ Cn×n, R(E) and N(E) are complementary sub-
spaces with

E = PR(E),N(E) . (23)

Conversely, if L and M are complementary subspaces, there is a unique idempotent PL,M such that
R(PL,M) = L , N(PL,M) = M .

Proof. Let E be idempotent of order n. Then it follows from Lemma 1(e) and 1(g) and from
the equation

x = Ex + (I − E)x (24)

the Cn is the sum of R(E) and N(E). Moreover, R(E) ∩N(E) = {0}, since

Ex = (I − E)y =⇒ Ex = E2x = E(I − E)y = 0 ,

by Lemma 1(d). Thus, R(E) and N(E) are complementary, and (24) shows that, for every x, Ex
is the projection of x on R(E) along N(E). This establishes (23).

On the other hand let {x1,x2, . . . ,xl} and {y1,y2, . . . ,ym} be any two bases for L and M ,
respectively. Then, PL,M if it exists, is uniquely determined by{

PL,M xi = xi (i ∈ 1, l)
PL,M yi = 0 (i ∈ 1,m)

. (25)

Let X = [x1 x2 · · · xl] denote the matrix whose columns are the vectors xi. Similarly, let Y =
[y1 y2 · · · ym]. Then (25) is equivalent to

PL,M [X Y ] = [X O] (26)

Since [X Y ] is nonsingular, the unique solution of (26), and therefore of (25), is

PL,M = [X O][X Y ]−1 . (27)

Since (25) implies

PL,M [X O] = [X O] ,

PL,M as given by (27) is clearly idempotent. �

The relation between the direct sum (1) and the projector1 PL,M is given in the following.

Corollary 6. Let L and M be complementary subspaces of Cn. Then, for every x ∈ Cn, the
unique decomposition (0.2) is given by

PL,M x = y , (I − PL,M)x = z .

1Our use of the term “projector” to denote either the linear transformation PL,M or its idempotent matrix
representation is not standard in the literature. Many writers have used “projection” in the same sense. The latter
usage, however, seems to us to lead to undesirable ambiguity, since “projection” also describes the image PL,M x of
the vector x under the transformation PL,M . The use of “projection” in the sense of “image” is clearly much older
(e.g., in elementary geometry) than its use in the sense of “transformation”. “Projector” describes more accurately
than “projection” what is meant here, and has been used in this sense by Afriat [6], de Boor [193], Bourbaki
([213, Ch. I, Def. 6, p. 16],[214, Ch. VIII, Section 1]), Greville [578], Przeworska–Rolewicz and Rolewicz [1209],
Schwerdtfeger [1326] and Ward, Boullion and Lewis [1536]. Still other writers use “projector” to designate the
orthogonal projector to be discussed in Section 6. This is true of Householder [753], Yosida [1623], Kantorovich
and Akilov [817], and numerous other Russian writers. We are indebted to de Boor for several of the preceding
references.
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If A(1) ∈ A{1}, we know from Lemma 1.1(f) that both AA(1) and A(1)A are idempotent, and
therefore are projectors. It is of interest to find out what we can say about the subspaces associated
with these projectors. In fact, we already know from Ex. 1.9 that

R(AA(1) = R(A) , N(A(1)A) = N(A) , R((A(1)A)∗) = R(A∗) . (28)

The following is an immediate consequence of these results.

Corollary 7. If A and X are {1, 2}–inverses of each other, AX is the projector on R(A) along
N(X), and XA is projector on R(X) along N(A).

An important application of projectors is to the class of diagonable matrices. (The reader
will recall that a square matrix is called diagonable if it is similar to a diagonal matrix.) It is
easily verified that a matrix A ∈ Cn×n is diagonable if and only if it has n linearly independent
eigenvectors. The latter fact will be used in the proof of the following theorem, which expresses an
arbitrary diagonable matrix as a linear combination of projectors.

Theorem 9. (Spectral Theorem for Diagonable Matrices). Let A ∈ Cn×n with k distinct eigenval-
ues λ1, λ2, . . . , λk. Then A is diagonable if and only if there exist projectors E1, E2, . . . , Ek such
that

EiEj = O , if i 6= j , (29)

In =
k∑

i=1

Ei , (30)

A =
k∑

i=1

λiEi . (31)

Proof. If : For i ∈ 1, k, let ri = rankEi and let Xi ∈ Cn×ri be a matrix whose columns are a
basis for R(Ei). Let

X = [X1 X2 · · · Xk ] .

Then, by Lemma 1(c), the number of columns of X is

k∑
i=1

ri =
k∑

i=1

traceEi = trace
k∑

i=1

Ei = trace In = n ,

by (30). Thus X is square of order n. By the definition of Xi, there exists for each i a Yi such that

Ei = XiYi .

Let

Y =


Y1

Y2
...
Yk

 .

Then

XY =
k∑

i=1

λiEiXi =

= XD , (32)

where

D = diag (λ1I1, λ2I2, . . . , λkIk) , (33)
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Ii being used to denote the unit matrix of order ri. Since X is nonsingular, it follows from (32)
that A and D are similar.
Only if : If A is diagonable,

AX = XD , (34)

where X is nonsingular, and D can be represented in the form (33). Let X be partitioned by
columns into X1, X2, . . . , Xk in conformity with the diagonal blocks of D, and for i = 1, 2, . . . , k,
let

Ei = [O · · ·O Xi O · · ·O ]X−1 .

In other words, Ei = X̃iX
−1, where X̃i denotes the matrix obtained from X by replacing all

its columns except the columns of Xi by columns of zeros. It is then easily verified that Ei is
idempotent, and that (29) and (30) hold. Finally,

k∑
i=1

λiEi = [λ1X1 λ2X2 · · · λkXk ]X−1 = XDX−1 = A ,

by (34). �

The idempotent matrices {Ei : i ∈ 1, k} (shown in Ex. 24 below to be uniquely determined by
the diagonable matrix A) are called its principal idempotents. Relation (31) is called the spectral
decomposition of A. Further properties of this decomposition are studied in Exs. 24–26.

Note that R(Ei) is the eigenspace of A (space spanned by the eigenvectors) associated with the
eigenvalue λi, while because of (29), N(Ei) is the direct sum of the eigenspaces associated with all
eigenvalues of A other than λi.

Exercises and examples.

Ex.17. Show that In{2} consists of all idempotent matrices of order n.

Ex.18. If E is idempotent, X ∈ E{2} and R(X) ⊂ R(E), show that X is idempotent.

Ex.19. Let E ∈ Cn×n
r . Then E is idempotent if and only if its Jordan canonical form can be written

as [
Ir O
O O

]
.

Ex.20. Show that PL,M A = A if and only if R(A) ⊂ L and APL,M = A if and only if N(A) ⊃M .

Ex. 21. AB(AB)(1)A = A if and only if rankAB = rankA, and B(AB)(1)AB = B if and only if
rankAB = rankB. (Hint : Use Exs. 20, 1.9 and 1.10.)

Ex.22. A matrix A ∈ Cn×n is diagonable if and only if it has n linearly independent eigenvectors.

Proof. Diagonability of A is equivalent to the existence of a nonsingular matrix X such that
X−1AX = D, which in turn is equivalent to AX = XD. But the latter equation expresses the fact
that each column of X is an eigenvector of A, and X is nonsingular if and only if its columns are
linearly independent. �

Ex.23. Show that I − PL,M = PM,L.

Ex. 24. principal idempotents. Let A ∈ Cn×n be a diagonable matrix with k distinct eigenvalues
λ1, λ2, . . . , λk. Then the idempotents E1, E2, . . . , Ek satisfying (29)–(31) are uniquely determined
by A.
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Proof. Let {Fi : i ∈ 1, k} be any idempotent matrices satisfying

FiFj = O , if i 6= j , (29∗)

In =
k∑

i=1

Fi , (30∗)

A =
k∑

i=1

λi Fi . (31∗)

From (29) and (31) it follows that

EiA = AEi = λiEi (i ∈ 1, k) . (35)

Similarly from (29∗) and (31∗)

FiA = AFi = λiFi (i ∈ 1, k) (35∗)

so that

Ei(AFj) = λjEiFj

and

(EiA)Fj = λiEiFj ,

proving that

EiFj = O if i 6= j . (36)

The uniqueness of {Ei : i ∈ 1, k} now follows:

Ei = Ei

k∑
j=1

Fj by (30∗)

= EiFi , by (36)

=

(
k∑

j=1

Ej

)
Fi , by (36)

= Fi , by (30) .

�

Ex. 25. Let A ∈ Cn×n be a diagonable matrix with k distinct eigenvalues λ1, λ2, . . . , λk. Then the
principal idempotents of A are given by

Ei =
pi(A)

pi(λi)
(i ∈ 1, k) , (37)

where

pi(λ) =
k∏

j = 1
j 6= i

(λ− λj) . (38)
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Proof. Let Gi (i ∈ 1, k) denote RHS(37) and let E1, E2, . . . , Ek be the principal idempotents
of A. For any i, j ∈ 1, k

GiEj =
1

pi(λi)

k∏
h = 1
h 6= i

(A− λhI)Ej

=
1

pi(λi)

k∏
h = 1
h 6= i

(λj − λhI)Ej , by (35)

=

{
O if i 6= j
Ei if i = j

Therefore, Gi = Gi

∑k
j=1Ej = Ei (i ∈ 1, k). �

Ex. 26. Let be a diagonable matrix with k distinct eigenvalues λ1, λ2, . . . , λk and principal idempo-
tents E1, E2, . . . , Ek. Then:
(a) If f(λ) is any polynomial,

f(A) =
k∑

i=1

f(λi)Ei .

(b) Any matrix commutes with A if and only if it commutes with every Ei (i ∈ 1, k).

Proof. (a) Follows from (29), (30) and (31).
(b) Follows from (31) and (37) which express A as a linear combination of the {Ei : i ∈ 1, k} and
each Ei as a polynomial in A. �

Ex. 27. Prove the following analog of Theorem 5 for {1}–inverses: Let A ∈ Cm×n
r with r < s ≤

min(m,n). Then

A{1}s =

{
Y Z : Y ∈ Cn×s

s , Z ∈ Cs×m
s , ZAY =

[
Ir O
O O

]}
. (39)

Proof. Let X = Y Z, where the conditions on Y and Z in RHS(39) are satisfied. Then
rankX = s by Ex. 1.7. Let

Y = [Y1 Y2] , Z =

[
Z1

Z2

]
where Y1 denotes the first r columns of Y and Z1 the first r rows of Z. Then (39) gives

Z1AY1 = Ir , Z1AY2 = O . (40)

Let X1 = Y1Z1. Then it follows from the first equation (40) that X1 ∈ A{2}. Since by Ex. 1.7,
rankX1 = r = rankA, X1 ∈ A{1} by Theorem 1.2. Thus

AXA = AX1AXA = AY1(Z1AY )ZA = AY1[Ir O]

[
Z1

Z2

]
A

= AY1Z1A = AX1A = A .

On the other hand, let X ∈ A{1}s, and let X = UV be a full–rank factorization. Then U ∈
Cn×s

s , V ∈ Cs×m
s , and

V AUV AU = V AU
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and so V AU is idempotent, and is of rank r by Ex. 1.7. Thus, by Ex. 19, there is a nonsingular T
such that

TV V AUT−1 =

[
Ir O
O O

]
.

If we now take

Y = UT−1 , Z = TV ,

then

Y ∈ Cn×s
s , Z ∈ Cs×m

s ,

ZAY =

[
Ir O
O O

]
, and Y Z = UV = X .

�

5. Generalized inverses with prescribed range and null space

Let A ∈ Cm×n and let A(1) be an arbitrary element of A{1}. Let R(A) = L and N(A) = M .
By Lemma 1.1(f), AA(1) and A(1)A are idempotent. By (28) and Theorem 8,

AA(1) = PL,S A(1)A = PT,M ,

where S is some subspace of Cm complementary to L, and T is some subspace of Cn complementary
to M .

If we choose arbitrary subspaces S and T complementary to L and M , respectively, does there
exist a {1}–inverse A(1) such that N(AA(1)) = S and R(A(1)A) = T? The following theorem (parts
of which have appeared previously in work of Robinson [1280], Langenhop [910], and Milne [1052])
answers the question in the affirmative.

Theorem 10. Let A ∈ C ×,R(A) = L , N(A) = M , L⊕ S = Cm, and M ⊕ T = Cn. Then:
(a) X is a {1}–inverse of A such that N(AX) = S and R(XA) = T if and only if

AX = PL,S , XA = PT,M . (41)

(b) The general solution of (41) is

X = PT,MA
(1)PL,S + (In − A(1)A)Y (Im − AA(1)) , (42)

where A(1) is a fixed (but arbitrary) element of A{1} and Y is an arbitrary element of Cn×m.

(c) A
(1,2)
T,S = PT,MA

(1)PL,S is the unique {1, 2}–inverse of A having range T and null space S.

Proof.
(a) The “if” part of the statement follows at once from Theorem 8 and Lemma 1(e), the “only if”
part from Lemma 1.1(f), (28) and Theorem 8.
(b) By repeated use of Ex. 20, along with (28), we can easily verify that (41) is satisfied by
X = PT,MA

(1)PL,S. The result then follows from Ex. 5.
(c) Since PT,MA

(1)PL,S is a {1}–inverse of A, its rank is at least r by Lemma 1.1(d), while its rank
does not exceed r, since rankPL,S = r by (41) and Lemma 1.1(f). Thus it has the same rank as A,
and is therefore a {1, 2}–inverse, by Theorem 1.2. It follows from parts (a) and (b) that it has the
required range and null space.

On the other hand, a {1, 2}–inverse of A having range T and null space S satisfies (41) and also

XAX = X . (1.2)

By Ex. 1.24, these three equations have at most one common solution. �
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Corollary 8. Under the hypotheses of Theorem 10, let A
(1)
T,S be some {1}–inverse of A such that

R(A
(1)
T,SA) = T , N(AA

(1)
T,S) = S, and let A{1}T,S denote the class of such {1}–inverses of A. Then

A{1}T,S = {A(1)
T,S + (In − A(1)

T,SA)Y (Im − AA(1)
T,S) : Y ∈ Cn×m} (43)

For a subspace L of Cm, a complementary subspace of particular interest is the orthogonal
complement, denoted by L⊥, which consists of all vectors in Cm orthogonal to L. If in Theorem 10
we take S = L⊥ and T = M⊥, the class of {1}–inverses given by (43) is the class of {1, 3, 4}–inverses,

and A
(1,2)
T,S = A†.

The formulas in Theorem 10 generally are not convenient for computational purposes. When
this is the case, the following theorem (which extends results due to Urquhart [1480]) may be
resorted to.

Theorem 11. Let A ∈ C ×,U ∈ Cn×p , V ∈ Cq×m, and

X = U(V AU)(1)V ,

where (V AU)(1) is a fixed, but arbitrary element of (V AU){1}. Then:
(a) X ∈ A{1} if and only if rankV AU = r.
(b) X ∈ A{2} and R(X) = R(U) if and only if rankV AU = rankU .
(c) X ∈ A{2} and N(X) = N(V ) if and only if rankV AU = rankV .

(d) X = A
(1,2)
R(U),N(V ) if and only if rankU = rankV = rankV AU = r.

Proof.
Proof of (a). If : We have rankAU = r, since

r = rankV AU ≤ rankAU ≤ rankA = r .

Therefore, by Ex. 1.10, R(AU) = R(A), and so A = AUY for some Y . Thus by Ex. 21,

AXA = AU(V AU)(1)V AUY = AUY = A .

Only if : Since X ∈ A{1},

A = AXAXA = AU(V AU)(1)V AU(V AU)(1)V A ,

and therefore rankV AU = rankA = r.
Proof of (b). If : By Ex. 21,

XAU = U(V AU)(1)V AU = U ,

from which it follows that XAX = X, and also rankX = rankU . By Ex. 1.10, R(X) = R(U).
Only if : Since X ∈ A{2},

X = XAX = U(V AU)(1)V AU(V AU)(1)V .

Therefore

rankX ≤ rankV AU ≤ rankU = rankX .

Proof of (c). Similar to (b).
Proof of (d). Follows from (a), (b) and (c). �

Note that if we require only a {1}–inverse X such that R(X) ⊂ R(U) and N(X) ⊃ N(V ), part
(a) of the theorem is sufficient.

Theorem 11 can be used to prove the following modified analog of Theorem 10(c) for all {2}–
inverses, and not merely {1, 2}–inverses.
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Theorem 12. Let A ∈ Cm×n
r , let T be a subspace of Cn of dimension s ≤ r, and let S be a subspace

of Cm of dimension m − s. Then, A has a {2}–inverse X such that R(X) = T and N(X) = S if
and only if

AT ⊕ S = Cm , (44)

in which case X is unique.

Proof. If : Let the columns of U ∈ Cn×s
s be a basis for T , and let the columns of V ∗ ∈ Cm×s

s

be a basis for S⊥. Then the columns of AU span AT . Since it follows from (44) that dim AT = s,

rankAU = s . (45)

A further consequence of (44) is

AT ∩ S = {0} . (46)

Moreover, the s× s matrix V AU is nonsingular (i.e., of rank s) because

V AUy = 0 =⇒ AUy ⊥ S⊥ =⇒ AUy ∈ S
=⇒ AUy = 0 (by (46)

=⇒ y = 0 (by (45) .

Therefore, by Theorem 11,

X = U(V AU)−1V

is a {2}–inverse of A having range T and null space S (see also Stewart [1400]).
Only if : Since A ∈ X{1}, AX is idempotent by Lemma 1.1(f). Moreover, AT = R(AX) and
S = N(X) = N(AX) by (28). Thus (44) follows from Theorem 8.
Proof of uniqueness : Let X1, X2 be {2}–inverses of A having range T and null space S. By
Lemma 1.1(f) and (28), X1A is a projector with range T and AX2 is a projector with null space S.
Thus, by Ex. 20,

X2 = (X1A)X2 = X1(AX2) = X1 .

�

Corollary 9. Let A ∈ Cm×n
r , let T be a subspace of Cn of dimension r, and let S be a subspace

of Cm of dimension m− r. Then, the following three statements are equivalent:
(a) AT ⊕ S = Cm.
(b) R(A)⊕ S = Cm and N(A)⊕ T = Cn.
(c) There exists an X ∈ A{1, 2} such that R(X) = T and N(X) = S. �

The set of {2}–inverses of A with range T and null space S is denoted A{2}S,T .

Exercises.

Ex.28. Show that A
(1,2)
T,S is the unique matrix X satisfying the three equations

AX = PL,S , XA = PT,M , XPL,S = X .

(For the Moore–Penrose inverse this was shown by Petryshyn [1183]. Compare Ex. 1.24.)

Ex. 29. For any given matrix A, A† is the unique matrix X ∈ A{1, 2} such that R(X) = R(A∗) and
N(X) = N(A∗).

Ex.30. Derive the formula of Mitra [1058] and Zlobec [1652]

A† = A∗Y A∗ ,

where Y is an arbitrary element of (A∗AA∗){1}.
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Ex.31. Derive the formula of Decell [391]

A† = A∗XA∗Y A∗ ,

where X and Y are any {1}–inverses of AA∗ and A∗A, respectively.

Ex.32. Penrose [1177] showed that the Moore–Penrose inverse of a product of two Hermitian idem-
potent matrices is idempotent. Prove this, using Zlobec’s formula (Ex. 30).

Ex.33. Let A be the matrix of Ex. 0.46, and let S be the subspace spanned by

0
0
1

 and let T be the

subspace spanned by the columns of


0 0
0 0
1 0
0 1
0 0
0 0

 . Calculate A
(1,2)
T,S .

Ex.34. If E is idempotent and the columns of F and G∗ are bases for R(E) and R(E∗), respectively,
show that E = F (GF )−1G.

Ex.35. If A is square and A = FG is a full–rank factorization, show that A has a {1, 2}–inverseX with
R(X) = R(A) and N(X) = N(A) if and only if GF is nonsingular, in which case X = F (GF )−2G
(Cline [352]).

6. Orthogonal projections and orthogonal projectors

Given a vector x ∈ Cn and a subspace L of Cn, there is in L a unique vector ux that is “closest”
to x in the sense that the “distance” ‖x−u‖ is smaller for u = ux than for any other u ∈ L. Here,
‖v‖ denotes the Euclidean norm of the vector v,

‖v‖ = +
√

(v,v) = +
√

v∗v = +

√√√√ n∑
j=1

|vj|2 ,

where (v,w) denotes the standard inner product, defined for v,w ∈ Cn by

(v,w) = w∗v =
n∑

j=1

wjvj .

Not surprisingly, the vector ux that is “closest” to x of all vectors in L is uniquely characterized
(see Ex. 37) by the fact that x− ux is orthogonal to ux, which we shall denote by

x− ux ⊥ ux .

We shall therefore call the “closest” vector ux the orthogonal projection of x on L. The transforma-
tion that carries each x ∈ Cn into its orthogonal projection on L we shall denote by PL and shall call
the orthogonal projector on L (sometimes abbreviated to “o.p. on L”). Comparison with the earlier
definition of the projector on L along M (see Section 4) shows that the orthogonal projector on L
is the same as the projector on L along L⊥. (As previously noted, some writers call the orthogonal
projector on L simply the projector on L.)

Being a particular case of the more general projector, the orthogonal projector is representable
by a square matrix, which, in this case, is not only idempotent but also Hermitian.

In order to prove this, we shall need the relation

N(A) = R(A∗)⊥ , (47)

which, in fact, arises frequently in the study of generalized inverses. Two proofs of (47) are given in
Ex. 38. The first, using inner products, is immediately generalizable to transformations on Hilbert
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space, which will be discussed in Chapter 8. The second proof shows that, in the more restricted
context of finite matrices, (47) is a consequence of the equation Ax = 0, which defines N(A).

Let L and M be complementary orthogonal subspaces of Cn, and consider the matrix P ∗
L,M . By

Lemma 1(a), it is idempotent and therefore a projector, by Theorem 8. By the use of (47) and its
dual

N(A∗) = R(A)⊥ (48)

(obtained by replacing A by A∗ in (47)), it is readily found that

R(P ∗
L,M) = M⊥ , N(P ∗

L,M) = L⊥ .

Thus, by Theorem 8,

P ∗
L,M = PM⊥,L⊥ , (49)

from which the next lemma follows easily.

Lemma 3. Let Cn = L⊕M . Then M = L⊥ if and only if PL,M is Hermitian.

Just as there is a one–to–one correspondence between projectors and idempotent matrices,
Lemma 3 shows that there is a one–to–one correspondence between orthogonal projectors and
Hermitian idempotents. Matrices of the latter class have many striking properties, some of which
are noted in the remainder of this section (including the exercises).

For any subspace L for which a basis is available, it is easy to construct the matrix PL. The basis
must first be orthonormalized (e.g., by Gram–Schmidt orthogonalization). Let {x1,x2, . . . ,xl} be
an orthonormal basis for L. Then

PL =
l∑

j=1

xjx
∗
j . (50)

The reader should verify that RHS(50) is the orthogonal projector on L, and that (27) reduces to
(50) if M = L⊥ and the basis is orthonormal.

In the preceding section diagonable matrices were studied in relation to projectors. The same
relations will now be shown to hold between normal matrices (a subclass of diagonable matrices)
and orthogonal projectors. This constitutes the spectral theory for normal matrices. We recall that
a square matrix A is called normal if it commutes with its conjugate transpose

AA∗ = A∗A .

It is well known that every normal matrix is diagonable. A normal matrix A also has the property
(see Ex. 41) that the eigenvalues of A∗ are the conjugates of those of A, and every eigenvector of A
associated with the eigenvalue λ is also an eigenvector of A∗ associated with the eigenvalue λ̄.

The following spectral theorem relates normal matrices to orthogonal projectors, in the same
way that diagonable matrices and projectors are related in Theorem 9.

Theorem 13. (Spectral Theorem for Normal Matrices). Let A ∈ Cn×n with k distinct eigenvalues
λ1, λ2, . . . , λk. Then A is normal if and only if there exist orthogonal projectors E1, E2, . . . , Ek such
that

EiEj = O , if i 6= j , (51)

In =
k∑

i=1

Ei , (52)

A =
k∑

i=1

λiEi . (53)
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Proof. If : Let A be given by (53) where the principal idempotents are Hermitian. Then

AA∗ =

(
k∑

i=1

λiEi

)(
k∑

j=1

λ̄j Ej

)

=
k∑

i=1

|λi|2Ei = A∗A .

Only if : Since A is normal, it is diagonable; let E1, E2, . . . , Ek be its principal idempotents. We
must show that they are Hermitian. By Ex. 41, R(Ei), the eigenspace of A associated with the
eigenvalue λi is the same as the eigenspace of A∗ associated with λ̄i. Because of (51), the null spaces
of corresponding principal idempotents of A and A∗ are also the same (for a given i = h, N(Eh) is
the direct sum of the eigenspaces R(Ei) for all i 6= h, i.e.,

N(Eh) =
k∑

i = 1
i 6= h

⊕R(Ei) (h ∈ 1, k)) .

Therefore, A and A∗ have the same principal idempotents, by Theorem 8. Consequently,

A∗ =
k∑

i=1

λ̄iEi ,

by Theorem 9. But taking conjugate transposes in (53) gives

A∗ =
k∑

i=1

λ̄iE
∗
i ,

and it is easily seen that the idempotents E∗
i satisfy (51) and (52). Since the spectral decomposition

is unique by Ex. 24, we must have

Ei = E∗
i , i ∈ 1, k .

�

Exercises and examples.

Ex. 36. Orthogonal subspaces or the Pythagorean theorem. Let Y and Z be subspaces of Cn. Then
Y ⊥ Z if and only if

‖y + z‖2 = ‖y‖2 + ‖z‖2 , for all y ∈ Y, z ∈ Z . (54)

Proof. If : Let y ∈ Y, z ∈ Z. Then (54) implies that

(y,y) + (z, z) = ‖y‖2 + ‖z‖2 = ‖y + z‖2

= (y + z,y + z) = (y,y) + (z, z) + (y, z) + (z,y) ,

and therefore

(y, z) + (z,y) = 0 . (55)

Now, since Z is a subspace, iz ∈ Z, and replacing z by iz in (55) gives

0 = (y, iz) + (iz,y) = i(y, z)− i(z,y) . (56)

(Here we have used the fact that (αv,w) = α(v,w) and (v, βw) = β̄(v,w).) It follows from (56)
that

(y,y)− (z, z) = 0 ,
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which, in conjunction with (55) gives

(y,y) = (z, z) = 0 ,

i.e., y ⊥ z.
Only if : Let Y ⊥ Z. Then, for arbitrary y ∈ Y, z ∈ Z

‖y + z‖2 = (y,y) + (z, z)

= (y,y) + (z, z)| , since (y,y)− (z, z) = 0 ,

= ‖y‖2 + ‖z‖2 .

�

Ex.37. Orthogonal projections. Let L be a subspace of Cn. Then, for every x ∈ Cn there is a unique
vector ux in L such that for all u ∈ L different from ux

‖x− ux‖ < ‖x− u‖ .

Among the vectors u ∈ L, ux is uniquely characterized by the fact that

x− ux ⊥ ux .

Proof. Let x ∈ Cn. Since L and L⊥ are complementary subspaces, there exist uniquely
determined vectors x1 ∈ L, x2 ∈ L⊥ such that

x = x1 + x2 . (57)

Therefore for arbitrary u ∈ L,

‖x− u‖2 = ‖x1 + x2 − u‖2

= ‖x1 − u‖2 + ‖x2‖2 , (58)

by Ex. 36, since x1 − u ∈ L, x2 ∈ L⊥. Consequently, there is a unique u ∈ L, namely ux = x1, for
which (58) is smallest.

By the uniqueness of the decomposition (57), ux = x1 is the only vector u ∈ L satisfying

x− u ⊥ u .

�

Ex.38. N(A) = R(A∗)⊥.
Because of the importance of this relation, we give two proofs, one in terms of inner products, and
the other based on matrix multiplication.

First proof. Let A ∈ Cm×n, and recall that for all x ∈ Cn, y ∈ Cm

(Ax,y) = (x, A∗y) . (59)

Let x ∈ N(A). Then LHS(59) vanishes for all y ∈ Cm. From (59) it follows then that x ⊥ A∗y for
all y ∈ Cm, or, in other words, x ⊥ R(A∗). This proves that N(A) ⊂ R(A∗)⊥.

Conversely, let x ∈ R(A∗)⊥, so that RHS(59) vanishes for all y ∈ Cm. Then (59) implies that
Ax ⊥ y for all y ∈ Cm. Therefore Ax = 0. This proves that R(A∗)⊥ ⊂ N(A), and completes the
proof of the original relation. �

First proof. By definition of matrix multiplication, Ax = 0 is equivalent to the statement
that each row of A postmultiplied by x gives the product 0. Now, the rows of A are the conjugate
transposes of the columns of A∗, and therefore x ∈ N(A) if and only if it is orthogonal to every
column of A∗, i.e., if and only if it is orthogonal to the subspace spanned by these columns, namely
R(A∗). �
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Ex.39. Let x ∈ Cn and let L be an arbitrary subspace of Cn. Then

‖PLx‖ ≤ ‖x‖ , (60)

with equality if and only if x ∈ L. See also Ex. 53.

Proof. We have

x = PLx + (I − PL)x = PLx + PL⊥x ,

by Ex. 23. Then by Ex. 36,

‖x‖2 = ‖PLx‖2 + ‖PL⊥x‖2 ,

from which (60) follows.
Equality holds in (60) if and only if PL⊥x = 0, which is equivalent to x ∈ L. �

Ex.40. Let A be a square singular matrix, let {u1,u2, . . . ,un} and {x1,x2, . . . ,xn} be orthonormal
bases of N(A∗) and N(A), respectively, and let {α1, α2, . . . , αn} be nonzero scalars. Then the
matrix

A0 = A+
n∑

i=1

αi ui x
∗
i

is nonsingular, and its inverse is

A−1
0 = A† +

n∑
i=1

1

αi

xi u
∗
i .

Proof. Let X denote the expression given for A−1
0 . Then, from x∗i xj = δij (i, j ∈ 1, n), it

follows that

A0X = AA† +
n∑

i=1

xi x
∗
i

= AA† + PN(A∗) (by (50))

= AA† + (In − AA†) (by Lemma 1(g))

= In .

Therefore, A0 is nonsingular, and X = A−1
0 . �

Ex.41. If A is normal, Ax = λx if and only if A∗x = λ̄x.

Ex.42. If L is a subspace of Cn and the columns of F are a basis for L, show that

PL = FF † = F (F ∗F )−1F ∗ .

(This may be simpler computationally than orthonormalizing the basis and using (50).)

Ex.43. Let L be a subspace of Cn. Then

PL⊥ = In − PL .

(See Ex. 23).)

Ex.44. Let A ∈ Cm×n, X ∈ Cn×m. Then X ∈ A{2} if and only if it is of the form

X = (EAF )†

where E and F are suitable Hermitian idempotents (Greville [586]).
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Proof. If : By Ex. 29,

R((EAF )†) ⊂ R(F ) , N((EAF )†) ⊃ N(E) .

Therefore, by Ex. 20,

X = (EAF )† = F (EAF )† = (EAF )†E; .

Consequently,

XAX = (EAF )†EAF (EAF )† = (EAF )† = X .

Only if : By Theorem 10(c) and Ex. 29,

X† = PR(X∗)APR(X) ,

and, therefore, by Ex. 1.16,

X =
(
PR(X∗)APR(X)

)†
. (61)

�

Remark. Equation (61) states that if X ∈ A{2}, then X is the Moore–Penrose inverse of a
modification of A obtained by projecting its columns on R(X∗) and its rows on R(X).

Ex.45. It follows from Exs. 28 and 1.24 that, for arbitrary A, A† is the unique matrix X satisfying

AX = PR(A) , XA = PR(A∗) , XAX = X .

Ex. 46. By means of Exs. 45 and 20, derive (61) directly from XAX = X without using Theo-
rem 10(c).

Ex. 47. Prove the following amplification of Penrose’s result stated in Ex. 32: A square matrix E is
idempotent if and only if it can be expressed in the form

E = (FG)†

where F and G are Hermitian idempotents. (Hint : Use Ex. 17.)
In particular, derive the formula ( Greville [586])

PL,M = (PM⊥PL)† = ((I − PM)PL)† . (62)

Ex.48. Let S and T be subspaces of Cm and Cn, respectively, such that

AT ⊕ S = Cm ,

and let A
(2)
T,S denote the unique {2}–inverse of A having range T and null space S (see Theorem 12).

Then

A
(2)
T,S = (PS⊥APT )† .

Ex.49. Show that PL + PM is an o.p. if and only if L ⊥M , in which case

PL + PM = PL+M .

Ex.50. Show that PLPM is an o.p. if and only if PL and PM commute, in which case

PLPM = PL∩M .

Ex.51. Show that L = L ∩M ⊕ L ∩M⊥ if and only if PL and PM commute.
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Ex.52. For a Hermitian matrix H we denote by H ≥ O the fact that H is non–negative definite, i.e.,
(Hx,x) ≥ 0 for all x. For any two Hermitian matrices G,H,

G ≥ H enotes G−H ≥ O .

The relation ≥ is a partial order on the set of Hermitian matrices.
Let PL and PM be orthogonal projectors on the subspaces L and M of Cn, respectively. Then

the following statements are equivalent:
(a) PL − PL is an o.p.
(b) PL ≥ PM .
(c) ‖PLx‖ ≥ ‖PMx‖ for all x ∈ Cn.
(d) M ⊂ L.
(e) PLPM = PM .
(f) PMPL = PM .

Ex.53. Let P ∈ Cn×n be a projector. Then P is an orthogonal projector if and only if

‖Px‖ ≤ ‖x‖ for all x ∈ Cn . (63)

Proof. P is an o.p. if and only if I − P is an o.p. By the equivalence of statements (a) and
(c) in Ex. 52, I − P is an o.p. if and only if (63) holds. �

Note that for any non–Hermitian idempotent P (i.e., for any projector P which is not an
orthogonal projector) there is by this exercise a vector x whose length is increased when multiplied

by P , i.e., ‖Px‖ > ‖x‖ . For P =

[
1 1
0 0

]
such a vector is x =

[
1
1

]
.

Ex.54. Let P ∈ Cn×n. Then P is an o.p. if and only if

P = P ∗P .

Ex. 55. It may be asked to what extent the results of Exs. 49–51 carry over to general projectors.
this question is explored in this and the two following exercises. Let

Cn = L⊕M = Q⊕ S .
Then show that PL,M + PQ,S is a projector if and only if M ⊃ Q and S ⊃ L, in which case

PL,M + PQ,S = PL+Q,M∩S .

Solution. Let P1 = PL,M , P2 = PQ,S. Then

(P1 + P2)
2 = P1 + P2 + P1P2 + P2P1 .

Therefore, P1 + P2 is a projector if and only if

P1P2 + P2P1 = O . (64)

Now if M ⊃ Q and S ⊃ L, each term of LHS(64) is O.
On the other hand, if (64) holds, multiplication by P1 on the left and on the right, respectively,

gives

P1P2 + P1P2P1 = O = P1P2P1 + P2P1 .

Subtraction then yields

P1P2 − P2P1 = O , (65)

and (64) and (65) together imply

P1P2 = P2P1 = O ,

from which it follows by Lemma 1(e) that M ⊃ Q and S ⊃ L. It is then fairly easy to show that

P1 + P2 = PL+Q,M∩S .
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Ex.56. With L,M,Q, S as in Ex. 55 show that if PL,M and PQ,S commute, then

PL,MPQ,S = PQ,SPL,M = PL∩Q,M+S . (66)

Ex.57. If only one of the products in (66) is equal to the projector on the right, it does not necessarily
follow that the other productis the same. Instead we have the following result: With L,M,Q, S as
in Ex. 55, PL,MPQ,S = PL∩Q,M+S if and only if Q = L∩Q⊕M ∩Q. Similarly, PQ,SPL,M = PL∩Q,M+S

if and only if L = L ∩Q⊕ L ∩ S.

Proof. Since L∩M = {0} , (L∩Q)∩(M∩Q) = {0}. Therefore L∩Q+M∩Q = L∩Q⊕M∩Q.
Since M + S ⊃M +Q and L+ S ⊃ L ∩Q, Ex. 55 gives

PL∩Q,M+S + PM∩Q,L+S = PT,U ,

where T = L ∩Q⊕M ∩ Q , U = (L + S) ∩ (M + S). Clearly Q ⊃ T and U ⊃ S. Multiplying on
the left by PL,M gives

PL,MPT,U = PL∩Q,M+S . (67)

Thus, if T = Q, we have U = S, and

PL,MPQ,S = PL∩Q,M+S . (68)

On the other hand, if (68) holds, (67) and (68) give

PQ,S = PT,U +H , (69)

where PL,MH = O. This implies R(H) ⊂ M . Also, since T ⊂ Q, (69) implies R(H) ⊂ Q, and
therefore R(H) ⊂M ∩Q. Consequently, R(H) ⊂ T and therefore (69) gives PT,UPQ,S = PQ,S. This
implies rankPQ,S ≤ rankPT,U . Since Q ⊃ T it follows that T = Q. This proves the first statement,
and the proof of the second statement is similar. �

Ex.58. The characterization of A{2, 3, 4} was postponed until o.p.’s had been studied. This will now
be dealt with in three stages in this exercise and Exs. 59 and 61. If E is Hermitian idempotent
show that X ∈ E{2, 3, 4} if and only if X is Hermitian idempotent and R(X) ⊂ R(E).

Proof. If : Since R(X) ⊂ R(E), EX = X be Lemma 1(e), and taking conjugate transposes
gives XE = X. Since X is Hermitian, EX and XE are Hermitian. Finally, XEX = X2 = X,
since X is idempotent. Thus, X ∈ E{2, 3, 4}.
Only if : Let X ∈ E{2, 3, 4}. Then X = XEX = EX∗X. Therefore R(X) ⊂ R(E). Then EX = X
by Lemma 1(e). But EX is Hermitian idempotent, since X ∈ E{2, 3}. Therefore X is Hermitian
idempotent. �

Ex.59. Let H be Hermitian non–negative definite, with spectral decomposition as in (31) with o.p.’s
as its principal idempotents. Thus,

H =
k∑

i=1

λiEi . (70)

Then X ∈ H{2, 3, 4} if and only if

X =
k∑

i=1

λ†i Fi , (71)

where, for each i, Fi ∈ Ei{2, 3, 4}.
Proof. If : Since Ei is Hermitian idempotent, R(Fi) ⊂ R(Ei) by Ex. 58. Therefore (29) gives

EiFj = FjEi = O (i 6= j) , (72)

and by Lemma 1(e)

EiFi = FiEi = Fi (i ∈ 1, k) .



68 2. LINEAR SYSTEMS AND CHARACTERIZATION OF GENERALIZED INVERSES

Consequently,

HX =
k∑

i = 1
λi 6= 0

Fi = XH .

Since each Fi is Hermitian by Ex. 58, HX = XH is Hermitian. Now,

FiFj = FiEjFj = O (i 6= j) ,

by (72), and therefore

XHX =
k∑

i=1

λ†iF
2
i = X

by (71), since each Fi is idempotent.
Only if : Let X ∈ H{2, 3, 4}. Then, by (30)

X = IXI =
k∑

i=1

k∑
j=1

EiXEj . (73)

Now, (70) gives

HX =
k∑

i=1

λiEiX =
k∑

i=1

λiX
∗Ei , (74)

since HX = X∗H. Similarly,

XH =
k∑

i=1

λiX Ei =
k∑

i=1

λiEiX
∗ . (75)

Multiplying by Es on the left and by Et on the right in both (74) and (75) and making use of (29)
and the idempotency of Es and Et gives

λsEsXEt = λtEsX
∗Et (76)

λtEsXEt = λsEsX
∗Et , (s, t ∈ 1, k) . (77)

Adding and subtracting (76) and (77) gives

(λs + λt)EsXEt = (λs + λt)EsX
∗Et , (78)

(λs − λt)EsXEt = −(λs − λt)EsX
∗Et . (79)

The λi are distinct, and are also non–negative because H is Hermitian non–negative definite. Thus,
if s 6= t, neither of the quantities λs + λt and λs − λt vanishes. Therefore, (78) and (79) give

EsXEt = EsX
∗Et = −EsXEt = O (s 6= t) . (80)

Consequently, (73) reduces to

X =
k∑

i=1

EiXEi . (81)

Now, (70) gives

X = XHX =
k∑

i=1

λiXEiX ,
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and therefore by (80)

EsXEs = λsEsXEsXEs = λs(EsXEs)
2 , (82)

from which it follows that EsXEs = O if λs = 0. Now, take

Fi = λiEiXEi (i ∈ 1, k) . (83)

Then (81) becomes (71), and we have only to show that Fi ∈ Ei{2, 3, 4}. This is trivially true for
that i, if any, such that λi = 0. For other i, we deduce from (76) that it is idempotent. Finally,
(83) gives R(Fi) ⊂ R(Ei), and the desired conclusion follows from Ex. 58. �

Ex. 60. Prove the following corollary of Ex. 59. If H is Hermitian non–negative definite and X ∈
H{2, 3, 4}, then X is Hermitian non–negative definite, and every nonzero eigenvalue of X is the
reciprocal of an eigenvalue of H.

Ex.61. For every A ∈ Cm×n

A{2, 3, 4} = {Y A∗ : Y ∈ (A∗A){2, 3, 4}} .
Ex. 62. A{2, 3, 4} is a finite set if and only if the nonzero eigenvalues of A∗A are distinct (i.e., each

eigenspace associated with a nonzero eigenvalue of A∗A is of dimension one). If this is the case and
if there are k such eigenvalues, A{2, 3, 4} contains exactly 2k elements.

Ex.63. Show that the matrix

A =
1

10


9− 3i 12− 4i 10− 10i
3− 3i 4− 4i 0
6 + 6i 8 + 8i 0

6 8 0


has exactly four {2, 3, 4}–inverses, namely,

X1 = A† =
1

70

 0 6 + 6i 12− 12i 12
0 8 + 8i 16− 16i 16

35 + 35i −5− 15i −30 + 10i −20− 10i

 ,

X2 =
1

60

 −9− 3i 3 + 3i 6− 6i 6
−12− 4i 4 + 4i 8− 8i 8
25 + 25i −5− 15i −30 + 10i −20− 10i

 ,

X3 =
1

420

63 + 21i 15 + 15i 30− 30i 30
84 + 28i 20 + 20i 40− 40i 40
35 + 35i 5 + 15i 30− 10i 20 + 10i

 ,

X4 = O .

7. Efficient characterization of classes of generalized inverses

In the preceding sections, characterizations of certain classes of generalized inverses of a given
matrix have been given. Most of these characterizations involve one or more matrices with arbitrary
elements. In general, the number of such arbitrary elements far exceeds the actual number of degrees
of freedom available.

For example, in Section 1 we obtained the characterization

A{1} = {A(1) + Z − A(1)AZAA(1) : Z ∈ Cn×m} . (4)

Now, as Z ranges over the entire class Cn×m, every {1}–inverse of A will be obtained repeatedly
an infinite number of times unless A is a matrix of zeros. In fact, the expression in RHS(4) is
unchanged if Z is replaced by Z + A(1)AWAA(1), where W is an arbitrary element of Cn×m. We
shall now see how in some cases this redundancy in the number of arbitrary parameters can be
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eliminated. The cases of particular interest are A{1} because of its role in the solution of linear
systems, A{1, 2} because of the symmetry inherent in the relation

X ∈ A{1, 2} ⇐⇒ A ∈ X{1, 2} ,
and A{1, 3} and A{1, 4} because of their minimization properties, which will be studied in the next
chapter.

As in (4), let A(1) be a fixed, but arbitrary element of A{1}, where A ∈ Cm×n
r . Also, let F ∈

C
n×(n−r)
n−r , K∗ ∈ Cm×(m−r)

m−r , B ∈ Cn×r
r be given matrices whose columns are bases for N(A), N(A∗)

and RA(1)A), respectively. We shall show that the general solution of

AXA = A (1.1)

is

X = A(1) + FY +BZK , (84)

where Y ∈ C(n−r)×m and Z ∈ Cr×(m−r) are arbitrary.
Clearly AF = O and KA = O. Therefore RHS(84) satisfies (1.1). Since R(In −A(1)A) = N(A)

and R((Im − AA(1))∗) = N(A∗) by (28) and Lemma 1(g), there exist uniquely defined matrices
G,H,D such that

FG = In − A(1)A , HK = Im − AA(1) , BD = A(1)A . (85)

Since these products are idempotent, we have, by Lemma 2,

GF = DB = In , KH = Im . (86)

Moreover, it is easily verified that

GB = O , DF = O . (87)

Using (86) and (87), we obtain easily from (84)

Y = G(X − A(1)) , Z = D(X − A(1))H . (88)

Now, let X be an arbitrary element of A{1}. Upon substituting in (84) the expression (88) for Y
and Z, it is found that (84) is satisfied. We have shown, therefore, that (84) does indeed give the
general solution of (1.1).

We recall that A(1), F,G,H,K,B,D are fixed matrices. Therefore, not only does (84) give X
uniquely in terms of Y and Z, but also (88) gives Y and Z uniquely in terms of X. Therefore,
different choices of Y and Z in (84) must yield different {1}–inverses X. Thus, the characterization
(84) is completely efficient, and contains the smallest possible number of arbitrary parameters.

It is interesting to compare the number of arbitrary elements in the characterizations (4) and
(84). In (4) this is mn, the number of elements of Z. In (84) it is mn − r2, the total number of
elements in Y and Z. Clearly, (84) contains fewer arbitrary elements, except in the trivial case
r = 0, as previously noted.

The case of A{1, 3} is easier. If, as before, the columns of F are a basis for N(A), it is readily
seen that (17) can be written in the alternative form

A{1, 3} = {A(1,3) + FY : Y ∈ C(n−r)×m} . (89)

This is easily shown to be an efficient characterization. Here the number of arbitrary parameters
is m(m − r). Evidently this is less than the number in the efficient characterization (84) of A{1},
unless r = m, in which case every {1}–inverse is a {1, 3}–inverse, since AA1 = Im by Lemma 1.2.

Similarly, if the columns of K∗ are a basis for N(A∗)

A{1, 4} = {A(1,4) + Y K : Y ∈ Cn×(m−r)} , (90)

where A(1,4) is fixed, but arbitrary element of A{1, 4}.
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Efficient characterization of A{1, 2} is somewhat more difficult. Let A(1,2) be a fixed, but arbi-
trary element of A{1, 2}, and let

A(1,2) = Y0Z0

be a full–rank factorization. As before, let the columns of F and K∗ form bases for the null spaces
of A and A∗, respectively. Then we shall show that

A{1, 2} = {(Y0 + FU)(Z0 + V K) : U ∈ C(n−r)×r, V ∈ Cr×(m−r)} . (91)

Indeed, it is easily seen that (1.1) and (1.2) are satisfied if X is taken as the product expression in
RHS(91). Moreover, if

FG = In − A(1,2)A , HK = Im − AA(1,2) ,

it can be shown that

U = GXAY0 , V = Z0AXH . (92)

It is found that the product in RHS(91) reduces to X if the expressions in (92) are substituted for
U and V .

Relation (91) contains r(m+ n− 2r) arbitrary parameters. This is less than the number in the
efficient characterization (84) of A{1} by (m− r)(n− r), which vanishes only if A is of full (row or
column) rank, in which case every {1}–inverse is a {1, 2}–inverse.

Exercises.

Ex.64. In (85) obtain explicit formulas for G,H, and D in terms of A,A(1), F,K,B, and {1}–inverses
of the latter three matrices.

Ex. 65. Consider the problem of obtaining all ]1]–inverses of the matrix A of Ex. 0.46. Note that
the parametric representation of Ex. 1.6 does not give all {1}–inverses. (In this connection see
Ex. 1.11.) Obtain in two ways parametric representation that do in fact give all {1}–inverses: first
by (4) and then by (84). Note that a very simple {1}–inverse (in fact, a {1, 2}–inverse) is obtained
by taking all the arbitrary parameters equal to zero in the representation of Ex. 1.6. Verify that
possible choices of F and K are

F =


1 0 0 0
0 1 −1 + 2i 0
0 −2 0 i
0 0 −2 −1− i
0 0 1 0
0 0 0 1

 , K =
[
3i 1 3

]
.

Compare the number of arbitrary parameters in the two representations.

Ex.66. Under the hypotheses of Theorem 10, let F and K∗ be matrices whose columns are bases for
N(A) and N(A∗), respectively. Then, (42) can be written in the alternative form

X = A
(1,2)
T,S + FZK , (93)

where Z is an arbitrary element of C(n−r)×(m−r). Moreover,

rankX = r + rankZ . (94)

Proof. Clearly the right member of (93) satisfies (41). On the other hand, substituting in (42)
the first two equations (85) gives (93) with Z = GYH.

Moreover, (93) and Theorem 10(c) give

XPL,S = A
(1,2)
T,S ,
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and therefore

X(Im − PL,S) = FZK .

Consequently, R(X) contains the range of each of the two terms of RHS(93). Furthermore, the
intersection of the latter two ranges is {0}, since R(F ) = N(A) = M , which is a subspace comple-

mentary to T = R(A
(1,2)
T,S ). Therefore, R(X) is the direct sum of the two ranges mentioned, and, by

statement (c) of Ex. 0.1, rankX is the sum of the ranks of the two terms in RHS(93).
Now, the first term is a {1, 2}–inverse of A, and its rank is therefore r by Theorem 1.2, while

the rank of the second term is rankZ by Ex. 1.7. This establishes (94). �

Ex.67. Exercise 66 gives

A{1}T,S = {A(1,2)
T,S + FZK : Z ∈ C(n−r)×(m−r) ,

where A{1}T,S is defined in Corollary 8. Show that this characterization is efficient.

Ex.68. Show that if A ∈ Cm×n, A{1}T,S contains matrices of all ranks from r to min{m,n}.
Ex.69. Let A = ST be a full–rank factorization of A ∈ Cm×n

r , let Y0 and Z0 be particular {1}–inverses
of T and S, respectively, and let F and K be defined as in Ex. 66. Then, show that:

S{1} = {Z0 + V K : V ∈ Cr×(m−r)} ,
T{1} = {Y0 + FU : U ∈ C(n−r)×r} ,

AA{1} = SS{1} = {S(Z0 + V K) : V ∈ Cr×(m−r)} ,
A{1}A = T{1}T = {(Y0 + FU)T : U ∈ C(n−r)×r} ,
A{1} = {Y0Z0 + Y0V K + FUZ0 + FWK : U ∈ C(n−r)×r, V ∈ Cr×(m−r),W ∈ C(n−r)×(m−r)} ,

= A{1, 2}+ {FXK : X ∈ C(n−r)×(m−r)} .

Show that all the preceding characterizations are efficient.

Ex. 70. For the matrix A of Exs. 65 and 0.46, obtain all the characterizations of Ex. 69. Hint : Use
the full–rank factorization of A given at the end of Section 1.7 and take

Z0 =

[
−1

2
i 0 0

0 −1
3

0

]
.

8. Restricted generalized inverses

In a linear equation

Ax = b ,

with given a ∈ Cm×n and b ∈ Cm, the points x are sometimes constrained to lie in a given subspace
S of Cn, resulting in a “constrained” linear equation

Ax = b and x ∈ S . (95)

In principle, this situation presents no difficulty since (95) is equivalent to the following, “uncon-
strained” but larger, linear system[

A
PS⊥

]
x =

[
b
0

]
, where PS⊥ = I − PS .

Another approach to the solution of (95) that does not increase the size of the problem is to interpret
A as representing an element of L(S,Cm), the space of linear transformations from S to Cm, instead
of an element of L(Cn,Cm), see, e.g. Sections 4 and 6.1. This interpretaion calls for the following
definitions.



8. RESTRICTED GENERALIZED INVERSES 73

Let A ∈ L(Cn,Cm), and let S be a subspace of Cn. The restriction of A to S, denoted by A[S],
is a linear transformation from S to Cm defined by

A[S]x = Ax , x ∈ S . (96)

Conversely, let B ∈ L(S,Cm). The extension of B to Cn, denoted by extB, is the linear transfor-
mation from Cn to Cm defined by

(extB)x =

{
Bx if x ∈ S,
0 if x ∈ S⊥.

(97)

Restricting an A ∈ L(Cn,Cm) to S and then extending to Cn results in ext (A[S]) ∈ L(Cn,Cm)
given by

ext (A[S])x =

{
Ax if x ∈ S,
0 if x ∈ S⊥.

(98)

From (98) it should be clear that if A ∈ L(Cn,Cm) is represented by the matrix A ∈ Cm×n, then
ext (A[S]) is represented by APS. The following lemma is then obvious.

Lemma 4. Let A ∈ Cm×n, b ∈ Cm, and let S be a subspace of Cn. The system

Ax = b, x ∈ S (95)

is consistent if and only if the system

APSz = b (99)

is consistent, in which case x is a solution of (95) if and only if

x = PSz ,

where z is a solution of (99). �

From Lemma 4 and Corollary 2 it follows that the general solution of (95) is

x = PS(APS)(1)b + PS(I − (APS)(1)APS)y , (100)

for arbitrary (APS)(1) ∈ (APS){1} and y ∈ Cn .

We are thus led to study generalized inverses of ext (A[S]) = APS, and from (100) it appears that

PS(APS)(1), rather than A(1), plays the role of a {1}–inverse in solving the linear system (95); hence
the following definition.

Definition 1. Let A ∈ Cm×n and let S be a subspace of Cn. A matrix X ∈ Cn×m is an S–restricted
{i, j, . . . , k}–inverse of A if

X = PS(APS)(i,j,... ,k) (101)

for any (APS)(i,j,... ,k) ∈ (APS){i, j, . . . , k}.
The role that S–restricted generalized inverses play in constrained problems is completely anal-

ogous to the role played by the corresponding generalized inverse in the unconstrained situation.
Thus, for example, the following result is the constrained analog of Corollary 2.

Corollary 10. Let A ∈ Cm×n and let S be a subspace of Cn. Then the equation

Ax = b, x ∈ S (95)

is consistent if and only if

AXb = b ,

where X is any S–restricted {1}–inverse of A. If consistent, the general solution of (95) is

x = Xb + (I −XA)y

with X as above, and arbitrary y ∈ S. �
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Exercises.

Ex.71. Let I be the identity transformation in L(Cn,Cn) and let S be a subspace of Cn. Show that

ext (I[S]) = PS .

Ex. 72. Let A ∈ L(Cn,Cm). Show that A[R(A∗)], the restriction of A to R(A∗), is a one–to–one
mapping of R(A∗) onto R(A).

Solution. We show first that A[R(A∗)] is one–to–one on R(A∗). Clearly it suffices to show that
A is one–to–one on R(A∗). Let u,v ∈ R(A∗) and suppose that Au = Av, i.e., u and v are mapped
to the same point. Then A(u− v) = 0, i.e.,

u− v ∈ N(A) .

But we also have

u− v ∈ R(A∗) ,

since u and v are in R(A∗). Therefore

u− v ∈ N(A) ∩R(A∗)

and by (47), u = v, proving the A is one–to–one on R(A∗).
We show next that A[R(A∗)] is a mapping onto R(A), i.e., that

R(A[R(A∗)]) = R(A) .

This follows since for any x ∈ Cn

Ax = AA†Ax = APR(A∗)x = A[R(A∗)]x ,

Ex.73. Let A ∈ Cm×n. Show that

ext (A[R(A∗)]) = A . (102)

Ex.74. From Ex. 72 it follows that the linear transformation

A[R(A∗)] ∈ L(R(A∗), R(A))

has an inverse

(A[R(A∗)])
−1 ∈ L(R(A), R(A∗))

Show that this inverse is the restriction of A† to R(A), namely

(A†)[R(A)] = (A[R(A∗)])
−1 . (103)

Solution. From Exs. 72,29, and 45 it follows that, for any y ∈ R(A), A†y is the unique element
of R(A∗) satisfying

Ax = y .

Therefore

A†y = (A[R(A∗)])
−1y for all y ∈ R(A) .

Ex.75. Show that the extension of (A[R(A∗)])
−1 to Cm is the Moore–Penrose inverse of A,

ext
(
(A[R(A∗)])

−1
)

= A† . (104)

Compare with (102).
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Ex.76. Let each of the following two linear equations be consistent

A1x = b1 , (105a)

A2x = b2 . (105b)

Show that (105a) and (105b) have a common solution if and only if the linear equation

A2PN(A1)y = b2 − A2A
(1)
1 b1

is consistent, in which case the general common solution of (105a) and (105b) is

x = A
(1)
1 b1 + PN(A1)(A2PN(A1))

(1)(b2 − A2A
(1)
1 b1) +N(A1) ∩N(A2)

or equivalently

x = A
(1)
2 b2 + PN(A2)(A1PN(A2))

(1)(b1 − A1A
(1)
2 b2) +N(A1) ∩N(A2)

Hint. Substitute the general solution of (105a)

x = A
(1)
1 b1 + PN(A1)y , y arbitrary ,

in (105b).

Ex. 77. Exercise 76 illustrates the need for PN(A1)(A2PN(A1))
(1), an N(A1)–restricted {1}–inverse

of A2. Other applications call for other, similarly restricted, generalized inverses. The N(A1)–
restricted {1, 2, 3, 4}–inverse of A2 was studied for certain Hilbert space operators, by Minamide
and ([1054] and [1055]), who characterized it as the unique solution X of the five equations

A1X = O ,

A2XA2 = A2 on N(A1) ,

XA2X = X ,

(A2X)∗ = A2X ,

and

PN(A1)(XA2)
∗ = XA2 on N(A1) .

Show that PN(A1)(A2PN(A1))
† is the unique solution of these five equations.

9. The Bott–Duffin inverse

Consider the constrained system

Ax + y = b , x ∈ L , y ∈ L⊥ , (106)

with given A ∈ Cn×n , b ∈ Cn, and a subspace L of Cn. Such systems arise in electrical network
theory; see, e.g., Bott and Duffin [202] and Section 12 below. As in Section 8 we conclude that the
consistency of (106) is equivalent to the consistency of the following system:

(APL + PL⊥) z = b (107)

and that

[
x
y

]
is a solution of (106) if and only if

x = PLz, y = PL⊥z = b− APLz , (108)

where z is a solution of (107).
If the matrix (APL+PL⊥) is nonsingular, then (106) is consistent for all b ∈ Cm and the solution

x = PL(APL + PL⊥)−1b , y = b− Ax

is unique. The transformation

PL(APL + PL⊥)−1
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was introduced and studied by Bott and Duffin [202], who called it the constrained inverse of A.
Since it exists only when (APL +PL⊥) is nonsingular, one may be tempted to introduce generalized
inverses of this form, namely

PL(APL + PL⊥)(i,j,... ,k) (1 ≤ i, j, . . . , k ≤ 4) ,

which do exist for all A and L. This section, however, is restricted to the Bott–Duffin inverse.

Definition 2. Let A ∈ Cn×n and let L be a subspace of Cn. If (APL + PL⊥) is nonsingular, the

Bott–Duffin inverse of A with respect to L, denoted by A
(−1)
(L) , is defined by

A
(−1)
(L) = PL(APL + PL⊥)−1 . (109)

Some properties of A
(−1)
(L) are collected in

Theorem 14. (Bott and Duffin [202]). Let (APL + PL⊥) be nonsingular. Then:
(a) The equation

Ax + y = b , x ∈ L , y ∈ L⊥ (106)

has for every b, the unique solution

x = A
(−1)
(L) b , (110a)

y = (I − AA(−1)
(L) )b . (110b)

(b) A, PL, and A
(−1)
(L) satisfy

PL = A
(−1)
(L) APL = PLAA

(−1)
(L) , (111a)

A
(−1)
(L) = PLA

(−1)
(L) = A

(−1)
(L) PL . (111b)

Proof. (a) This follows from the equivalence of (106) and (107)–(108).

(b) From (109), PLA
(−1)
(L) = A

(−1)
(L) , Postmultiplying A

(−1)
(L) (APL +PL⊥) = PL by PL gives A

(−1)
(L) APL =

PL. Therefore A
(−1)
(L) PL⊥ = O and A

(−1)
(L) PL = A

(−1)
(L) . Multiplying (110b) by PL gives (PL −

PLAA
(−1)
(L) )b = 0 for all b, thud PL = PLAA

(−1)
(L) ). �

From these results it follows that the Bott–Duffin inverse A
(−1)
(L) , whenever it exists, is the {1, 2}–

inverse of (PLAPL) having range L and null space L⊥.

Corollary 11. If APL + PL⊥ is nonsingular, then

(a) A
(−1)
(L) = (APL)

(1,2)

L,L⊥
= (PLA)

(1,2)

L,L⊥
= (PLAPL)

(1,2)

L,L⊥
,

(b) (A
(−1)
(L) )

(−1)
(L) = PLAPL.

Proof. (a) From (111a), dimL = rankPL ≤ rankA
(−1)
(L) . Similarly from (111b), rankA

(−1)
(L) ≤

dimL , R(A
(−1)
(L) ) ⊂ R(PL) = L and N(A

(−1)
(L) ) ⊃ N(PL) = L⊥. Therefore

rankA
(−1)
(L) = dimL (112)

and

R(A
(−1)
(L) ) = L, N(A

(−1)
(L) ) = L⊥ . (113)

Now A
(−1)
(L) is a {1, 2}–inverse of APL:

APLA
(−1)
(L) APL = APL by (111a ,
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and

A
(−1)
(L) APLA

(−1)
(L) = A

(−1)
(L) by (111a) and (111b) . (114)

That A
(−1)
(L) is a {1, 2}–inverse of PLA and of PLAPL is similarly proved.

(b) We show first that (A
(−1)
(L) )

(−1)
(L) is defined, i.e., that (A

(−1)
(L) PL +PL⊥) is nonsingular. From (111b),

A
(−1)
(L) PL + PL⊥ = A

(−1)
(L) + PL⊥ , which is a nonsingular matrix since its columns span L+ L⊥ = Cn,

by (113). Now PLAPL is a {1, 2}–inverse of A
(−1)
(L) , by (a), and therefore by Theorem 1.2 and (112),

rankPLAPL = rankA
(−1)
(L) = dimL .

This result. together with

R(PLAPL) ⊂ R(PL) = L, N(PLAPL) ⊃ N(PL) = L⊥ ,

shows that

R(PLAPL) = L, N(PLAPL) = L⊥ ,

proving that

PLAPL = (A
(−1)
(L) )

(1,2)

L,L⊥

= (A
(−1)
(L) )

(−1)
(L) .

�

Exercises.

Ex.78. Show that the following statements are equivalent, for any A ∈ Cn×n and a subspace L ⊂ Cn.
(a) APL + PL⊥ is nonsingular.
(b) Cn = AL⊕ L⊥, i.e., AL = {Ax : x ∈ L} and L⊥ are complementary subspaces of Cn.
(c) Cn = PLR(A)⊕ L⊥.
(d) Cn = PLAL⊕ L⊥.
(e) rankPLAPL = dimL.

Thus, each of the above conditions is necessary and sufficient for the existence of A
(−1)
(L) , the Bott–

Duffin inverse of A with respect to L.

Ex.79. A converse to Corollary 11. If any one of the following three {1, 2}–inverses exist

(APL)
(1,2)

L,L⊥
, (PLA)

(1,2)

L,L⊥
, (PLAPL)

(1,2)

L,L⊥
,

then all three exist, APL + PL⊥ is nonsingular, and

(APL)
(1,2)

L,L⊥
= (PLA)

(1,2)

L,L⊥
= (PLAPL)

(1,2)

L,L⊥
= A

(−1)
(L) .

Hint. Condition (b) in Ex. 78 is equivalent to the existence of (APL)
(1,2)

L,L⊥
.

Ex.80. Let K be a matrix whose columns form a basis for L. Then A
(−1)
(L) exists if and only if K∗AK

is nonsingular, in which case

A
(−1)
(L) = K(K∗AK)−1K∗ (Bott and Duffin [202]) .

Proof. Follows from Corollary 11 and Theorem 11(d). �

Ex.81. If A is Hermitian and and A
(−1)
(L) exists, then A

(−1)
(L) is Hermitian.
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Ex.82. Using the notation

A = [aij] (i, j ∈ 1, n)

A
(−1)
(L) = [tij] (i, j ∈ 1, n)

dA,L = det(APL + L⊥) , (115)

ψA,L = log dA,L (116)

show that

(a)
∂ψA,L

∂aij

= tji (i, j ∈ 1, n)

(b)
∂tkl

∂aij

= tkitjl (i, j, k, l ∈ 1, n). (Bott and Duffin, [202, Theorem 3]).

Bott and Duffin called dA,L the discriminant of A, and ψA,L the potential of A
(−1)
(L) .

Ex. 83. Let A ∈ Cn×n be nonsingular, and let L be a subspace of Cn. Then A
(−1)
(L) exists if and only

if A
(−1)

(L⊥)
exists.

Hint. Use A−1PL⊥ + PL = A−1(APL + PL⊥) to show that (A−1PL⊥ + PL)−1 = (APL + PL⊥)−1A.

Ex.84. Let A ∈ Cn×n be nonsingular, let L be a subspace of Cn, let dA,L and ψA,L be given by (107)
and (116), respectively, and similarly define

dA−1,L⊥ = det(A−1PL⊥ + PL)

ψA−1,L⊥ = log dA−1,L⊥ .

Then

(a) dA−1,L⊥ =
dA,L

detA
(b) (A−1)

(−1)

(L⊥)
= A− AA(−1)

(L) A. (Bott and Duffin, [202, Theorem 4]).

Ex.85. If <〈Au,u〉 > 0 for every nonzero vector u, then dA,L 6= 0, <〈A(−1)
(L) u,u〉 ≥ 0 for every vector

u and <(tii) ≥ 0, where A
(−1)
(L) = [tij]. (Bott and Duffin, [202, Theorem 6]).

Ex.86. Let A,B ∈ Cn×n and let L be a subspace of Cn such that both A
(−1)
(L) and B

(−1)
(L) exist. Then

B
(−1)
(L) A

(−1)
(L) = (APLB)−1

(L) .

10. An application of {1}–inverses in interval linear programming

For two vectors u = (ui),v = (vi) ∈ Rm let

u ≤ v

denote the fact that ui ≤ vi for i = 1, . . . ,m. A linear programming problem of the form

maximize {cTx : a ≤ Ax ≤ b} , (117)

with given a,b ∈ Rm; c ∈ Rn; A ∈ Rm×n, is called an interval linear program (also a linear program
with two–sided constraints) and denoted by IP (a,b, c, A) or simply by IP . Any linear programming
problem with bounded constraint set can be written as an IP, see e.g. Robers and Ben-Israel [1277].

In this section, which is based on the work of Ben-Israel and Charnes [128], the optimal solutions
of (117) are obtained by using {1}–inverses of A, in the special case where A is of full row rank. More
general cases were studied by Zlobec and Ben-Israel [1654], [1655] (see also Exs. 87 and 88), and an
iterative method for solving the general IP appears in Robers and Ben-Israel [1277]. Applications
of interval programming are given in Ben-Israel, Charnes and Robers [129], and Robers and Ben-
Israel [1276]. References for other applications of generalized inverses in linear programming are
Pyle [1224] and Cline and Pyle [359].
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The IP (117) is called consistent (also feasible) if the set

F = {x ∈ Rn : a ≤ Ax ≤ b} (118)

is nonempty, in which case the elements of F are called the feasible solutions of IP (a,b, c, A). A
consistent IP (a,b, c, A) is called bounded if

max{cTx : x ∈ F}

is finite, in which case the optimal solutions of IP (a,b, c, A) are its feasible solutions x0 which
satisfy

cTx0 = max{cTx : x ∈ F} .

Boundedness is equivalent to c ∈ R(AT ) as the following lemma shows.

Lemma 5. Let a,b ∈ Rm; c ∈ Rn; A ∈ Rm×n be such that IP (a,b, c, A) is consistent. Then
IP (a,b, c, A) is bounded if and only if

c ∈ N(A)⊥ . (119)

Proof. From (118), F = F +N(A). Therefore

max{cTx : x ∈ F} = max{cTx : x ∈ F +N(A)}
= max{(PR(AT )c + PN(A)c)

Tx : x ∈ F +N(A)} , by (47)

= max{cTPR(AT )x : x ∈ F}+ max{cTx : x ∈ N(A)} ,

where the first term

max{cTPR(AT )x : x ∈ F} = max{cTA†Ax : a ≤ Ax ≤ b}

is finite, and the second term

max{cTx : x ∈ N(A)}

is finite if and only if c ∈ N(A)⊥. �

We introduce now a function η : Rm × Rm × Rm → Rm, defined for u,v,w ∈ Rm by

η(u,v,w) = [ηi] (i ∈ 1,m)

where

ηi =


ui if wi < 0,

vi if wi > 0,

λiui + (1− λi)vi where 0 ≤ λi ≤ 1 , if wi = 0

(120)

A component of η(u,v,w) is equal to the corresponding component of u or v, if the corresponding
component of w is negative or positive, respectively. If a component of w is zero, then the corre-
sponding component of η(u,v,w) is the closed interval with the corresponding components of u
and v as endpoints. Thus η maps points in Rm × Rm × Rm into sets in Rm, and any statement
below about η(u,v,w) is meant for all values of η(u,v,w), unless otherwise specified.

The next result gives all the optimal solutions of IP (a,b, c, A) with A of full row rank.

Theorem 15. (Ben-Israel and Charnes [128]). Let a,b ∈ Rm; c ∈ Rn; A ∈ Rm×n be such that
IP (a,b, c, A) is consistent and bounded, and let A(1) be any {1}–inverse of A. Then the general
optimal solution of IP (a,b, c, A) is

x = A(1)η(a,b, A(1)Tc) + y , y ∈ N(A) . (121)
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Proof. From A ∈ Rm×n
m it follows that R(A) = Rm, so that any u ∈ Rm can be written as

u = Ax (122)

where

x = A(1)u + y , y ∈ N(A) , by Corollary 2. (123)

Substituting (122) and (123) in (117), we get, by using (119), the equivalent IP

max{cTA(1)u : a ≤ x ≤ b}
whose general optimal solution is, by the definition (120) of η,

u = η(a,b, A(1)Tc)

which gives (121) by using (123). �

Exercises.

Ex.87. Let a,b ∈ Rm; c ∈ Rn; A ∈ Rm×n be such that IP (a,b, c, A) is consistent and bounded. Let
A(1) ∈ A{1} and let z0 ∈ N(AT ) satisfy

zT η0 ≤ 0

for some η0 ∈ η(a,b, (A(1)PR(A))
Tc + z0). Then

x0 = A(1)PR(A)η0 + y , y ∈ N(A)

is an optimal solution of IP (a,b, c, A) if and only if it is a feasible solution (Zlobec and Ben-Israel
[1655]).

Ex.88. Let b ∈ Rm; c ∈ Rn; A ∈ Rm×n and let u ∈ Rn be a positive vector such that the problem

min{cTx : Ax = b,0 ≤ x ≤ u} (124)

is consistent. Let z0 ∈ R(AT ) satisfy

zT η0 ≤ zTA†b

for some η0 ∈ η(0,u, PN(A)c + z0). Then

x0 = A†b + PN(A)η0

is an optimal solution of (124) if and only if it is a feasible solution (Zlobec and Ben-Israel [1655]).

11. A {1, 2}–inverse for the integral solution of linear equations

Let Z denote the ring of integers 0,±1,±2, . . . and let:
Zm be the m–dimensional vector space over Z,
Zm×n be the m× n matrices over Z,
Zm×n

r be the same with rank r.
Any vector in Zm will be called an integral vector. Similarly, any element of Zm×n will be called an
integral matrix.

Let A ∈ Zm×n,b ∈ Zm and let the linear equation

Ax = b (5)

be consistent. In many applications one has to determine if (5) has integral solutions, in which case
one has to find some or all of them. If A is nonsingular and its inverse is also integral, then (5) has
the unique integral solution x = A−1b for any integral b. A nonsingular matrix A ∈ Zn×n whose
inverse A−1 is also in Zn×n is called a unit matrix ; e.g. Marcus and Minc [996, p. 42].

In this section, which is based on the work of Hurt and Waid [760], we study the integral
solution of (5) for any A ∈ Zm×n and b ∈ Zm. Using the Smith normal form of A (Theorem 16
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below), a {1, 2}–inverse is found (Corollary 12) which can be used to determine the existence of
integral solutions, and to list all of them if they exist (Corollaries 13 and 14).

Two matrices A, S ∈ Zm×n are said to be equivalent over Z if there exist two unit matrices
P ∈ Zm×m and Q ∈ Zn×n such that

PAQ = S . (125)

Theorem 16. Let A ∈ Zm×n
r . Then A is equivalent over Z to a matrix S = [sij] ∈ Zm×n

r such that:
(a) sii 6= 0 , i ∈ 1, r,
(b) sij = 0 otherwise, and
(c) sii divides si+1,i+1 for i ∈ 1, r − 1.

remark. S is called the Smith normal form of A, and its nonzero elements sii (i ∈ 1, r) are the
invariant factors of A; see, e.g., Marcus and Minc [996, pp. 42–44].

Proof. The proof given in Marcus and Minc [996, p. 44] is constructive and describes an
algorithm to

(i) find the greatest common divisor of the elements of A,
(ii) bring it to position (1, 1), and
(iii) make zeros of all other elements in the first row and column.

This is done, in an obvious way, by using a sequence of elementary row and column operations
consisting of

interchanging two rows [columns] (126)

subtracting an integer multiple of one row [column] from another row [column] (127)

The matrix B = [bij] so obtained is equivalent over Z to A, and
b11 divides bij (i > 1, j > 1),
bi1 = b1j = 0 (i > 1, j > 1).

Setting s11 = b11, one repeats the algorithm for (m− 1)× (n− 1) matrix [bij] (i > 1, j > 1), etc.
The algorithm is repeated r times and stops when the bottom right (m− r)× (n− r) submatrix

is zero, giving the Smith normal form.
The unit matrix P [Q] in (125) is the product of all the elementary row [column] operators, in

the right order. �

Using the Smith normal form, a {1, 2}–inverse with special integral properties can now be given.

Corollary 12. (Hurt and Waid [760]). Let A ∈ Zm×n. Then there is an n × m matrix X
satisfying

AXA = A , (1.1)

XAX = X , (1.2)

AX ∈ Zm×m, XA ∈ Zn×n . (128)

Proof. Let

PAQ = S (125)

be the Smith normal form of A, and let

Â = QS†P . (129)

Then

PAQ = S = SS†S = PAQS†PAQ = PAÂAQ ,

proving A = AÂA. ÂAÂ = Â is similarly proved. The integrality of AÂ and ÂA follows from that

of PAÂ = SS†P and ÂAQ = QS†S, respectively. �

In the rest of this section we denote by Â, B̂ the {1, 2}–inverses of A,B as given in Corollary 12.
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Figure 1. An example of a network

Corollary 13. (Hurt and Waid [760]). Let A,B,D be integral matrices, and let the matrix
equation

AXB = D (1)

be consistent. Then (1) has an integral solution if and only if the matrix

ÂDB̂

is integral, in which case the general integral solution of (1) is

X = ÂDB̂ + Y − ÂAY BB̂B̂ , Y ∈ Zn×m .

Proof. Follows from Corollary 12 and Theorem 1. �

Corollary 14. (Hurt and Waid [760]). Let A and b be integral, and let the vector equation

Ax = b (5)

be consistent. Then (5) has an integral solution if and only if the vector

Âb

is integral, in which case the general integral solution of (5) is

x = Âb + (I − ÂA)y , y ∈ Zn .

Exercises.

Ex.89. Two matrices A,B ∈ Zm×n are equivalent over Z if and only if B can be obtained from A by
a sequence of elementary row and column operations (126)–(127).

Hint. Use Ex. 1.3.

Ex.90. Describe in detail the algorithm mentioned in the proof of Theorem 16.

Ex. 91. Use the results of Sections 10 and 11 to find the integral optimal solutions of the interval
program

max{cTx : a ≤ x ≤ b}
where a,b, c, and A are integral.

Ex. 92. If Z is the ring of polynomials with real coefficients, or the ring of polynomials with complex
coefficients, the results of this section hold; see, e.g., Marcus and Minc [996, p. 40]. Interpret
Corollaries 12 and 14 in these two cases.

12. An application of the Bott–Duffin inverse to electrical networks

In this section which is based on Bott and Duffin [202], we keep the discussion of electrical
networks at the minimum sufficient to illustrate the application of the Bott–Duffin inverse studied
in Section 9. The reader is referred to the original work of Bott and Duffin for further information.

An electrical network is described topologically in terms of its graph consisting of nodes (also
vertices, junctions, etc.) and branches (also edges), and electrically in terms of its (branch) currents
and voltages.

Let the graph consist of m elements called nodes denoted by ni , i ∈ 1,m (which, in the present
limited discussion, can be represented by m points in the plane), and n ordered pairs of nodes called
branches denoted by bj , j ∈ 1, n (represented here by directed segments joining the paired nodes).
For example, the network represented by Fig. 1 has four nodes n1, n2, n3 and n4, and six branches
b1 = {n1, n2}, b2 = {n2, n3}, b3 = {n2, n4}, b4 = {n3, n1}, b5 = {n3, n4} and b6 = {n4, n1}.



12. AN APPLICATION OF THE BOTT–DUFFIN INVERSE TO ELECTRICAL NETWORKS 83

A graph with m nodes and n branches can be represented by an m × n matrix, called the
(node–branch) incidence matrix, denoted by M = [mij] and defined as follows:

(i) The ith row of M corresponds to the node ni, i ∈ 1,m.
(ii) The jth column of M corresponds to the branch bj, j ∈ 1, n.
(iii) If bj = {nk, nl}, then

mij =


1 i = k,

−1 i = l,

0 i 6= k, l.

For example, the incidence matrix of the graph of Fig. 1 is

M =


1 0 0 −1 0 −1
−1 1 1 0 0 0
0 −1 0 1 1 0
0 0 −1 0 −1 1


Two nodes nk and nl (or the corresponding rows of M) are called directly connected if either {nk, nl}
or {nl, nk} is a branch, i.e. if there is a column in M having its nonzero entries in rows k and l.
Two nodes nk and nl (or the corresponding rows of M) are called connected if there is a sequence
of nodes

{nk, np, . . . , nq, nl}

in which every two adjacent nodes are directly connected. Finally, a graph (or its incidence matrix)
is called connected if every two nodes are connected.

In this section we consider only direct current (DC) networks, referring the reader to Bott and
Duffin [202] and to Ex. 94 below, for alternating current (AC) networks. A DC network is described
electrically in terms of two real valued functions, the current and the potential, defined on the sets
of branches and nodes respectively.

For j = 1, . . . ,m, the current in branch bj, denoted by yj, is the current (measured in amperes)
flowing in bj. The sign of yj is positive if it flows in the direction of bj, and is negative if it flows in
the opposite direction.

For i = 1, . . . ,m, the potential at node ni, denoted by pi, is the voltage difference (measured
in volts) between ni and some reference point, which can be taken as one of the nodes. A related
function which is more often used, is the voltage, defined on the set of branches. For j = 1, . . . , n,
the voltage across branch bj = {nk, nl}, denoted by xj, is defined as the potential difference

xk = pk = pl .

From the definition of the incidence matrix M it is clear that the vector of branch voltages x = [xj]
and the vector of node potentials p = [pi] are related by

x = MTp . (130)

The currents and voltages are assumed to satisfy Kirchhoff laws. The Kirchhoff current law is
a conservation theorem for the currents (or electrical charges), stating that for each node, the net
current entering the node is zero, i.e., the sum of incoming currents equals the sum of outgoing
currents. From the definition of the incidence matrix M it follows that the Kirchhoff current law
can be written as

My = 0 . (131)

The Kirchhoff voltage law states that the potential function is single valued. This statement usually
assumes the equivalent form that the sum of the branch voltages directed around any closed circuit
is zero.
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From (130), (131,) and (47), it follows that the Kirchhoff current and voltage laws define two
complementary orthogonal subspaces:

N(M), the currents satisfying Kirchhoff current law;
R(MT ), the voltages satisfying Kirchhoff voltage law.

Each branch bj, j ∈ 1, n, of the network will be regarded as having a series voltage generator of vj

volts and a parallel current generator of wj ampers. These are related to the branch currents and
voltages by Ohm’s law

aj(xj − vj) + (yj − wj) = 0 , j ∈ 1, n , (132)

where aj > 0 is the conductivity of the branch bj, measured in mhos2.
Thus the branch currents y and voltages x are found by solving the following constrained system:

Ax + y = Av + w , x ∈ R(MT ) , y ∈ N(M) , (133)

where A = [diagaj] is the diagonal matrix of branch conductivities, v and w are are the given
vectors of generated voltages and currents, respectively, and M is the incidence matrix. It can be

shown that the Bott–Duffin inverse of A with respect to R(MT ), A
(−1)

(R(MT ))
, exists; see, e.g., Ex. 93

below. Therefore, by theorem 14, the unique solution of (133) is

x = A
(−1)

(R(MT ))
(Av + w) , (134)

y = (I − AA(−1)

(R(MT ))
)(Av + w) . (135)

The physical significance of the matrix A
(−1)

(R(MT ))
should be clear from (134). The (i, j)th entry of

A
(−1)

(R(MT ))
is the voltage across branch bi as a result of inserting a current source of one ampere in

branch bj; i, j ∈ 1, n. Because of this property, A
(−1)

(R(MT ))
is called the transfer matrix of the network.

Since the conductivity matrix A is nonsingular, the network equations (133) can be rewritten
as

A−1y + x = A−1w + v , y ∈ N(M) , x ∈ R(MT ) . (136)

By Exs. 93 and 83, the unique solution of (136) is

y = (A−1)
(−1)
(N(M))(A

−1w + v) , (137)

x = (I − A−1(A−1)
(−1)
(N(M)))(A

−1w + vA−1w + v) . (138)

The matrix (A−1)
(−1)
(N(M)) is called the dual transfer matrix, its (i, j)th entry being the current in

branch bi as a result of inserting a one–volt generator parallel to branch bj. Comparing the corre-

sponding equations in (134)–(135 and in (137)–(138, we prove that the transfer matrices A
(−1)

(R(MT ))

and (A−1)
(−1)
(N(M)) satisfy

A−1(A−1)
(−1)
(N(M)) + A

(−1)

(R(MT ))
A = I , (139)

which can also be proved directly from Ex. 84(b).
The correspondence between results like (134)–(135 and (137)–(138 is called electrical duality ;

see, e.g., the discussion in Bott and Duffin [202], Duffin [435], and Sharpe and Styan [1343],
[1344], [1345], for further results on duality and on applications of generalized inverses in electrical
networks.

2mho, the unit of conductance, is the reciprocal of ohm, the unit of resistance.
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Exercises.

Ex. 93. Let A ∈ Cn×n be such that 〈Ax,x〉 6= 0 for every nonzero vector x in L, a subspace of Cn.

Then A
(−1)
(L) exists, i.e., (APL + PL⊥) is nonsingular.

Proof. If Ax+y = 0 for some x ∈ L and y ∈ L⊥, then Ax ∈ L⊥ and therefore 〈Ax,x〉 = 0. �

See also Exs. 85 and 78(b) above.

Ex.94. In AC networks without mutual coupling, equations (132) still hold for the branches, by using
complex, instead of real, constants and variables. The complex aj is then the admittance of branch
bj. AC networks with mutual coupling due to transformers, are still represented by (133), where
the admittance matrix A is symmetric, its off–diagonal elements giving the mutual couplings; see,
e..g., Bott and Duffin [202].

Ex. 95. Incidence matrix. Let M be a connected m × n incidence matrix. Then for any M (1,3) ∈
M{1, 3},

I −MM (1,3) =
1

m
eeT ,

where eeT is the m×m matrix whose elements are all 1. See also Ijiri [766].

Proof. From (I −MM (1,3))M = O it follows for any two directly connected nodes ni and nj

(i.e., for any column of M having its +1 and −1 in rows i and j), that the ith and jth columns of
I −MM (1,3) are identical. Since M is connected, all columns of I −MM (1,3) are identical. Since
I −MM (1,3) is symmetric, all its rows are also identical. Therefore, all elements of I −MM (1,3) are
equal, say

I −MM (1,3) = α eeT ,

for some real α. Now I −MM (1,3) is idempotent, proving that α = 1/m. �

Ex.96. Let M be a connected m× n incidence matrix. Then rankM = m− 1.

Proof.

PN(MT ) = I − PR(M) , by (48) ,

= I −MM (1,3) , by Ex. 1.9 and Lemma 3 ,

=
1

m
eeT , by Ex. 95 ,

proving that dim N(MT ) = rankPN(MT ) = 1, and therefore

rankM = dim R(M) = m− dim N(MT ) = m− 1 .

�

Ex.97. Trees. Let a connected network consist of m nodes and n branches, and let M be its incidence
matrix. A tree is defined as consisting of the m nodes, and any m − 1 branches which correspond
to linearly independent columns of M . Show that:

(a) A tree is a connected network which contains no closed circuit.
(b) Any column of M not among the m − 1 columns corresponding to a given tree, can be

expressed uniquely as a linear combination of those m − 1 columns, using only the coefficients
0,+1, and −1.

(c) Any branch not in a given tree, lies in a unique closed circuit whose other branches, or the
branches obtained from them by reversing their directions, belong to the tree.
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Ex.98. Let A = [diag aj], aj 6= 0, j ∈ 1, n, and let M be a connected m× n incidence matrix. Show
that the discriminant (see Ex. 82)

dA,R(MT ) = det (APR(MT ) + PN(M))

is the sum, over all trees {bj1 , bj2 , . . . , bjm−1} in the network, of the products

aj1aj2 · · · ajm−1 (Bott and Duffin [202]) .

Suggested further reading

Section 1 . Bjerhammar [174], Hearon [709], Jones [788], Morris and Odell [1096], Sheffield [1347].
Section 4 . Afriat [6], Chipman and Rao [331], Graybill and Marsaglia [571], Greville [586],
Wedderburn [1538].
Section 5 . Ward, Boullion and Lewis [1536].
Section 6 . Afriat [6], Anderson and Duffin [26], Ben–Israel [112], Chipman and Rao [331], Glazman
and Ljubich [542], Greville [586], Petryshyn [1183], Stewart [1400].
Section 9 . Rao and Mitra [1251].
Section 10 . For applications of generalized inverses in mathematical programming see also Beltrami
[103], Ben–Israel ([111], [115], [118]), Ben–Israel and Kirby [133], Charnes and Cooper [302],
Charnes, Cooper and Thompson [303], Charnes and Kirby [305], Kirby [846], Nelson, Lewis and
Boullion [1128], Rosen ([1303], [1304]), Zlobec [1651].
Section 11 . Bowman and Burdet [216], and Charnes and Granot [304].



CHAPTER 3

Minimal Properties of Generalized Inverses

1. Least–squares solutions of inconsistent linear systems

For given A ∈ Cm×n and b ∈ Cm, the linear system

Ax = b (1)

is consistent, i.e., has a solution for x, if and only if b ∈ R(A). Otherwise, the residual vector

r = b− Ax (2)

is nonzero for all x ∈ Cn, and it may desired to find an approximate solution of (1), by which is
meant a vector x making the residual vector (2) “closest” to zero in some sense, i.e., minimizing
some norm of (2). An approximate solution that is often used, especially in statistical applications,
is the least–squares solution of (1), defined as a vector x minimizing the Euclidean norm of the
residual vector, i.e., minimizing the sum of squares of moduli of the residuals

m∑
i=1

|ri|2 =
m∑

i=1

∣∣∣∣∣bi −
n∑

j=1

aijxj

∣∣∣∣∣
2

= ‖b− Ax‖2 . (3)

In this section the Euclidean vector norm – see, e.g., Ex. 0.8 – is denoted simply by ‖ ‖.
The following theorem shows that ‖Ax − b‖ is minimized by choosing x = Xb, where X ∈

A{1, 3}, thus establishing a relation between the {1, 3}–inverses and the least–squares solutions of
Ax = b, characterizing each of these two concepts in terms of the other.

Theorem 1. Let A ∈ Cm×n , b ∈ Cm. Then ‖Ax − b‖ is smallest when x = A(1,3)b, where
A(1,3) ∈ A{1, 3}. Conversely, if X ∈ Cn×m has the property that, for all b, ‖Ax − b‖ is smallest
when x = Xb, then X ∈ A{1, 3}.

Proof. From (2.47)

b = (PR(A) + PR(A)⊥)b . (4)

) b− Ax = (PR(A)b− Ax) + PN(A∗)b .

) ‖Ax− b‖2 = ‖Ax− PR(A)b‖2 + ‖PN(A∗)b‖2 , by Ex. 0.36 . (5)

Evidently, (5) assumes its minimum value if and only if

Ax = PR(A)b , (6)

which holds if x = A(1,3)b for any A(1,3) ∈ A{1, 3}, since by Theorem 2.8, (2.28), and Lemma 2.3

AA(1,3) = PR(A) . (7)

Conversely, if X is such that for all b, ‖Ax−b‖ is smallest when x = Xb, (6) gives AXb = PR(A)b
for all b, and therefore

AX = PR(A) .

Thus, by Theorem 2.3, X ∈ A{1, 3}. �

87
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Corollary 1. A vector x is a least–squares solution of Ax = b if and only if

Ax = PR(A)b = AA(1,3)b .

Thus, the general least–squares solution is

x = A(1,3)b + (In − A(1,3)A)y , (8)

with A(1,3) ∈ A{1, 3} and arbitrary y ∈ Cn.

It will be noted that the least–squares solution is unique only when A is of full column rank (the
most frequent case in statistical applications). Otherwise, (8) is an infinite set of such solutions.

Exercises, examples and supplementary notes.

Ex. 1. Normal equation. Show that a vector x is a least–squares solution of Ax = b if and only if x
is a solution of

A∗Ax = A∗b , (9)

often called the normal equation of Ax = b.

Solution. It follows from (4) and (6) that x is a least–squares solution if and only if

Ax− b ∈ N(A∗) ,

which is (9).
Alternative solution. A necessary condition for the vector x0 to be a least–squares solution

of Ax = b is that the partial derivatives ∂f/∂xj of the function

f(x) = ‖Ax− b‖2 =
m∑

i=1

(
n∑

j=1

aijxj − bi

)∗( n∑
j=1

aijxj − bi

)
(10)

vanish at x0, i.e., that ∇f(x0) = 0, where

∇f(x0) =

(
∂f

∂xj

(x0)

)
,

is the gradient of f at x0. Now it can be shown that the gradient of (8) at x0 is

∇f(x0) = 2A∗(Ax− b) ,

proving the necessity of (9). The sufficiency follows from the identity

(Ax− b)∗(Ax− b)− (Ax0 − b)∗(Ax0 − b)

= (x− x0)∗A∗A(x− x0) + 2<{(x− x0)∗A∗(x− x0)} ,

which holds for all x,x0 ∈ Cn.

Ex.2. For any A ∈ Cm×n and b ∈ Cm, the normal equation (9) is consistent.

Ex.3. Ill–conditioning. The linear equation Ax = b, and the matrix A are said to be ill–conditioned
(or badly conditioned) if the solutions are very sensitive to small changes in the data;, see, e.g. [1145,
Chapter 8] and [1596]. The use of the normal equations (9) in finding least–squares solutions is
limited by the fact that the matrix A∗A is ill–conditioned and very sensitive to roundoff errors,
see, e.g., Taussky [1434] and Ex. 6.7. Methods for computing least–squares solutions which take
account of this difficulty have been studied by several authors. We mention in particular Björck
([178], [177] and [179]), Björck and Golub [182], Businger and Golub [246] and [247], Golub and
Wilkinson [559], and Noble [1145]. Three such methods are mentioned in Exs. 6, 10 and 11 below.
These methods can be used, with slight modifications, to compute the generalized inverse. The
reader who is not interested in numerical methods may skip Exs. 4 through 11.
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Ex.4. The following example illustrates the ill–conditioning of the normal equation. Let

A =

1 1
ε 0
0 ε

 and let the elements of ATA =

[
1 + ε2 1

1 1 + ε2

]
be computed using double–precision and then rounded to single–precision with t binary digits. If
|ε| <

√
2−t then the rounded ATA is

fl(ATA) =

[
1 1
1 1

]
(fl denotes floaating point)

which is of rank 1, whereas A is of rank 2. Thus for any b ∈ R3, the computed normal equation

fl(ATA)x = fl(ATb)

may be inconsistent, or may have solutions which are not least–squares solutions of Ax = b.

Ex.5. Factorization methods. Let A be factorized as

A = FG (11)

where G is of full row–rank. Show that the normal equation (9) is equivalent to

F ∗Ax = F ∗b . (12)

The factorization (11) is useful if the system (12) is not ill–conditioned, or at leats not worse–
conditioned than the system (1). Two such factorizations are given in Exs. 6 and 10 below.

Ex. 6. QR factorization. Let A ∈ Cm×n
n (where full column–rank is assumed form convenience; the

modifications required for the general case are the subject of Ex. 9). Then the QR factorization of
A is

A = QR = Q̃R̃ (13)

where Q ∈ Cm×n is unitary (i.e. Q∗Q = I), R =

[
R̃
O

]
where R̃ is an n × n upper triangular

matrix, and Q̃ consists of the first n columns of Q. The columns of the unitary matrix Q form an

orthonormal basis for Cm, and it is clear from (13) that the columns of Q̃ (aand the upper triangular

matrix R̃) maay be obtained by orthogonalizing the columns of A. (It also follows from (13) that

each column of Q̃ and each row of R̃ is determined uniquely up to a scalar factor of modulus one.)
The two principal ways of computing the QR factorization are:
(1) Using a Gram–Schmidt type of orthogonalization; see, e.g., Rice [1270] and Björck [178]

where a detailed error analysis is given for least–squares solutions.
(2) Using Householder transformations; see, e.g., Wilkinson [1595], Parlett [1161], and Golub

[550].
These two ways are compared in [550].
Given the QR–factorization (13), it follows from Ex. 5 that the normal equation (9) is equivalent

to

Q̃∗Ax = Q̃∗b

or to

R̃x = Q̃∗b , since Q̃∗Q̃ = In . (14)

Now R̃ is upper triangular, and thus (14) is solved by backward substitution.
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Ex.7. Using the notation of Ex. 6, let

Q∗b = c = [ci] , i ∈ 1,m .

Show that the minimum value of ‖Ax− b‖2 is
∑m

i=n+1 |ci|2.
(Hint: ‖Ax− b‖2 = ‖Q∗(Ax− b)‖2 since Q is unitary.)

Ex.8. Show that the Q̃R̃–factorization for the matrix of Ex. 4, is

A =

1 1
ε 0
0 ε

 ≈ fl(Q̃)fl(R̃) =

1 ε√
2

ε − 1√
2

0 1√
2

[1 1

0 ε
√

2

]
.

Use this to compute the least–squares solution of1 1
ε 0
0 ε

[x1

x2

]
=

 1
ε
2ε

 .

Answer. The (rounded) least–squares solution obtained by using (14) with the rounded matrices

fl(Q̃) and fl(R̃) is

x1 = 0, x2 = 1 .

The exact least–squares solution is

x1 =
ε2

2 + ε2
, x2 =

2(1 + ε2)

2 + ε2
.

Ex.9. Modify the results of Exs. 6 and 7 for the case A ∈ Cm×n
r , r < n.

Ex.10. Noble’s method. Let again A ∈ Cm×n
n and assume that A is partitioned as

A =

[
A1

A2

]
where A1 ∈ Cn×n

n .

Then A may be factorized as

A =

[
I
S

]
A1 where S = A2A

−1
1 ∈ C(m−n)×n . (15)

Let now b ∈ Cm be partitioned as b =

[
b1

b2

]
, b1 ∈ Cn. Then by Ex. 5, the normal equation reduces

to

(I + S∗S)A1x = b1 + S∗b2 (16)

(which reduces further to A1x = b1 if and only if Ax = b is consistent).
The matrix S can be obtained by applying Gauss–Jordan elimination to the matrix[

A1 b1 I
A2 b2 O

]
transforming it into [

I A−1
1 b1 A−1

1

O b2 − Sb1 −S

]
from which S can be read. (See Noble [1145, pp. 262–265].)
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Ex. 11. Iterative refinement of solutions. Let x(0) be an approximate solution of the consistent
equation Ax = b, and let x̂ be an exact solution. Then the error δx = x̂− x(0) satisfies

Aδx = Ax̂− Ax(0)

= b− Ax(0)

= r(0), the residual corresponding to x(0) .

This suggests the following iterative refinement of solutions, due to Wilkinson [1595] (see also Moler
[1079]):

The initial approximation: x(0), given.
The kth residual: r(k) = b− Ax(k).
The kth correction, δx(k), is obtaiend by solving Aδx(k) = r(k).
The (k + 1)st approximation: x(k+1) = x(k) + δx(k).
Double precision is used in computing the residuals, but not elsewhere,
The iteration is stopped if ‖δx(k+1)‖/‖δx(k)‖ falls below a prescribed number.
If the sequence {x(k) : k = 0, 1, . . . } converges, it converges to a solution of Ax = b.

The use of this method to solve linear equations which are equivalent to the normal equation, such
as (14) or (16), has been successful in finding, or improving, least–squares solutions. The reader is
referred to Golub and Wilkinson [559], Björck [177] and [179], and Björck and Golub [182].

Ex. 12. Show that the vector x is a least–squares solution of Ax = b if and only if there is a vector

r such that the vector

[
r
x

]
is a solution of[

I A
A∗ O

] [
r
x

]
=

[
b
0

]
(17)

Ex.13. Let A ∈ Cm×n and let b1,b2, . . . ,bk ∈ Cm. Show that a vector x minimizes

k∑
i=1

‖Ax− bi‖2

if and only if x is a least–squares solution of

Ax =
1

k

k∑
i=1

bi .

Ex.14. Let Ai ∈ Cm×n, bi ∈ Cm (i = 1, . . . , k). Show that a vector x minimizes

k∑
i=1

‖Aix− bi‖2 (18)

if and only if x is a solution of (
k∑

i=1

A∗
iAi

)
x =

k∑
i=1

A∗
i bi . (19)

Solution. x minimizes (18) if and only if x is a least–squares solution of the system
A1

A2
...
Ak

 x =


b1

b2
...

bk

 ,

whose normal equation is (19).
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Ex.15. Let A ∈ Cm×n, b ∈ Cm, and let α2 be a positive real number. Show that the function

‖Ax− b‖2 + α2‖x‖2 (20)

has a unique minimizer xα2 given by

xα2 = (A∗A+ α2I)−1A∗b (21)

whose norm ‖xα2‖ is a monotone decreasing function of α2.

Solution. (20) is a special case of (18) with k = 2, A1 = A,A2 = αI,b1 = b and b2 = 0.
Substituting these values in (19) we get

(A∗A+ α2I)−1A∗x = A∗b ,

which has the unique solution (21), since (A∗A+ α2I) is nonsingular.
Using (2.47) or Lemma 1 below, it is possible to write b (uniquely) as

b = Au + v , u ∈ R(A∗) , v ∈ N(A∗) . (22)

Substituting this in (21) gives

xα2 = (A∗A+ α2I)−1A∗Au . (23)

Now let {u1,u2, . . . ,ur} be an orthonormal basis of R(A∗) consisting of eigenvectors of A∗A corre-
sponding to nonzero eigenvalues, say

A∗Auj = λjuj , λj > 0 j ∈ 1, r .

If u =
∑r

j=1 βjuj is the representation of u in terms of the above basis, then (23) gives

xα2 =
r∑

j=1

λjβj

λj + α2
uj

whose norm squared is

‖xα2‖2 =
r∑

j=1

(
λj

λj + α2

)2

|βj|2 ,

a monotone decreasing function of α2. �

Problems of minimizing expressions like (20) in infinite–dimensional spaces and subject to linear
constraints arise often in control theory. The reader is referred to [1197], especially to Section 4.4
and pp. 353–354 where additional references are given.

Ex. 16. Constrained least–squares solutions. A vector x is said to be a constrained least–square
solution if x is a solution of the constrained minimization problem: Minimize ‖Ax − b‖ subject
to the given constraints. Let A1 ∈ Cm1×n, b1 ∈ Cm1 , A2 ∈ Cm2×n, b2 ∈ Cm2 . Characterize the
solutions of the problem:

Minimize ‖A1x− b1‖2 subject to A2x = b2 . (24)

Solution. The general solution of A2x = b2 is

x = A
(1)
2 b2 + (I − A(1)

2 A2)y , (25)

where A
(1)
2 ∈ A2{1} and y ranges over Cn. Substituting (25) in A1x = b1 gives the equation

A1(I − A(1)
2 A2)y = b1 − A1A

(1)
2 b2 . (26)

Therefore x is a solution of (24) if and only if x is given by (25) where y is a least–squares solution
of (26). �
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Ex.17. Show that a vector x ∈ Cn is a solution of (24) if and only if there is a vector y ∈ Cm2 such

that the vector

[
x
x

]
is a solution of[

A∗
1A1 A∗

2

A2 O

] [
x
x

]
=

[
A∗

1b1

b2

]
. (27)

Compare this with Ex. 1. Similarly, find a characterization analogous to that given in Ex. 12. See
also Björck and Golub [182].

Ex. 18. Let A ∈ Cm×n
r , b ∈ Cm, and let 0 < p <

√
r‖u‖ where u is given by (22). Show that the

problem

minimize ‖Ax− b‖ subject to ‖x‖ = p (28)

has the unique solution

x = (A∗A+ α2I)−1A∗b

where α is (uniquely) determined by

‖(A∗A+ α2I)−1A∗b‖ = p .

Hint. Use Ex. 15.
See also Forsythe and Golub [505, Section 7], and Forsythe [504].

2. Solutions of minimum norm

When the system (1) has a multiplicity of solutions for x, there is a unique solution of minimum
norm. This follows from Ex. 2.72, restated here as,

Lemma 1. Let A ∈ Cm×n. Then A is a one–to–one mapping of R(A∗) onto R(A). �

Corollary 2. Let A ∈ Cm×n, b ∈ R(A). Then there is a unique solution of

Ax = b (1)

given as the unique solution of (1) which lies in R(A∗).

Proof. By Lemma 1, Eq. (1) has a unique solution x0 in R(A∗). Now the general solution is
given as

x = x0 + y, y ∈ N(A) ,

and by Ex. 2.36

‖x‖2 = ‖x0‖2 + ‖y‖2

proving that ‖x‖ > ‖x0‖ unless x = x0. �

The following theorem relates minimum–norm solutions of Ax = b and {1, 4}–inverses of A,
characterizing each of these two concepts in terms of the other.

Theorem 2. Let A ∈ Cm×n, b ∈ Cm. If Ax = b has a solution for x, the unique solution for which
‖x‖ is smallest is given by

x = A(1,4)b ,

where A(1,4) ∈ A{1, 4}. Converesely, if X ∈ Cn×m is such that, whenever Ax = b has a solution,
x = Xb is the solution of minimum norm, then X ∈ A{1, 4}.
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Proof. If Ax = b is consistent, then for any A(1,4) ∈ A{1, 4}, x = A(1,4)b is a solution (by
Corollary 2.2), lies in R(A∗) (by Ex. 1.9) and thus, by Lemma 1, is the unique solution in R(A∗),
and thus the unique minimum–norm solution by Corollary 2.

Conversely, let X be such that, for all b ∈ R(A), x = Xb is the solution of Ax = b of minimum
norm. Setting b equal to each column of A, in turn, we conclude that

XA = A(1,4)A

and X ∈ A{1, 4} by Theorem 2.4. �

The unique minimum–norm least–squares solution of Ax = b, and the generalized inverse A† of
A, are related as follows.

Corollary 3. (Penrose [1178]). LetA ∈ Cm×n, b ∈ Cm. Then, among the least–squares solutions
of Ax = b, A†b is the one of minimum–norm. Conversely, if X ∈ Cn×m has the property that, for
all b, Xb is the minimum–norm least–squares solution of Ax = b, then X = A†.

Proof. By Corollary 1, the least–squares solutions of Ax = b coincide with the solutions of

Ax = AA(1,3)b . (6)

Thus the minimum–norm least–squares solution of Ax = b is the minimum–norm solution of (6).
But by Theorem 2, the latter is

x = A(1,4)AA(1,3)b

= A†b

by Theorem 1.4.
A matrix X having the properties stated in the last sentence of the theorem must satisfy Xb =

A†b for all b ∈ Cm, and therefore X = A†. �

The minimum–norm least–squares solution, x0 = A†b (also called the approximate solution;
e.g., Penrose [1178]) of Ax = b, can thus be characterized by the following two inequalities:

‖Ax0 − b‖ ≤ ‖Ax− b‖ for all x (29)

and

‖x0‖ < ‖x|| (30)

for any x 6= x0 which gives equality in (29).

Exercises, examples and supplementary notes.

Ex.19. Let A be given as in Ex. 0.46 and let

b =

−i1
1

 .

Show that the general least–squares solution of Ax = b is

x =
1

19


0
1
0
−4
0
0

+


1 0 0 0 0 0
0 0 −1

2
0 −1 + 2i 1

2
i

0 0 1 0 0 0
0 0 0 0 −2 −1− i
0 0 0 0 1 0
0 0 0 0 0 1




y1

y2

y3

y4

y5

y6


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where y1, y2, . . . , y6 are arbitrary, while the residual vector for the least–squares solution is

1

19

 2i
12
−2


Ex.20. In Ex. 19 show that the minimum–norm least–squares solution is

x =
1

874


0

26− 36i
13− 18i
−55− 9i
−12− 2i
−46 + 59i


Ex. 21. Let A ∈ Cm×n, b ∈ Cm, and a ∈ Cn. Show that if Ax = b has a solution for x, then the

unique solution for which ‖x− a‖ is smallest is given by

x = A(1,4)b + (I − A(1,4)A)a

= A(1,4)b + PN(A)a .

Ex.22. (den Broeder and Charnes [238], Ben–Israel [117]). Show that for any A ∈ Cm×n, as λ→ 0
through any neighborhood of 0 in C, the following limit exists and

lim
λ→0

(A∗A+ λI)−1A∗ = A† (31)

Solution. We must show that

lim
λ→0

(A∗A+ λI)−1A∗y = A†y (32)

for all y ∈ Cm. Since N(A∗) = N(A†), by Ex. 2.29, (32) holds trivially for y ∈ N(A∗). Therefore
it suffices to prove (32) for y ∈ N(A∗)⊥ = R(A). By Lemma 1, for any y ∈ R(A) there is a unique
x ∈ R(A∗) such that y = Ax. Proving (32) thus amounts to proving for all x ∈ R(A∗)

lim
λ→0

(A∗A+ λI)−1A∗Ax = A†Ax (33)

= x , since A†A = PR(A∗) .

Let {u1, . . . ,ur} be a basis for R(A∗) consisting of eigenvectors of A∗A, say

A∗Auj = λjuj (λj > 0, j ∈ 1, r) .

Writing x ∈ R(A∗) in terms of this basis

x =
r∑

j=1

ξjuj ,

we verify that for all λ 6= −λ1, −λ2, . . . ,−λr

(A∗A+ λI)−1A∗Ax =
r∑

j=1

λjξj
λj + λ

uj ,

which tends, as λ→ 0, to
r∑

j=1

ξjuj = x.

Alternative solution. Following the last solution up to (33), it suffices to show that

lim
λ→0

(A∗A+ λIn)−1A∗A = A†A = PR(A∗) .

Now let A∗A = FF ∗, F ∈ Cn×r
r be a full–rank factorization. Then

(A∗A+ λIn)−1A∗A = (FF ∗ + λIn)−1FF ∗
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for any λ for which the inverses exist. We now use the identity

(FF ∗ + λIn)−1FF ∗ = F (F ∗F + λIr)
−1F ∗

and note that F ∗F is nonsingular so that limλ→0(F
∗F + λIr)

−1 = (F ∗F )−1. Collecting these facts
we conclude that

lim
λ→0

(A∗A+ λIn)−1A∗A = F (F ∗F )−1F ∗

= FF †

= PR(A∗)

since the columns of F are a basis for R(A∗A) = R(A∗).
Still another proof is given in Ex. 4.41.

Ex.23. Use Exs. 15 and 22 to conclude that the solutions {xα2} of the minimization problems:

minimize {‖Ax− b‖2 + α2‖x‖2}
converge to A†b as α→ 0. Explain this result in view of Corollary 3.

Ex.24. For a given A ∈ Cm×n, b ∈ Cm and a positive real number p, solve the problem

minimize ‖Ax− b‖ subject to ‖x‖ ≤ p . (34)

Solution. If

‖A†b‖ ≤ p (35)

then x = A†b is a solution of (34), and is the unique solution if and only if (35) is an equality.
If (35) does not hold, then (34) has the unique solution given in Ex. 18.

(See also Balakrishnan [62, Theorem 2.3].)

Ex.25. Matrix spaces. For any A,B ∈ Cm×n define

R(A,B) = {Y = AXB ∈ Cm×n : X ∈ Cn×m} (36)

and

N(A,B) = {X ∈ Cn×m : AXB = O} (37)

which we shall call the range and null space of (A,B), respectively. Let Cm×n be endowed with the
inner product

〈X, Y 〉 = traceY ∗X =
m∑

i=1

n∑
j=1

xij yij , (38)

for X = [xij], Y = [yij] ∈ Cm×n. Then for every A,B ∈ Cm×n the sets R(A,B) and N(A∗, B∗) are
complementary orthogonal subspaces of Cm×n.

Solution. As in Ex. 2.2 we use the one–to–one correspondence

vn(i−1)+j = xij (i ∈ 1,m, j ∈ 1, n) (39)

between the matrices X = [xij] ∈ Cm×n and the vectors v = vec(X) = [vk] ∈ Cmn. The correspon-
dence (39) is a nonsingular linear transformation mapping Cm×n onto Cmn. Linear subspaces of
Cm×n and Cmn thus correspond under (39).

It follows from (39) that the inner product (38) is equal to the standard inner product of the
corresponding vectors vec(X) and vec(Y ). Thus 〈X,Y 〉 = 〈vec(X), vec(Y )〉 = vec(Y )∗vec(X).
Also, from (2.10) we deduce that under (39), R(A,B) and N(A∗, B∗) correspond to R(A⊗BT ) and
N(A∗⊗B∗T ), respectively. By (2.8), the latter is the same as N((A⊗BT )∗), which by (2.48) is the
orthogonal complement of R(A ⊗ BT ) in Cmn. Therefore, R(A,B) and N(A∗, B∗) are orthogonal
complements in Cm×n.
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Ex.26. Characterization of {1, 3}–, {1, 4}–, and }1, 2, 3, 4‖–inverses. Let the norm used in Cm×n be

‖X‖ =
√

traceX∗X ; (40)

see, e.g., (0.24), which is the Euclidean norm of the vector vec(X). Show that for every A ∈ Cm×n:
(a) X ∈ A{1, 3} if and only if X is a least–squares solution of

AX = Im , (41)

i.e., minimizing ‖AX − I‖ in the norm (40).
(b) X ∈ A{1, 4} if and only if X is a least–squares solution of

XA = In . (42)

(c) A† is the minimum–norm least–squares solution of both (41) and (42).

Solution. These results are based on the fact that the norm ‖X‖ defined by (40) is merely
the Euclidean norm of the corresponding vector vec(X).

(a) Writing the equation (41) as

(A⊗ I)vec(X) = vec(I) , (43)

it follows from Corollary 1 that the general least–squares solution of (43) is

vec(X) = (A⊗ I)(1,3)vec(I) + (I − (A⊗ I)(1,3)(A⊗ I))y , (44)

where y is an arbitrary element of Cmn. From (2.8) and (2.9) it follows that for every A(1,3) ∈
A{1, 3}, (A(1,3) ⊗ I) is a {1, 3}–inverse of (A ⊗ I). Therefore the general least–squares solution of
(41) is the matrix corresponding to (44), namely

X = A(1,3) + (I − A(1,3)A)Y , Y ∈ Cn×m ,

which is the general {1, 3}–inverse of A by Corollary 2.3.
(b) Taking the conjugate transpose of (42), we get

A∗X∗ = In .

The set of least–squares solutions of the last equation is by (a)

A∗{1, 3} ,

which coincides with A{1, 4}.
(c) This is left to the reader.

Ex.27. Let A,B,D be complex matrices having dimensions consistent with the matrix equation

AXB = D .

Show that the minimum–norm least–squares solution of the last equation is

X = A†DB† (Penrose [1178]) .

Ex.28. Let A ∈ Cm×n and let X be a {1}–inverse of A; i.e., let X satisfy

AXA = A . (1.1)

Then the following are equivalent:
(a) X = A†,
(b) X ∈ R(A∗, A∗),
(c) X is the minimum–norm solution of (1.1). (Ben-Israel [114]).



98 3. MINIMAL PROPERTIES OF GENERALIZED INVERSES

Proof. The general solution of (1.1) is by Theorem 2.1

X = A†AA† + Y − A†AY AA† , Y ∈ Cn×m

= A† + Y − A†AY AA† . (45)

Now it is easy to verify that

A† ∈ R(A∗, A∗) , Y − A†AY AA† ∈ N(A,A) ,

and using the norm (40) it follows from Ex. 25 that X of (45) satisfies

‖X‖2 = ‖A†‖2 + ‖Y − A†AY AA†‖2 ,
and the equivalence of (a), (b) and (c) is obvious. �

Ex.29. Restricted generalized inverses. Let the matrix A ∈ Cm×n and the subspace S ⊂ Cn be given.
Then for any b ∈ Cm, the point Xb ∈ S minimizes ‖Ax− b‖ in S if and only if X = PS(APS)(1,3)

is any S–restricted {1.3}–inverse of A.

Proof. Follows from Section 2.8 and Theorem 1. �

Ex.30. Let A, S be as in Ex. 29. Then for any b ∈ Cm for which the system

Ax = b , x ∈ S (2.95)

is consistent, Xb is the minimum norm solution of (2.95) if and only if X = PS(APS)(1,4) is any
S–restricted {1.4}–inverse of A.

Proof. Follows from Section 2.8 and Theorem 2. �

Ex.31. Let A, S be as above. Then for any b ∈ Cm, Xb is the minimum–norm least–squares solution
of (2.95) if and only if X = PS(APS)†, the S–restricted Moore–Penrose inverse of A (Minamide and
Nakamura [1054]).

3. Weighted generalized inverses

It may be desired to give different weights to the different squared residuals of the linear system
Ax = b. This is a more general problem than the one solved by the {1, 3}–inverse. A still further
generalization which, however, presents no greater mathematical difficulty, is the minimizing of a
given positive definite quadratic form in the residuals, or, in other words, the minimizing of

‖Ax− b‖2W = (Ax− b)∗W (Ax− b) , (46)

where W is a given positive definite matrix, see Ex. 0.4.
When A is not of full column rank, this problem does not have a unique solution for x, and we

may choose from the class of “generalized least–squares solutions” the one for which

‖x‖2U = x∗Ux (47)

is smallest, where U is a second positive definite matrix. If A ∈ Cm×n, W is of order m and U is of
order n.

Since every inner product in Cn can be represented as x∗Uy for some positive definite matrix
U (see Ex. 0.4), it follows that the problem of minimizing (46), and the problem of minimizing
(47) among all the minimizers of (46), differ from the problems treated in Sections 1 and 2 only in
the different choices of inner products and their associated norms in Cm and Cn. These seemingly
more general problems can be reduced by a simple transformation to the “unweighted” problems
considered in Sections 1 and 2. Every positive definite matrix H has a unique positive definite
square root : that is a positive definite K such that K2 = H (see, e.g., Ex. 32 and Ex. 6.26 below).
Let us denote this K by H1/2, and its inverse by H−1/2.
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We shall now introduce the transformations

Ã = W 1/2AU−1/2, x̃ = U1/2x , b̃ = W 1/2b , (48)

and it is easily verified that

‖Ax− b‖W = ‖Ãx̃− b̃‖ (49)

and

‖x‖u = ‖x̃‖ , (50)

expressing the norms ‖ ‖W and ‖ ‖U in terms of the Euclidean norms of the transformed vectors.
This observation leads to the following two theorems.

Theorem 3. Let A ∈ Cm×n, b ∈ Cm, and let W ∈ Cm×m be positive definite. Then ‖Ax − b‖W
is smallest when x = Xb, where X satisfies

AXA = A , (WAX)∗ = WAX . (51)

Conversely, if X ∈ Cn×m has the property that, for all b, ‖Ax − b‖W is smallest when x = Xb,
then X satisfies (51).

Proof. In view of (49), it follows from Theorem 1 that ‖Ax− b‖W is smallest when x̃ = Y b̃,
where Y satisfies

ÃY Ã = Ã , (ÃY )∗ = ÃY , (52)

and also if Y ∈ Cn×m has the property that, for all b̃, ‖Ãx̃− b̃‖ is smallest when x̃ = Y b̃, then Y
satisfies (52).

Now let

X = U−1/2YW 1/2 (53)

so that

Y = U1/2XW−1/2 . (54)

Then it is easily verified by means of (48) and (54) that

x̃ = Y b̃⇐⇒ x = Xb , (55)

ÃY Ã = Ã⇐⇒ AXA = A , (56)

(ÃY )∗ = ÃY ⇐⇒ (WAX)∗ = WAX .

�

See also Ex. 34.

Theorem 4. Let A ∈ Cm×n, b ∈ Cm, and let U ∈ Cn×n be positive definite. If Ax = b has a
solution for x, the unique solution for which ‖x‖U is smallest is given by

x = Xb ,

where X satisfies

AXA = A , (UXA)∗ = UXA . (57)

Conversely, if X ∈ Cn×m is such that, whenever Ax = b has a solution, x = Xb is the solution for
which ‖x‖U is smallest, then X satisfies (57).



100 3. MINIMAL PROPERTIES OF GENERALIZED INVERSES

Proof. In view of (48),

Ax = b ⇐⇒ Ãx̃ = b̃ .

Then it follows from (50) and Theorem 2 that, if Ax = b has a solution for x, the unique solution

for which ‖x‖U is smallest is given by x̃ = Y b̃, where Y satisfies

ÃY Ã = Ã , (Y Ã)∗ = Y Ã , (58)

and furthermore if Y ∈ Cn×m has the property that, whenever Ax = b has a solution, ‖x‖U is

smallest when x̃ = Y b̃, then Y satisfies (58).
As in the proof of Theorem 3, let X be given by (53), so that (54) holds. Then we have, in

addition tgo (55) and (56),

(Y Ã)∗ = Y Ã ⇐⇒ (UXA)∗ = UXA .

�

See also Ex. 36.
From Theorems 3 and 4 and Corollary 3, we can easily deduce:

Corollary 4. Let A ∈ Cm×n, b ∈ Cm, and let W ∈ Cm×m and U ∈ Cn×n be positive definite.
Then, there is a unique matrix

X = A
(1,2)
(W,U) ∈ A{1, 2}

satisfying

(WAX)∗ = WAX , (UXA)∗ = UXA . (59)

Moreover, ‖Ax−b‖W assumes its minimum value for x = Xb, and in the set of vectors x for which
this minimum value is assumed, x = Xb is the one for which ‖x‖U is smallest.

If Y ∈ Cn×m has the property that, for all b, x = Y b is the vector of Cm for which ‖x‖U is

smallest among those for which ‖Ax− b‖W assumes its minimum value, then Y = A
(1,2)
(W,U) . �

See also Exs, 37–44.

Exercises.

Ex.32. Square root. Let H be Hermitian positive definite with the spectral decomposition

H =
k∑

i=1

λiEi . (2.70)

Then

H1/2 =
k∑

i=1

λ
1/2
i Ei .

Ex.33. Cholesky factorization. Let H be Hermitian positive definite. Then it can be factorized as

H = R∗
HRH , (60)

where RH is an upper triangular matrix. (60) is called the Cholesky factorization of H; see, e.g.,
Wilkinson [1595].

Show that the results of Section 3 can be derived by using the Cholesky factorization

U = R∗
URU and W = R∗

WRW (61)

of U and W , respectively, instead of their square–root factorizations.

Hint: Instead of (48) use

Ã = RWAR
−1
U , x̃ = RUx , b̃ = RWb .
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Ex. 34. Let A, b and W be as in Theorem 3. Show that a vector x ∈ Cn minimizes ‖Ax − b‖W if
and only if x is a solution of

A∗WAx = A∗Wb ,

and compare with Ex. 1.

Ex. 35. Let A1 ∈ Cm1×n, b1 ∈ Cm1 , A2 ∈ Cm2×n, b2 ∈ R(A2), and let W ∈ Cm1×m1 be positive
definite. Consider the problem

minimize ‖A1x− b1‖W subject to A2x = b2 . (62)

Show that a vector x ∈ Cn is a minimizer of (62) if and only if there is a vector y ∈ Cm2 such that

the vector

[
x
y

]
is a solution of [

A∗
1WA1 A∗

2

A2 O

] [
x
y

]
=

[
A∗

1Wb1

b2

]
.

Compare with Ex. 17.

Ex.36. Let A ∈ Cm×n, b ∈ R(A), and let U ∈ Cn×n be positive definite. Show that the problem

minimize ‖x‖U subject to Ax = b (63)

has the unique minimizer

x = U−1A∗(AU−1A∗)(1)b

and the minimum value

b∗(AU−1A∗)(1)b

where (AU−1A∗)(1) is any {1}–inverse of AU−1A∗ (Rao [1241, p. 49]).

Outline of solution. (63) is equivalent to the problem

minimize ‖x̃‖ subject to Ãx̃ = b̃

where x̃ = U1/2b̃, Ã = AU−1/2, b̃ = b. The unique minimizer of the last problem is, by Theorem 2,

x̃ = Y b̃ , for any Y ∈ Ã{1, 4} .
Therefore the unique minimizer of (63) is

x = U−1/2Xb , for any X ∈ (AU−1/2){1, 4} .
Complete the proof by choosing

X = U−1/2A∗(AU−1A∗)(1)

which by Theorem 1.3 is a {1, 2, 4}–inverse of AU−1/2.

Ex.37. The weighted inverse A
(1,2)
(W,U). Chipman [327] first called attention to the unique {1, 2}–inverse

given by Corollary 4. However, instead of the second equation of (59) he used

(XAV )∗ = XAV .

Show that these two relations are equivalent. How are U and V related?

Ex.38. Use Theorems 3 and 4 to show that

A
(1,2)
(W,U) = U−1/2(W 1/2AU−1/2)†W 1/2 ,

or equivalently, using (61),

A
(1,2)
(W,U) = R−1

U (RWAR
−1
U )†RW .
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Ex.39. Use Exs. 34 and 36 to show that

A
(1,2)
(W,U) = U−1A∗WA(A∗WAU−1A∗WA)(1)A∗W .

Ex.40. For a given A and an arbitrary X ∈ A{1, 2}, do there exist positive definite matrices W and

U such that X = A
(1,2)
(W,U)? Show that this question reduces to the following simpler one. Given an

idempotent E, is there a positive definite V , such that V E is Hermitian? Show that such a V is
given by

V = E∗HE + (I − E∗)K(I − E) ,

where H and K are arbitrary positive definite matrices. (This slightly generalizes a result of Ward,
Boullion and Lewis [1536], who took H = K = I.)

Solution. Since H and K are positive definite, x∗V x = 0 only if both the equations

Ex = 0 , (I − E)x = 0 (64)

hold. But addition of the two equations (64) gives x = 0. Therefore V is positive definite. Moreover

V E = E∗HE

is clearly Hermitian,

Ex.41. As a particular illustration, let

E =

[
1 1
0 0

]
and show that V can be taken as any matrix of the form

V =

[
a a
a b

]
(65)

where b > a > 0. Show that (65) can be written in the form

V = aE∗E + c(I − E∗)(I − E) ,

where a and c are arbitrary positive scalars.

Ex.42. Use Ex. 40 to prove that if X is an arbitrary {1, 2}–inverse of A, there exist positive definite

W and U such that X = A
(1,2)
(W,U). (Ward, Boullion and Lewis [1536]).

Ex.43. Show that

A
(1,2)
(W,U) = A

(1,2)
T,S

(see Theorem 2.10(c)), where the subspaces T, S and the positive definite matrices W,U are related
by

T = U−1N(A)⊥ (66)

and

S = W−1R(A) (67)

or equivalently, by

U = P ∗
N(A),TU1PN(A),T + P ∗

T,N(A)U2PT,N(A) (68)

and

W = P ∗
R(A),SW1PR(A),S + P ∗

S,R(A)W2PS,R(A) (69)

where U1, U2, W1, and W2 are arbitrary positive definite matrices of appropriate dimensions.
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Solution. From (59), we have

XA = U−1A∗X∗U ,

and therefore

R(X) = R(XA) = U−1R(A∗) = U−1N(A)⊥

by Corollary 2.7 and (2.47). Also,

AX = W−1XAW ,

and therefore

N(X) = N(AX) = N(A∗W ) = W−1N(A∗) = W−1R(A)⊥

by Corollary 2.7 and (2.48). Finally, from Exs. 40 and 2.23 it follows that the general positive
definite matrix U mapping T onto N(A)⊥ is given by (68). Equation (69) is similarly proved.

Ex.44. Let A = FG be a full–rank factorization. Use Ex. 43 and Theorem 2.11(d) to show that

A
(1,2)
(W,U) = U−1G∗(F ∗WAU−1G∗)−1F ∗W .

Compare with Ex. 38.

4. Essentially strictly convex norms and the associated projectors and generalized
inverses∗

1In the previous sections various generalized inverses were characterized and studied in terms of
their minimization properties with respect to the class of ellipsoidal (or weighted Euclidean) norms

‖x‖U = (x∗Ux)1/2 , (47)

where U is positive definite.
Given any two ellipsoidal norms ‖ ‖W and ‖ ‖U on Cm and Cn, respectively, (defined by (47)

and two given positive definite matrices W ∈ Cm×m and U ∈ Cn×n), it was shown in Corollary 4

that every A ∈ Cm×n has a unique {1, 2}–inverse A
(1,2)
(W,U) with the following minimization property:

For any b ∈ Cm, the vector A
(1,2)
(W,U)b satisfies

‖AA(1,2)
(W,U)b− b‖W ≤ ‖Ax− b‖W , for all x ∈ Cn , (70)

and

‖A(1,2)
(W,U)b‖U < ‖x‖U (71)

for any A
(1,2)
(W,U)b 6= x ∈ Cn which gives equality in (70). In particular, for W = Im and U = In the

inverse mentioned above is the Moore–Penrose inverse

A
(1,2)
(Im,In) = A† for every A ∈ Cm×n .

In this section, which is based on Erdelsky [466], Newman and Odell [1139] and Holmes [743],
similar minimizations are attempted for norms in the more general class of essentially strictly
convex norms. The resulting projectors and generalized inverses are, in general, not even linear
transformations, but they still retain many useful properties that justify their study.

In this section we denote by α, β, φ, . . . various vector norms on finite–dimensional spaces; see,
e.g., Ex. 0.6.

1This section requires familiarity with the basic properties of convex functions and convex sets in finite–
dimensional spaces; see, e.g., Rockafellar [1295].
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Let φ be a norm on Cn and let L be a subspace of Cn. Then for any point x ∈ Cn there is a
point y ∈ L which is “closest” to x in the norm φ, i.e., a point y ∈ L satisfying

φ(y − x) = inf{φ(l− x) : l ∈ L} ; (72)

see Ex. 45 below. Generally, the closest point is not unique; see, e.g., Ex. 46. However, Lemma 1
below guarantees the uniqueness of closest points, for the special class of essentially strictly convex
norms.

From the definition of a vector norm (see § 0.1.5), it is obvious that every norm φ on Cn is a
convex function, i.e., for every x,y ∈ Cn and 0 ≤ λ ≤ 1,

φ(λx + (1− λ)y) ≤ λφ(x) + (1− λ)φ(y) .

A function φ : Cn → R is called strictly convex if for all x 6= y ∈ Cn and 0 < λ < 1,

φ(λx + (1− λ)y) < λφ(x) + (1− λ)φ(y) . (73)

If φ : Cn → R is a norm, then (73) is clearly violated for y = µx, µ ≥ 0. Thus a norm φ on Cn

is not strictly convex. Following Holmes [743], a norm φ on Cn is called essentially strictly convex
(abbreviated e.s.c) if φ satisfies (73) for all x 6= 0 and y 6∈ {µx : µ ≥ 0}. Equivalently, a norm φ
on Cn is e.s.c. if

x 6= y ∈ Cn, φ(x) = φ(y)
0 < λ < 1

}
=⇒ φ(λx + (1− λ)y) < λφ(x) + (1− λ)φ(y) . (74)

The following lemma is a special case of a result in Clarkson [347].

Lemma 2. Let φ be any e.s.c. norm on Cn. Then for any subspace L ⊂ Cn and any point x ∈ Cn,
there is a unique point y ∈ L closest to x, i.e.,

φ(y − x) = inf{φ(l− x) : l ∈ L} . (72)

Proof. If y1, y2 ∈ L satisfy (72) and y1 6= y2, then for any 0 < λ < 1

φ(λy1 + (1− λ)y2 − x) < φ(y1 − x) , by (74) ,

showing that the point λy1 + (1− λ)y2, which is in L, is closer to x than y1, a contradiction. �

Definition 1. Let φ be an e.s.c. norm on Cn and let L be a subspace of Cn. Then the φ–metric
projector on L, denoted by PL,φ is the mapping PL,φ : Cn → L assigning to each point in Cn its
(unique) closest point in L, i.e.

PL,φ(x) ∈ L

and

φ(PL,φ(x)− x) ≤ φ(l− x), for all x ∈ Cn , l ∈ L . (75)

If φ is a general norm, then the projector PL,φ defined as above is a point–to–set mapping, since
the closest point PL,φ(x) need not be unique for all x ∈ Cn and L ⊂ Cn. An excellent survey of
metric projectors in normed linear spaces, is given in Holmes [743, Section 32]; see also Exs. 65–73
below.

Some properties of PL,φ in the e.s.c. case are collected in the following theorem, a special case
of results by Aronszajn and Smith, and Hirschfeld; see also Singer [1365, p. 140, Theorem 6.1].

Theorem 5. Let φ be an e.s.c. norm on Cn. Then for any subspace L of Cn and every point
x ∈ Cn:

(a) PL,φ(x) = x if and only if x ∈ L,
(b) P 2

L,φ(x) = PL,φ(x),
(c) PL,φ(λx) = λPL,φ(x) for all λ ∈ C,
(d) PL,φ(x + y) = PL,φ(x) + y for all y ∈ L,
(e) PL,φ(x− PL,φ(x)) = 0,
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(f) |φ(x− PL,φ(x))− φ(y − PL,φ(y))| ≤ φ(x− y) for all y ∈ Cn,
(g) φ(x− PL,φ(x)) ≤ φ(x),
(h) φ(PL,φ(x)) ≤ 2φ(x),
(i) PL,φ is continuous on Cn.

Proof. (a) Follows from (72) and (75) since the infimum in (72) is zero if and only if x ∈ L.
(b) P 2

L,φ(x) = PL,φ(PL,φ(x))

= PL,φ(x) by (a), since PL,φ(x) ∈ L .

(c) For any z ∈ L and λ 6= 0

φ(λx− z) = φ
(
λx− λz

λ

)
= |λ|φ

(
x− z

λ

)
≥ |λ|φ (x− PL,φ(x)) by (75)

= φ(λx− λPL,φ(x)) ,

which proves (c) for λ 6= 0. For λ = 0, (c) is obvious.

(d) From (75) it follows that for all z ∈ L

φ(PL,φ(x) + y − (x + y)) ≤ φ(z + y − (x + y)) ,

proving (d).

(e) Follows from (d).

(f) For all x, y ∈ Cn

φ(x− PL,φ(x)) ≤ φ(x− PL,φ(y)) ≤ φ(x− y) + φ(y − PL,φ(y))

and thus

φ(x− PL,φ(x))− φ(y − PL,φ(y)) ≤ φ(x− y) ,

from which (f) follows by interchanging x and y.

(g) follows from (f) by taking y = 0.

(h) φ(PL,φ(x)) ≤ φ(PL,φ(x)− x) + φ(x)

≤ 2φ(x) by (g)

(i) Let {xk} ⊂ Cn be a sequence converging to x

lim
k→∞

xk = x .

Then the sequence {PL,φ(xk)} is bounded, by (h), and hence contains a convergent subsequence,
also denoted by {PL,φ(xk)}. Let

lim
k→∞

PL,φ(xk) = y .
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Then

φ(PL,φ(xk)− xk) ≤ φ(PL,φ(x)− xk)

for k = 1, 2, . . . and in the limit,

φ(y − x) ≤ φ(PL,φ(x)− x)

proving the y = PL,φ(x). �

The function PL,φ is homogeneous by Theorem 5(c), but in general it is not additive; i.e., it does
not necessarily satisfy

PL,φ(x + y) = PL,φ(x) + PL,φ(y) , for all x, y ∈ Cn .

Thus, in general, PL,φ is not a linear transformation. The following three corollaries deal with cases
where PL,φ is linear.

For any l ∈ L we define the inverse image of l under PL,φ, denoted by P−1
L,φ(l), as

P−1
L,φ(l) = {x ∈ Cn : PL,φ(x) = l} .

We recall that a linear manifold (also affine set, flat, linear variety) in Cn is a set of the form

x + L = {x + l : l ∈ L} ,
where x and L are a given point and subspace, respectively, in Cn.

The following result is a special case of Theorem 6.4 in Singer [1365].

Corollary 5. Let φ be an e.s.c. norm on Cn and let L be a subspace of Cn. Then the following
statements are equivalent.

(a) PL,φ is additive.
(b) P−1

L,φ(0) is a linear subspace.

(c) P−1
L,φ(l) is a linear manifold for any l ∈ L.

Proof. First we show that

P−1
L,φ(0) = {x− PL,φ(x) : x ∈ Cn} . (76)

From Theorem 5(f) it follows that

P−1
L,φ(0) ⊃ {x− PL,φ(x) : x ∈ Cn} .

The reverse containment follows by writing each x ∈ P−1
L,φ(0) as

x = x− PL,φ(x) .

The equivalence of (a) and (b) is obvious from (76). The equivalence of (b) and (c) follows from

P−1
L,φ(l) = l + P−1

L,φ(0), for all l ∈ L , (77)

which is a result of Theorem 5(d) and (e). �

Corollary 6. Let L be a hyperplane of Cn, i.e., an (n − 1)–dimensional subspace of Cn. Then
PL,φ is additive for any e.s.c. norm φ on Cn.

Proof. Let u be a vector not contained in L. Then any x ∈ Cn is uniquely represented as

x = λu + l, where λ ∈ C, l ∈ L ,

Therefore, by (76),

P−1
L,φ(0) = {λu + (l− PL,φ(λu + l)) : λ ∈ C, l ∈ L}

= {λu + PL,φ(−λu) : λ ∈ C} , by Theorem 5(d)

= {λ(u− PL,φ(u)) : λ ∈ C} , by Theorem 5(c)
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is a line, proving that PL,φ is additive, by Corollary 5. �

Corollary 7. (Erdelsky [466]). Let φ be an e.s.c. norm on Cn and let r be an integer, 1 ≤ r < n.
If PL,φ is additive for all r–dimensional subspaces of Cn, then it is additive for all subspaces of
higher dimension.

Proof. Let L be a subspace with dimL > r, and assume that PL,φ is not additive. Then by
Corollary 5, P−1

L,φ(0) is not a subspace, i.e., there exist x1, x2 ∈ P−1
L,φ(0) such that PL,φ(x1 + x2) =

y 6= 0. Let now M be an r–dimensional subspace of L which contains y. Then x1, x2 ∈ P−1
M,φ(0),

but PM,φ(x1 + x2) = y 6= 0, a contradiction of the hypothesis that PM,φ is additive. �

See also Exs. 68–71 for additional results on the linearity of the projectors PL,φ.
Following Boullion and Odell [209, pp. 43–44] we define generalized inverses associated with

pairs of e.s.c. norms as follows.

Definition 2. Let α and β be e.s.c. norms on Cm and Cn, respectively. For any A ∈ Cm×n we
define the generalized inverse associated with α and β, (also called the α–β generalized inverse, see,

e.g, Boullion and Odell [209, p. 44]), denoted by A
(−1)
α,β , as

A
(−1)
α,β = (I − PN(A),β)A(1)PR(A),α , (78)

where A(1) is any {1}–inverse of A.

RHS(78) means that the three transformations

PR(A),α : Cm → R(A) ,

A(1) : Cm → Cn ,

and

(I − PN(A),β) : Cn → P−1
N(a),β(0),

see, e.g., (76), are performed in this order. We show now that A
(−1)
α,β is a single–valued transformation

which does not depend on the particular {1}–inverse used in its definition. For any y ∈ Cm, the set

{A(1)PR(A),α(y) : A(1) ∈ A{1}}

obtained as A(1) ranges over A{1}, is, by Theorem 1.2, the set of solutions of the linear equation

Ax = PR(A),α(y) ,

a set which can be written as

A†PR(A),α(y) + {z : z ∈ N(A)} .
Now, for any z ∈ N(A), it follows from Theorem 5(a) and (d) that

(I − PN(A),β)(A†PR(A),α(y) + z) = (I − PN(A),β)A†PR(A),α(y)

proving that

A
(−1)
α,β (y) = (I − PN(A),β)A†PR(A),α(y), for all y ∈ Cn , (79)

independently of the {1}–inverse A(1) used in the definition (78).
If the norms α and β are Euclidean, then PR(A),α and PN(A),β reduce to the orthogonal projectors

PR(A) and PN(A), respectively, and A
(−1)
α,β is, by (79), just the Moore–Penrose inverse A†; see also

Exs. 66–69 and 73 below. Thus many properties of A† are specializations of the corresponding prop-

erties of A
(−1)
α,β , some of which are collected in the following theorem. In particular, the minimization

properties of A† are special cases of statements (i) and (j) below.
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Theorem 6. (Erdelsky [466], Newman and Odell [1139]). Let α and β be e.s.c. norms on Cm

and Cn respectively. Then, for any A ∈ Cm×n:

(a) A
(−1)
α,β : Cm → Cn is a homogeneous transformation.

(b) A
(−1)
α,β is additive (hence linear) if PR(A),α and PN(A),β are additive.

(c) N(A
(−1)
α,β ) = P−1

R(A),α(0),

(d) R(A
(−1)
α,β ) = P−1

N(A),β(0),

where, as in the case of linear transformations, we denote

N(A
(−1)
α,β ) = {y ∈ Cm : A

(−1)
α,β (y) = 0},

R(A
(−1)
α,β ) = {A(−1)

α,β (y) : y ∈ Cm}.

(e) AA
(−1)
α,β = PR(A),α.

(f) A
(−1)
α,β A = I − PN(A),β.

(g) AA
(−1)
α,β A = A.

(h) A
(−1)
α,β AAA

(−1)
α,β = A

(−1)
α,β .

(i) For any b ∈ Cm, an α–approximate solution of

Ax = b (1)

is defined as any vector x ∈ Cn minimizing α(Ax−b). Then x is an an α–approximate solution of
(1) if and only if

Ax = AA
(−1)
α,β (b). (80)

(j) For any b ∈ Cm, the equation

Ax = b (1)

has a unique α–approximate solution of minimal β–norm, given by A
(−1)
α,β (b); that is, for every

b ∈ Cm,

α(AA
(−1)
α,β (b)− b) ≤ α(Ax− b , for all x ∈ Cn , (81)

and

β(A
(−1)
α,β (b)) ≤ β(x) (82)

for any x 6= A
(−1)
α,β (b) with equality in (81).

Proof. (a) Follows from the definition and Theorem 5(c).
(b) Obvious from definition (78).
(c) From (78) it is obvious that

N(A
(−1)
α,β ) ⊃ P−1

R(A),α(0) .

Conversely, if y 6= P−1
R(A),α(0); i.e., if P−1

R(A),α(y) 6= 0, then A†P−1
R(A),α(y) 6= 0 since (A†)[R(A)] is

nonsingular (see Ex. 2.74), and consequently

(I − PN(A),β)A†P−1
R(A),α(y) 6= 0 , by Theorem 5(a).

(d) From (76) and the definition (78) it is obvious that

R(A
(−1)
α,β ) ⊂ P−1

N(A),β(0) .
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Conversely, let x ∈ P−1
N(A),β(0). Then, by (76),

x = (I − PN(A),β)z , for some z ∈ Cn

= (I − PN(A),β)PR(A∗)z , by Theorem 5(d)

= (I − PN(A),β)A†Az

= (I − PN(A),β)A†PR(A),α(Az)

= A
(−1)
α,β (Az) . (83)

(e) Obvious from (79).
(f) For any z ∈ Cn it follows from (83) that

(I − PN(A),β)z = A
(−1)
α,β (Az) .

(g) Obvious from (e) and Theorem 5(a).
(h) Obvious from (f) and (d).
(i) A vector x ∈ Cn is an α–approximate solution of (1) if and only if

α(Ax− b) ≤ α(y − b) , for all y ∈ R(A) ,

or equivalently

Ax = PR(A),α(b) , by (75)

= AA
(−1)
α,β (b) , by (e) .

(j) From (80) it follows that x is an α–approximate solution of (1) if and only if

x = A†AA
(−1)
α,β (b) + z , z ∈ N(A) (84)

= A†PR(A),α(b) + z , z ∈ N(A) , by (e) .

Now, by Lemma 2 and Definition 1, the β–norm of

A†PR(A),α(b) + z , z ∈ N(A) ,

is minimized uniquely at

z = −PN(A),βA
†PR(A),α(b) ,

which substituted in (84) gives

x = (I − PN(A),β)A†PR(A),α(b)

= A
(−1)
α,β (b) .

�

See Exs. 73–76 for additional results on the generalized inverse A
(−1)
α,β .

Exercises and examples.

Ex. 45. Closest points. Let φ be anorm on Cn and let L be a nonempty closed set in Cn. Then, for
any x ∈ Cn, the infimum

inf{φ(l− x : l ∈ L}

is attained at some point y ∈ L called φ–closest to x in L.
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Proof. Let z ∈ L. Then the set

K = L ∩ {l ∈ Cn : φ(l− x) ≤ φ(z− x)}

is closed (being the intersection of two closed sets) and bounded, hence compact. The continuous
function φ(l− x) attains its minimum at some l ∈ K, but by definition of K,

inf{φ(l− x : l ∈ K} = inf{φ(l− x : l ∈ L} .

�

Ex.46. Let φ be the `1 norm on R2,

φ(x) = φ

([
x1

x2

])
= |x1|+ |x2|

see, e.g., Ex. 0.8, and let L = {x ∈ R2 : x1 + x2 = 1}. Then the set of φ–closest points in L to

[
1
1

]
is

{[
α
−α

]
: −1 ≤ α ≤ 1

}
.

Ex.47. Let ‖ ‖ be the Euclidean norm on Cn, let S ⊂ Cn be a convex set and let x,y be two points
in Cn: x 6∈ S and y ∈ S. Then the following statements are equivalent:

(a) y is ‖ ‖–closest to x in S.
(b) s ∈ S =⇒ <〈y − x, s− y〉 ≥ 0.

Proof. (adapted from Goldstein [545, p. 99]).
(a) =⇒ (b) For any 0 ≤ λ ≤ 1 and s ∈ S,

y + λ(s− y) ∈ S .

Now

0 ≤ ‖x− y − λ(s− y)‖2 − ‖x− y‖2

= 2λ<〈y − x, s− y〉+ λ2‖s− x‖2

< 0 if <〈y − x, s− y〉 < 0 and 0 < λ < −2<〈y − x, s− y〉
‖s− y‖2

,

a contradiction to (a).
(b) =⇒ (a) For any s ∈ S,

‖x− s‖2 − ‖x− y‖2 = ‖s‖2 − 2<〈s,x〉+ 2<〈y,x〉 − ‖y‖2

= ‖s− y‖2 + 2<〈y − x, s− y〉
≥ 0 if (b) .

�

Ex. 48. A hyperplane separation theorem. Let S be a nonempty closed convex set in Cn, x a point
not in S. Then there is a real hyperplane

{z ∈ Cn : <〈u, z〉 = α} for some 0 6= u ∈ Cn , α ∈ R

which separates S and x, in the sense that

s ∈ S =⇒ <〈u, s〉 ≥ α ,
and

<〈u,x〉 < α .
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Proof. Let xS be the ‖ ‖–closest point to x in S, where ‖ ‖ is the Euclidean norm, The point
xS is unique, by the same proof as in Lemma 2, since ‖ ‖ is e.s.c. Then, for any s ∈ S,

<〈xS − x, s〉 ≥ <〈xS − x,xS〉 , by Ex. 47 ,

> <〈xS − x,x〉 ,

since

<〈xS − x,xS − x〉 = ‖xS − x‖2 > 0 ,

The proof is completed by choosing

u = xS − x , α = <〈xS − x,xS〉 .

�

Ex. 49. Gauge functions and their duals. A function φ : Cn → R is called a gauge function (also a
Minkowski functional) if

(G1) φ is continuous, and for all x,y ∈ Cn,
(G2) φ(x) ≥ 0 and φ(x) = 0 only if x = 0,
(G3) φ(αx) = αφ(x) for all α ≥ 0, and
(G4) φ(x + y) ≤ φ(x) + φ(y).

A gauge function φ : Cn → R is called symmetric if for all x = (x1, x2, . . . , xn)T ∈ Cn,
(G5) φ(x) = φ(x1, x2, . . . , xn) = φ(xπ(1), xπ(2), . . . , xπ(n))

for every permutation {π(1), π(2), . . . , π(n)} of {1, 2, . . . , n}, and
(G6) φ(x) = φ(x1, x2, . . . , xn) = φ(λ1x1, λ2x2, . . . , λnxn)

for every scalar sequence {λ1, λ2, . . . , λn} satisfying{
|λi| = 1 if φ : Cn → R ,
λi = ±1 if φ : Rn → R ,

i ∈ 1, n .

Let φ : Cn → R satisfy (G1)–(G3). The dual function2 of φ is the function φD : Cn → R defined by

φD(y) = sup
x 6=0

<〈y,x〉
φ(x)

. (85)

Then:
(a) The supremum in (85) is attained, and

φD(y) = max
x∈Si

<〈y,x〉
φ(x)

, i = 1 or φ , (86)

where

S1 = {x ∈ Cn : ‖x‖1 =
n∑

i=1

|xi| = 1} (87)

and

Sφ = {x ∈ Cn : φ(x) = 1} . (88)

(b) φD is a gauge function.
(c) φD satisfies (G5) [(G6)] if φ does.
(d) If φ is a gauge function (i.e., if φ also satisfies (G4)), then φ is the conjugate of φD (Bonnesen
and Fenchel [192], von Neumann [1506]).

2Originally, φD was called the conjugate of φ by Bonnesen and Fenchel [192] and von Neumann [1506]. However,
in the modern convexity literature, the word conjugate function has a different meaning, see, e.g., Rockafellar [1295].
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Proof. (a). From (G3) it follows that the constraint x 6= 0 in (85) can be replaced by x ∈ S1,
or alternatively, by x ∈ Sφ. The supremum is attained since S1 is compact.

(b),(c). The continuity of φD follows from (G1), (86) and the compactness of S1. It is easy to
show that φ shares with φD each of the properties (G2), (G3), (G5), and (G6), while (G4) holds
for φD, by definition (85), without requiring that it hold for φ.

(d). From (85) it follows that

<〈y,x〉 ≤ φ(x)φD(y) , for all x,y ∈ Cn , (89)

and hence

φ(x) ≥ sup
y 6=0

<〈y,x〉
φD(y)

. (90)

To show equality in (90) we note that the set

B = {z : φ(z) ≤ 1}
is a closed convex set in Cn, an easy consequence of the definition of a gauge function. From the
hyperplane separation theorem (see, e.g., Ex. 48 above) we conclude:

If a point x is contained in every closed half–space {z : <〈u, z〉 ≤ 1}
which contains B, then x ∈ B, i.e., φ(x) ≤ 1 . (91)

From (86) and (88) it follows that

B ⊂ {z : <〈y, z〉 ≤ 1}

is equivalent to
φD(y) ≤ 1 .

Statement (91) is thus equivalent to

{φD(y) ≤ 1 =⇒ <〈y,x〉 ≤ 1} =⇒ φ(x) ≤ 1

which proves equality in (90). �

Ex.50. Convex bodies and gauge functions. A convex body in Cn is a closed bounded convex set with
nonempty interior.

Let B ⊂ Cn be a convex body and let 0 ∈ intB where intB denotes the interior of B. The
gauge function (or Minkowki functional) of B is the function φB : Cn → R defined by

φB(x) = inf{λ > 0 : x ∈ λB} . (92)

Then:
(a) φB is a gauge function, i.e., it satisfies (G1)–(G4) of Ex. 49.
(b) B = {x ∈ Cn : φB(x) ≤ 1}.
(c) intB = {x ∈ Cn : φB(x) < 1}.

Conversely, if φ : Cn → R is any gauge function, then φ is the gauge function φB of a convex
body B defined by

B = {x ∈ Cn : φB(x) ≤ 1} , (93)

which has 0 as an interior point.
Thus (92) and (93) establish a one–to–one correspondence between all gauge functions φ : Cn →

R and all convex bodies B ⊂ Cn with 0 ∈ intB.

Ex.51. A set B ∈ Cn is called equilibrated if

x ∈ B, |λ| ≤ 1 =⇒ λx ∈ B .

Clearly, 0 is an interior point of any equilibrated convex body.
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Let B be a convex body, 0 ∈ intB. Then B is equilibrated if and only if its gauge function φB

satisfies

φB(λx) = |λ|φB(x) for all λ ∈ C, x ∈ Cn . (94)

Ex. 52. Vector norms. From the definition of a vector norm (§ 0.1.5) and a gauge function (Ex. 49)
it follows that a function φ : Cn → R is a norm if and only if φ is a gauge function satisfying (94).

Thus (92) and (93) establish a one–to–one correspondence between all norms φ : Cn → R and
all equilibrated convex bodies B ∈ Cn (Householder [753, Chapter 2]).

Ex. 53. If a norm φ : Cn → R is unitarily invariant (i.e., if φ(Ux) = φ(x) for all x ∈ Cn and any
unitary matrix U ∈ Cn×n) then φ is a symmetric gauge function (see Ex. 49). Is the converse true?

Ex.54. Dual norms. The dual (also polar) of a nonempty set B ⊂ Cn is the set BD defined by

BD = {y ∈ Cn : x ∈ B =⇒ <〈y,x〉 ≤ 1} . (95)

Let B ⊂ Cn be an equilibrated convex body. Then
(a) BD is an equilibrated convex body.
(b) (BD)D = B, i.e., B is the dual of its dual.
(c) Let φB be the norm corresponding to B via (92). Then the dual of φB, computed by (85),

φB
D(y) = sup

x6=0

<〈y,x〉
φB(x)

, (96)

is the norm corresponding to BD. The norm φB
D, defined by (96), is called the dual of φB.

(d)
(
φB

D

)
D

= φB, i.e., φB is the dual of its dual. Such pairs {φB, φB
D} are called dual norms

(Householder, [753, Chapter 2]).

Ex.55. `p–norms. If φ is an `p–norm, p ≥ 1, (see Exs. 0.7–8), then its dual is an `q–norm where q is
determined by

1

p
+

1

q
= 1 .

In particular, the `1 and `∞ norms are dual, while the Euclidean norm (the `2–norm) is self–dual.

Ex.56. The generalized Cauchy–Schwartz inequality. Let {φ, φD} be dual norms on Cn. Then

<〈y,x〉 ≤ φ(x)φD(y) , for all x,y ∈ Cn , (89)

and for any x 6= 0 [y 6= 0] there exists a y 6= 0 [x 6= 0] giving equality in (89). Such pairs {x,y} are
called dual vectors (with respect to the norm φ).

If φ is the Euclidean norm, then (89) reduces to the classical Cauchy–Schwartz inequality (0.4),
(Householder [753]).

Ex. 57. A Tchebycheff solution of Ax = b, A ∈ C(n+1)×nn. A Tchebycheff approximate solution of
the system

Ax = b (1)

is, by the definition in Theorem 6(i), a vector x minimizing the Tchebycheff norm

‖r‖∞ = max
i=1,... ,m

{|ri|}

of the residual vector

r = b− Ax . (2)

Let A ∈ C(n+1)×n
n and b ∈ Cn+1 be such that (1) is inconsistent. Then (1) has a unique Tchebycheff

approximate solution given by

x = A†(b + r) , (97)
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where the residual r = [ri] is

ri =

n+1∑
j=1

|(PN(A∗)b)j|2

n+1∑
j=1

|(PN(A∗)b)j|

(PN(A∗)b)i

|(PN(A∗)b)i|
, i ∈ 1, n+ 1 . (98)

(The real case appeared in Cheney [324, p. 41] and Meicler [1015].)

Proof. From

r(x)− b = −Ax ∈ R(A)

it follows that any residual r satisfies

PN(A∗)r = PN(A∗)b

or equivalently

〈PN(A∗)b, r〉 = 〈b, PN(A∗)b〉 , (99)

since dimN(A∗) = 1 and b 6∈ R(A). (Equation (99) represents the hyperplane of residuals; see,
e.g., Cheney [324, Lemma, p. 40]). A routine computation now shows, that among all vectors r
satisfying (99) there is a unique vector of minimum Tchebycheff norm given by (98), from which
(97) follows since N(A) = {0}. �

Ex. 58. Let A ∈ C(n+1)×n
n and b ∈ Cn+1 be such that (1) is inconsistent. Then, for any norm φ on

Cn, a φ–approximate solution of (1) is given by

x = A†(b + r) ,

where the residual r is a dual vector of PN(A∗)b with respect to the norm φ, and the error of
approximation is

φ(r) =
〈b, PN(A∗)b〉
φD(PN(A∗)b)

.

Proof. Follows from (99) and Ex. 56. �

Ex. 59. Let {φ, φD} be dual norms with unit balls B = {x : φ(x) ≤ 1} and BD = {y : φD(y) ≤ 1},
respectively, and let {x0,y0} be dual vectors of norm one, i.e., φ(x0) = 1, φD(y) = 1 and

<〈x0,y0〉 = φ(x0)φD(y0) .

Then
(a) The hyperplane

H = {x : <〈y0,x〉 = φ(x0)φD(y0)}

supports B at x0, that is, x0 ∈ H and B lies on one side of H, i.e.,

x ∈ B =⇒ <〈y0,x〉 ≤ <〈y0,x0〉 = φ(x0)φD(y0) .

(b) The hyperplane

{y : <〈x0,y〉 = φ(x0)φD(y0)}

supports BD at y0.

Proof. Follows from (89). �
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Ex. 60. A closed convex set B is called rotund if its boundary contains no line segments, or equiva-
lently, if each one of its boundary points is an extreme point.

A closed convex set is called smooth if it has, at each boundary point, a unique supporting
hyperplane.

Show that an equilibrated convex body B is rotund if and only if its dual set BD is smooth.

Proof. If. if B is not rotund then its boundary contains two points x0 6= x1 and the line
segment {λx1 + (1− λ)x0 : 0 ≤ λ ≤ 1} joining them; that is

φ(λx1 + (1− λ)x0) = 1, 0 ≤ λ ≤ 1 ,

where φ is the gauge function of B.
For any 0 < λ < 1 let yλ be a dual vector of xλ = λx1 + (1− λ)x0 with φD(yλ) = 1. Then

<〈xλ,yλ〉 = 1

and, by (89)

<〈x0,yλ〉 = <〈x1,yλ〉 = 1 ,

showing that yλ is a dual vector of both x0 and x1, and by Ex. 59(b), both hyperplanes

{y : <〈xλ,y〉 = 1}, λ = 0, 1

support BD at yλ.
Only if. Follows by reversing the above steps. �

For additional results and references on rotundity see the survey of Cudia [368].

Ex.61. Let φ be a norm on Cn and let B be its unit ball,

B = {x : φ(x) ≤ 1} .

Then
(a) φ is e.s.c. if and only if B is rotund.
(b) φ is Gateaux differentiable; that is the limit

φ ′(x;y) = lim
t→0

φ(x + ty)− φ(x)

t

exists for all x,y ∈ Cn, if and only if B is smooth.

Ex.62. Give an example of dual norms {φ, φD} such that φ is e.s.c. but φD is not.

Solution. Let

B =

{[
x1

x2

]
∈ R2 : x1 ≥

1

2
(x2 + 1)2 − 1, x2 ≥

1

2
(x1 + 1)2 − 1

}
.

Then B is an equilibrated convex body. B is rotund but not smooth (the points

[
1
1

]
and

[
−1
−1

]
are “corners” of B), so, by Ex. 58, the dual set BD is not rotund. Hence, by Ex. 61(a), the gauge
function φB is an e.s.c. norm, but its dual φB

D is not.

Ex. 63. Norms of homogeneous transformations (Bauer [98], Householder [753]). Let α and β be
norms on Cn and Cm, respectively. Let A : Cn → Cm be a continuous transformation that is
homogeneous; that is

A(λx) = λA(x) , for all λ ∈ C, x ∈ Cn .
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The norm (also least upper bound) of A corresponding to {α, β}, denoted by ‖A‖α,β (also by
lubα,β(A)) is defined as

‖A‖α,β = sup
x 6=0

β(Ax)

α(x)

= max
α(x)=1

β(Ax) , (100)

since A is continuous and homogeneous. Then for any A,A1, A2 as above:
(a) ‖A‖α,β ≥ 0 with equality if and only if A is the zero transformation.
(b) ‖λA‖α,β = |λ| ‖A‖α,β for all λ ∈ C.
(c) ‖A1 + A2‖α,β ≤ ‖A1‖α,β + ‖A2‖α,β.
(d) If Bα, Bβ are the unit balls of α, β, respectively, then

‖A‖α,β = inf{λ > 0 : ABα ⊂ λBβ} .
(e) If A1 : Cn → Cm and A2 : Cm → Cp are continuous homogeneous transformations, and if

α, β, and γ are norms on Cn,Cm, and Cp, respectively, then

‖A2A1‖α,γ ≤ ‖A1‖α,β ‖A2‖β,γ .

(f) If A : Cn → Cm is a linear transformation, and if α = β, i.e., the same norm is used in Cn

and Cm, then definition (100) reduces to that given in Ex. 0.28.

Ex.64. Let α and β be norms on Cn and Cm, respectively. Then for any A ∈ Cm×n

‖A‖α,β = ‖A∗‖βD,αD
. (101)

Proof. From (89) and (100) it follows that for all x ∈ Cn, y ∈ Cm

<〈Ax,y〉 ≤ β(Ax) βD(y) ≤ ‖A‖α,β α(x)βD(y) ,

with equality for at least one pair x 6= 0, y 6= 0. The dual inequalities

<〈x, A∗y〉 ≤ α(x)αD(A∗y) ≤ ‖A∗‖βD,αD
βD(y)α(x)

then show that

‖A‖α,β ≤ ‖A∗‖βD,αD
,

from which (101) follows by reversing the roles of A and A∗ and by using Ex. 54(d). �

Ex.65. Projective bounds (Erdelsky [466]). Let α be an e.s.c. norm on Cn. The projective bound of
α, denoted by Q(α), is defined as

Q(α) = sup
L
‖PL,α‖α,α , (102)

where the supremum is taken over all subspaces L with domension 1 ≤ dimL ≤ n − 1. (The
α–metric projector PL,α is continuous and homogeneous, by Theorem 5(c) and (i), allowing the use
of (100) to define ‖PL,α‖α,α). Then

(a) The supremum in (102) is finite and is attained for a k–dimensional subspace, for each
k = 1, 2, . . . , n− 1.

(b) The projective bound satisfies

1 ≤ Q(α) < 2 (103)

and the upper limit is approached arbitrarily closely by e.s.c. norms.

Proof. (a) It can be shown that the n− 1 sets of real numbers

Sk = {α(PL,α(x)) : α(x) = 1 , L is k–dimensional} , k = 1, 2, . . . , n− 1,

are identical, bounded, and contain the supremum Q(α).
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(b) From Theorem 5(a) and (h) it follows that

1 ≤ Q(α) ≤ 2 .

Let x be such that ‖PL,α‖α,α = α(PL,α(x)) and α(x) = 1. Then PL,α(x) 6= 0 and consequently

1 = α(x) = α(0− x) > α(PL,α(x)− x)

and

‖PL,α‖α,α = α(PL,α(x)) ≤ α(PL,α(x)− x) + α(x) < 2 ,

proving (102). Let {Bk} be a sequence of rotund equilibrated convex bodies in R2 satisfying

Bk+1 ⊂ Bk , k = 1, 2, . . .

and “converging” to

B =

{[
x1

x2

]
∈ R2 : |x1| ≤ 1, |x2| ≤ 1

}
.

Then the corresponding norms {φBk} are e.s.c., by Ex. 61(a), and “approximate” φB, which is the
`∞–norm on R2,

φB

([
x1

x2

])
= max{|x1|, |x2|} .

Finally, by (92)

φBk ≤ φBk+1 , k = 1, 2, . . .

and

sup
k
Q(φBk) = 2 .

�

Ex.66. Projective norms (Erdelsky [466]). An e.s.c. norm α on Cn for which the projective bound

Q(α) = 1

is called a projective norm. All ellipsoidal norms

‖x‖U = (x∗Ux)1/2 , U positive definite (47)

are projective.
Conversely, for spaces of dimension ≥ 3, all projective norms are ellipsoidal, both in the real

case (Kakutani [799]) and in the complex case (Bohnenblust [191]). An example of a nonellipsoidal
projective norm on R2 is

α

([
x1

x2

])
=

{
(|x1|p + |x2|p)1/p if x1x2 ≥ 0
(|x1|q + |x2|q)1/q if x1x2 < 0

where (1/p) + (1/q) = 1 , 1 < p 6= 2.

Ex.67. (Erdelsky [466]). If α is a projective norm, L is a subspace for which the α–metric projector
PL,α is linear, and N denotes

N = P−1
L,α(0) , (104)

then

L = P−1
N,α(0) . (105)
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Proof. L ⊂ P−1
N,α(0). If x ∈ L and y ∈ N then

P−1
L,α(x + y) = x ,

by Theorem 5(a) and consequently,

α(x) ≤ ‖PL,α‖α,α α(x + y)

≤ Q(α)α(x + y)

= α(x + y)

for all y ∈ N , proving that PN,α(x) = 0.
P−1

N,α(0) ⊂ L. If x ∈ P−1
N,α(0), then, by (76), it can be written as

x = x1 + x2 , x1 ∈ L , x2 ∈ N .

Therefore,

0 = PN,α(x) = PN,α(x1) + x2 , by Theorem 5(d)

= x2 , since L ⊂ P−1
N,α(0) ,

proving that

x = x1 ∈ L .
�

Projective norms and the linearity of metric projectors.

The following four exercises probe the relations between the linearity of the α–metric projector PL,α

and the projectivity of the norm α. Exercise 68 shows that

α projective =⇒ PL,α linear for all L ,

and a partial converse is proved in Ex. 70.

Ex. 68. (Erdelsky [466]). If α is a projective norm on Cn, then PL,α is linear for all subspaces L of
Cn.

Proof. By Corollary 7 it suffices to prove linearity of PL,α for all one–dimensional subspaces
L.

Let dimL = 1, l ∈ L, α(l) = 1, and let l+N be a supporting hyperplane of Bα = {x : α(x) ≤ 1}
at l. Since

α(l) ≤ α(x) , for all x ∈ l +N ,

it follows from Definition 1 that

PN,α(l) = 0

and hence

L ⊂ P−1
N,α(0) .

Now PN,α is linear by Corollary 6, since dimN = n − 1, which also shows that P−1
N,α(0) is a 1–

dimensional subspace, by (76), and hence

L = P−1
N,α(0) .

From Ex. 67 it follows then that

N = P−1
L,α(0) ,

and the linearity of PL,α is established by Corollary 5(b). �
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Ex. 69. (Erdelsky [466]). If α is an e.s.c. norm on Cn, L is a subspace for which PL,α is linear, and
N denotes

N = P−1
L,α(0) , (104)

then

L = P−1
N,α(0) (105)

if, and only if,

PL,α + PN,α = 1 .

Proof. Follows from (76). �

Ex. 70. (Erdelsky [466]). Let α be an e.s.c. norm on Cn and let 1 ≤ k ≤ n − 1 be an integer such
that, for every k–dimensional subspace L of Cn:

PL,α is linear

and

L = P−1
N,α(0) , (105)

where N is given by (104). Then α is projective.

Proof. Let α be nonprojective; i.e., let Q(α) > 1. Then there is a k–dimensional subspace L
and two points x,y in Cn such that

y = PL,α(x) (106)

and

α(y) = ‖PL,α‖α,α α(x) = Q(α)α(x) > α(x) . (107)

Let N = P−1
L,α(0). Then

0 6= y − x ∈ N , by (107),(106) and (76) (108)

and

α(x) = α(y − (y − x)) < α(y) . (109)

Now

y = PL,α(y) + PN,α(y) , by (105) and Ex. 69

= y + PN,α(y) , by (106) and Theorem 5(a) , (110)

proving that

PN,α(y) = 0 , (111)

which, by (108) and (75), contradicts (109). �

Ex.71. (Newman and Odell [1139]). Let φp be the `p–norm, 1 < p <∞, on Cn. The PL,φp is linear
for every subspace L if and only if p = 2.

Ex.72. (Erdelsky [466]). Essentially strictly convex norms. Let α be an e.s.c. norm on Cn, 0 6= x ∈
Cn and L a subspace of Cn. Then

x ∈ P−1
L,α(0)

if, and only if, there is a dual y of x with respect to α (i.e., a vector y 6= 0 satisfying 〈y,x〉 =
α(x)αD(y)), such that y ∈ L⊥.
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Ex. 73. (Erdelsky [466]). If α and αD are both e.s.c. norms on Cn, L is a subspace of Cn for which
PL,α is linear, and N = P−1

L,α(0), then

(a) L⊥ = P−1
N⊥,αD

(0) ,

(b) PN⊥,αD
= (PL,α)∗.

Proof. (a) Since both α and αD are e.s.c., it follows from Exs. 61(a), 60, and 59 that every
0 6= x has a dual 0 6= y with respect to α, and x is a dual of y. Now

y ∈ P−1
N⊥,αD

(0)⇐⇒ x ∈ N⊥⊥ = N ,

by Ex. 72, which also show that

x ∈ N ⇐⇒ y ∈ L⊥ ,

proving (a).
(b) By (a) and Corollary 5(b), PN⊥,αD

is linear. Let x and y be arbitrary vectors, written as

x = x1 + x2 , x1 ∈ L , x2 ∈ N , by (76)

and

y = y1 + y2 , y1 ∈ N⊥ , y2 ∈ L⊥ , by (a) and (76) .

Then

〈PL,α(x),y〉 = 〈x1,y1〉 = 〈x, PN⊥,αD
(y)〉 .

�

Ex.74. (Erdelsky [466]). Dual norms. Let α and αD be dual norms on Cn. Then:
(a) If α and αD are both e.s.c., then Q(α) = Q(αD).
(b) If α is projective, then αD is e.s.c.
(c) If α is projective, then so is αD.

α–β Generalized Inverses

Ex. 75. (Erdelsky [466]). Let α and β be Let α and β be e.s.c. norms on Cm and Cn, respectively,
and let A ∈ Cm×n.

If B ∈ Cn×m satisfies

AB = PR(A),α , (112)

BA = I − PN(A),β , (113)

rankB = rankA , (114)
then

B = A
(−1)
α,β .

Thus, if the α–β generalized inverse of A is linear, it can be defined by (112)–(114).

Ex.76. (Erdelsky [466]). Let α and β be e.s.c. norms on Cm and Cn, respectively. Then

(A
(−1)
α,β )

(−1)
β,α = A , for all A ∈ Cm×n (115)

if and only if α and β are projective norms.

Proof. If α and β are projective, then A
(−1)
α,β is linear for any A, by Theorem 6(b) and Ex. 68.

Let R̂ = R(A
(−1)
α,β ) and N̂ = N(A

(−1)
α,β ). Then by Exs. 67, 68, 72 and Theorem 6(c),(d),(e),(g), and
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(h),

A
(−1)
α,β A = I − PN(A),β = P bR,β ,

AA
(−1)
α,β = PR(A),α = I − P bN,α ,

rankA
(−1)
α,β = rankA ,

and (115) follows from Ex. 75.
Only if. If (115) holds for all A ∈ Cm×n then

I − PN(A),β = A
(−1)
α,β A = A

(−1)
α,β

(
A

(−1)
α,β

)(−1)

β,α
= P bR,β ,

PR(A),α = AA
(−1)
α,β =

(
A

(−1)
α,β

)(−1)

β,α
A

(−1)
α,β = I − P bN,α ,

and α and β are projective by Ex. 70. �

Ex.77. (Erdelsky [466]). If α and β are e.s.c. norms on Cm and Cn, respectively, then

(A
(−1)
α,β )∗ = (A∗)

(−1)
βD,αD

, for all A ∈ Cm×n . (116)

Proof. From Theorem 6(d) and (f) and Exs. 67, 68, and 69

AA
(−1)
α,β = PR(A),α = I − PN,α , N = P−1

R(A),α(0) ,

A
(−1)
α,β A = I − PN(A),β = PM,β , M = P−1

N(A),β(0) ,

and

R(A) = P−1
N,α(0) ,

N(A) = P−1
M,β(0) .

Since αD and βD are e.s..c. norms, by Ex. 74(b), it follows from Ex. 73(b) that

AA
(−1)
α,β = I −

(
PR(A)⊥,αD

)∗
= I −

(
PN(A∗),αD

)∗
,

A
(−1)
α,β A =

(
PN(A)⊥,βD

)∗
=
(
PR(A∗),βD

)∗
,

and hence

(A
(−1)
α,β )∗A∗ = I − PN(A∗),αD

,

A∗ (A
(−1)
α,β )∗ = PR(A∗),βD

,

from which (116) follows by using Ex. 75. �

Ex. 78. (Erdelsky [466]). If α and β are e.s.c. norms on Cm and Cn, respectively, then for any
O 6= A ∈ Cm×n

1

‖A(−1)
α,β ‖β,α

≤ inf {‖X‖α,β : X ∈ Cm×n , rank (A+X) < rankA}

≤ q

‖A(−1)
α,β ‖β,α

, (117)

where

q = 1 if rankA = m ,

and

q = Q(α) otherwise .
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In particular, if α is projective,

1

‖A(−1)
α,β ‖β,α

= inf {‖X‖α,β : X ∈ Cm×n , rank (A+X) < rankA} . (118)

A special case of (118) is given in Ex. 6.15 below.

5. An extremal property of the Bott–Duffin inverse with application to electrical
networks

An important extremal property of the Bott–Duffin inverse, studied in Sections 2.9 and 2.12, is
stated in the following theorem.

Theorem 7. (Bott and Duffin [202]). Let A ∈ Cn×n be Hermitian, and let L be a subspace of Cn

such that A
(−1)
(L) exists3. Then for any two vectors v,w ∈ Cn, the quadratic function

q(x) =
1

2
(x− v)∗A(x− v)−w∗x (119)

has a unique stationary value in L, when

x = A
(−1)
(L) (Av + w) . (120)

Conversely, if the Hermitian matrix A and the subspace L are such that for any two vectors v,w ∈
Cn, the quadratic function (119) has a stationary value in L, then A

(−1)
(L) exists and the stationary

point is unique for any v, w and given by (120).

Proof. A stationary point of q in L is a point x ∈ L at which the gradient

∇q(x) =

[
∂

∂xj

q(x)

]
(j ∈ 1, n)

is orthogonal to L, i.e., ∇q(x) ∈ L⊥. The value of q at a stationary point is called a stationary
value of q.

Differentiating (119) we see that the sought stationary point x ∈ L satisfies

∇q(x) = A(x− v)−w ∈ L⊥ ,
and by taking y = −∇q(x) we conclude that x is a stationary point of q in L if and only if x is a
solution of

Ax + y = Av + w , x ∈ L, y ∈ L⊥ . (121)

Thus the existence of a stationary value of q for any v, w is equivalent to the consistency of (121)

for any v, w, i.e., to the existence of A
(−1)
(L) , in whish case (120) is the unique stationary point in

L. �

Corollary 8. Let A ∈ Cn×n be Hermitian positive definite and let L be a subspace of Cn. Then
for any v, w ∈ Cn the function

q(x) =
1

2
(x− v)∗A(x− v)−w∗x (119)

has a unique minimum in L, when

x = A
(−1)
(L) (Av + w) . (120)

Proof. Follows from Theorem 7, since A
(−1)
(L) exists, by Ex. 2.93, and the stationary value of q

is actually a minimum since A is positive definite. �

3See Ex. 2.78 for conditions equivalent to the existence of A
(−1)
(L) .
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We return now to the direct current electrical network of Section 2.12, consisting of m nodes
{ni : i ∈ 1,m} and n branches {bj : j ∈ 1, n}, with

aj > 0, the conductance of bj,
A = [diag aj], the conductance matrix,
xj, the voltage across bj,
yj, the current in bj,
vj, the voltage generated by the sources in series with bj,
wj, the current generated by the sources in parallel with bj, and
M , the (node–branch) incidence matrix.
We recall that the branch voltages x and currents y are uniquely determined by the following

three physical laws:

Ax + y = Av + w (Ohm’s law), (122)

y ∈ N(M) (Kirchhoff’s current law), (123)

x ∈ R(MT ) (Kirchhoff’s voltage law), (124)

and that x, y are related by

x = A
(−1)

(R(MT ))
(Av + w) , (2.134)

y = (I − AA(−1)

(R(MT ))
)(Av + w) , (2.135)

or dually, by (2.138) and (2.137).
A classical variational principle of Kelvin ([1449]) and Maxwell ([1006, pp. 903–908]), states

that the voltages x and the currents y are such that the rate of energy dissipation is minimized.
This variational principle is given in the following corollary.

Corollary 9. Let A, M, x, y, v, w be as above. Then
(a) The vector x0 of branch voltages is the unique minimizer of

q(x) =
1

2
(x− v)∗A(x− v)−w∗x (119)

in R(MT ), and the vector y0 of branch currents is

y0 = −∇q(x0) = −A(x0 − v) + w ∈ R(MT )⊥ = N(M) . (125)

(b) The vector y0 is the unique minimizer of

p(y) =
1

2
(y −w)∗A−1(y −w)− v∗y (126)

in N(M), and the vector x0 is

x0 = −∇p(y0) = −A−1(y0 −w) + v ∈ N(M)⊥ = R(MT ) . (127)

Proof. Since the conductance matrix A is positive definite, it follows by comparing (120) and
(2.134) that x0 is the unique minimizer of (119) in R(MT ), and the argument used in the proof of
Theorem 7 shows that y0 = −∇q(x0) as given in (125). Part (b) follows from the dual derivation
(2.137) and (2.138) of y0 and x0, respectively, as solutions of the dual network equations (2.136). �

Corollary 9 shows that the voltage x is uniquely determined by the function (119) to be mini-
mized subject to Kirchhoff’s voltage law (124). Kirchhoff’s current law (123) and Ohm’s law (122)
are then consequences of (125).

Dually, the current y is uniquely determined by the function (126) to be minimized subject to
Kirchhoff’s current law (123), and the other two laws (122) and (124) then follow from (127).

Further references on the extremal properties of the network functions and solutions are Dennis
[394], Stern [1397] and [1398], and Guillemin [629]. Corollary 9 is a special case of the Duality
Theory of Convex Programming; see, e.g., Rockafellar [1295].
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Exercises.

Ex. 79. Let A ∈ Cn×n be Hermitian positive definite, and let the subspace L ⊂ Cn and the vector
w ∈ Cn be given. Then the quadratic function

1

2
x∗Ax−w∗x (128)

has a minimum in L if and only if the system

Ax−w ∈ L⊥ , x ∈ L (129)

is consistent, in which case the solutions x of (129) are the minimizers of (128) in L.

Ex.80. Show that the consistency of (129) is equivalent to the condition

x ∈ L, Ax = 0 =⇒ w∗x = 0 ,

which is obviously equivalent to the boundedness from below of (128) in L, hence to the existence
of a minimizer in L.

Ex.81. Show that A
(−1)
(L) exists if and only if the system (129) has a unique solution for any w ∈ Cn,

in which case this solution is

x = A
(−1)
(L) w .

Ex.82. Give the general solution of (129) in case it is consistent but A
(−1)
(L) does not exist.

Suggested further reading

Section 1 . Desoer and Whalen [396], Erdélyi and Ben-Israel [477], Leringe and Wedin [930],
Osborne [1154], Peters and Wilkinson [1182], and the references on applications to statistics given
at the end of the Introduction.

For various applications in control theory and in system theory, see Balakrishnan [62], Barnett
[87], Ho and Kalman [735], Kalman ([807], [808], [809], [810]), Kalman, Ho and Narendra [812],
Kishi [859], Kuo and Mazda [895], Minamide and Nakamura ([1054], [1055]), Porter ([1197],
[1198]), Porter and Williams ([1200], [1199]), Wahba and Nashed [1512], and Zadeh and Desoer
[1625].
Section 2 . Erdélyi and Ben-Israel [477], Osborne [1155], Rosen [1305].



CHAPTER 4

Spectral Generalized Inverses

1. Introduction

In this chapter we shall study generalized inverses having some of the spectral properties (i.e.,
properties relating to eigenvalues and eigenvectors) of the inverse of a nonsingular matrix. Only
square matrices are considered, since only they have eigenvalues and eigenvectors.

The four Penrose equations of Chapter 1,

AXA = A , (1)

XAX = X , (2)

(AX)∗ = AX , (3)

(XA)∗ = XA , (4)

will now be supplemented further by the following equations applicable only to square matrices

AkXA = Ak , (1k)

AX = XA , (5)

AkX = XAk , (5k)

AXk = XkA , (6k)

In these equations k is a given positive integer. For example, we shall have occasion to refer to a
{1k, 2, 5}–inverse of A.

2. Spectral properties of a nonsingular matrix

If A is nonsingular it is easy to see that every eigenvector of A associated with the eigenvalue
λ is also an eigenvector of A−1 associated with the eigenvalue λ−1. (A nonsingular matrix does not
have 0 as an eigenvalue.)

A matrix A ∈ Cn×n that is not diagonable does not have n linearly independent eigenvectors
(see Ex. 2.22). However, it does have n linearly independent principal vectors. Following Wilkinson
[1595], we define a principal vector of A of grade p associated with the eigenvalue λ as a vector x
such that

(A− λI)px = 0 , (A− λI)p−1x 6= 0 . (7)

Here p is some positive integer.
Evidently principal vectors are a generalization of eigenvectors. In fact, an eigenvector is a

principal vector of grade 1. We shall find it convenient to abbreviate “principal vector of grade p
associated with the eigenvalue λ” to “λ–vector of A of grade p”.

It is not difficult to show (see Ex. 3) that, if A is nonsingular, a vector x is a λ−1–vector of A−1

of grade p if and only if it is a λ–vector of A of grade p. In the remainder of this chapter, we shall
explore the extent to which singular matrices have generalized inverses with comparable spectral
properties.

125
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Exercises.

Ex.1. A square matrix A is diagonable if and only if all its principal vectors are eigenvectors.

Ex. 2. For a given eigenvalue λ, the maximal grade of the λ–vectors of A is the multiplicity of λ as
root of the minimal polynomial of A.

Ex. 3. If A is nonsingular, x is a λ−1–vector of A−1 of grade p if and only if it is a λ–vector of A
of grade p. [Hint : Show that A−p(A − λI)p = (−λ)p(A−1 − λ−1I)p. Using this and the analogous
relation obtained by replacing A by A−1, show that (A−λI)rx = 0 if and only if (A−1−λ−1I)rx = 0
for r = 0, 1, . . . ]

Ex.4. If A is nonsingular and diagonable, A−1 is the only matrix related to A by the property stated
in Ex. 3.

Ex.5. If A is nonsingular and not diagonable, there are matrices other than A−1 having the spectral
relationship to A described in Ex. 3. For example, consider

A =

[
λ 1
0 λ

]
, X =

[
λ−1 c
0 λ−1

]
(λ, c 6= 0) .

Show that for p = 1, 2, x is a λ−1–vector of X of grade p if and only if it is a λ–vector of A of grade
p. (Note that X = A−1 for c = −λ−2.)

3. Spectral inverse of a diagonable matrix

In investigating the existence of generalized inverses of a singular square matrix, we shall begin
with diagonable matrices, because they are the easiest to deal with. Evidently some extension must
be made of the spectral property enjoyed by nonsingular matrices, because a singular matrix has 0
as one of its eigenvalues. Given a diagonable matrix A ∈ Cn×n, let us seek a matrix X such that
every eigenvector of A associated with the eigenvalue λ (for every λ in the spectrum of A) is also
an eigenvector of X associated with the eigenvalue λ†, where λ† is defined in (1.8).

Since A has n linearly independent eigenvectors, there is a nonsingular matrix P , having such
a set of eigenvectors as columns, such that

AP = PJ (8)

where

J = diag(λ1, λ2, . . . , λn)

is a Jordan form of A. We shall need the diagonal matrix obtained from J by replacing each diagonal
element λi by λ†i . By Ex. 1.20, this is, in fact, the Moore–Penrose inverse of J ; that is,

J† = diag(λ†1, λ
†
2, . . . , λ

†
n) .

Because of the spectral requirement imposed on X, we must have

XP = PJ† . (9)

Solving (8) and (9) for A and X givs

X = PJP−1 , X = PJ†P−1 . (10)

Since J and J† are both diagonal, they commute with each other. As a result, it follows from (10)
that X ∈ A{1, 2, 5}.

We do not wish to limit our consideration to diagonable matrices. We began with them because
they are easier to work with. The result just obtained suggests that we should examine the existence
and properties (especially spectral properties) of {1, 2, 5}–inverses for square matrices in general.
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4. The group inverse

It follows from (5) and from Corollary 2.7 that a {1, 2, 5}–inverse of A, if it exists, is a {1, 2}–
inverse X such that R(X) = R(A) and N(X) = N(A). By Theorem 2.10, there is at most one such
inverse.

This unique {1, 2, 5}–inverse is called the group inverse of A, and is denoted by A#. The name
“group inverse” was given by I. Erdélyi [469], because the positive and negative powers of a given
matrix A (the latter being interpreted as powers of A#), together with the projector AA# as the
unit element, constitute an Abelian group, see Ex. 13. Both he and Englefield [465] (who called it
the “commuting reciprocal inverse”) drew attention to the spectral properties of the group inverse.
As we shall see later, however, the group inverse is a particular case of the Drazin inverse [423], or
{1k, 2, 5}–inverse, which predates [469] and [465].

The group inverse is not restricted to diagonable matrices; however, it does not exist for all
square matrices. By Section 2.5 and Theorem 2.10, such an inverse exists if and only if R(A) and
N(A) are complementary subspaces. We show in Theorem 1 that this is equivalent to

R(A) = R(A2) .

In this connection, the following definition is useful.

Definition 1. The smallest positive integer k for which

rankAk = rankAk+1 , (11)

holds, is called the index 1 of A.

The index will be studied in Section 6 below. For now we state.

Theorem 1. A square matrix A has a group inverse if and only if its index is 1, or, in other words,
if and only if

rankA = rankA2 . (12)

When the group inverse exists, it is unique.

Proof. Let A ∈ Cn×n. If A is nonsingular, R(A) = Cn and N(A) = {0}. Thus R(A) and
N(A) are trivially complementary. Since a nonsingular matrix has index 1, it remains to prove the
theorem for singular matrices. Now, for any positive integer k,

dimR(Ak) + dimN(Ak) = rankAk + nullityAk = n .

It therefore follows from statement (c) of Ex. 0.1 that R(Ak) and N(Ak) are complementary if and
only if

R(Ak) ∩N(Ak) = {0} . (13)

Since, for any positive integer k,

R(Ak+1) ⊂ R(Ak) ,

and
N(Ak) ⊂ N(Ak+1) ,

it follows that (13) is equivalent to

dimR(Ak) = dimR(Ak+1) . (14)

The statement of the theorem is the special case k = 1. �

1Some writers (e.g., MacDuffee [986]) define the index as the degree of the minimal polynomial.
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An alternative proof of uniqueness is as follows. Let X, Y ∈ A{1, 2, 5}, E = AX = XA, and
F = AY = Y A. Then E = F since

E = AX = AY AX = FE ,

F = Y A = Y AXA = FE .

Therefore,

X = EX = FX = Y E = Y F = Y .

The following theorem gives an equivalent condition for the existence of A# that is often more
convenient in numerical work, and also an explicit formula for A#.

Theorem 2. (Cline [352]). Let a square matrix A have the full–rank factorization

A = FG . (15)

Then A has a group inverse if and only if GF is nonsingular, in which case

A# = F (GF )−2G . (16)

Proof. Let r = rankA. Then GF ∈ Cr×r. Now

A2 = FGFG ,

and so

rankA2 = rankGF

by Ex. 1.7. Therefore (12) holds if and only if GF is nonsingular, and the first part of the theorem is
established. It is easily verified that (1), (2), and (5) hold with A given by (15) and X by RHS(16).
Formula (16) then follows from the uniqueness of the group inverse. �

For an important class of matrices, the group inverse and the Moore–Penrose inverse are the
same. We shall call a square matrix A range–Hermitian (such a matrix is also called an EP r or EP
matrix, e.g., Schwerdtfeger [1326], Pearl [1168] and other writers) if

R(A∗) = R(A) , (17)

or, equivalently, if

N(A∗) = N(A) , (18)

the equivalence follows from (2.47).
Using the notation of Theorem 2.10, the preceding discussion shows that

A# = A
(1,2)
R(A),N(A) ,

while Ex. 2.29 establishes that

A† = A
(1,2)
R(A∗),N(A∗) .

The two inverses are equal, therefore, if and only if R(A) = R(A∗) and N(A) = N(A∗). But this is
true if and only if A is range–Hermitian. Thus we have proved:

Theorem 3. A# = A† if and only if A is range–Hermitian. �

The approach of (10) can be extended from diagonable matrices to all square matrices of index
1. To do this we shall need the following lemma.

Lemma 1. Let J be a square matrix in Jordan form. Then J is range–Hermitian if and only if it
has index 1.
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Proof. Only if : Follows from Ex. 7.
If : If J is nonsingular, rank J = rank J2 and J is range–Hermitian by Ex. 15. If J has only 0

as an eigenvalue, it is nilpotent. In this case, it follows easily from the structure of the Jordan form
that rank J2 < rank J unless J is the null matrix O, in which case it is trivially range–Hermitian.

If J has both zero and nonzero eigenvalues, it can be partitioned in the form

J =

[
J1 O
O J2

]
,

where J1 is nonsingular and has as eigenvalues the nonzero eigenvalues of J , while J2 is nilpotent.
By the same reasoning employed in the preceding paragraph, rank J = rank J2 implies J2 = O. It
then follows from Ex. 15 that J is range–Hermitian. �

Theorem 4. (Erdélyi [469]). Let A have index 1 and let

A = PJP−1 ,

where P is nonsingular and J is a Jordan normal form of A. Then

A# = PJ†P−1 . (19)

Proof. It is easily verified that relations (1), (2), (5), and (12) are similarity invariants. There-
fore

J# = P−1A#P (20)

and also rank J = rank J2. It then follows from Lemma 1 and Theorem 3 that

J# = J† , (21)

and (19) follows from (20) and (21). �

Exercises.

Ex.6. Let A ∈ Cn×n. If for some positive integer k,

R(Ak+1) = R(Ak) , (22)

then, for all integers ` > k,

R(A`+1) = R(A`) .

[Hint : R(Ak+1) = AR(Ak) and R(A`) = A`−kR(Ak).]

Ex.7. Every range–Hermitian matrix has index 1.

Proof. If A is range–Hermitian, then by (2.47), N(A) = R(A)⊥. Thus R(A) and N(A) are
complementary subspaces. �

Ex.8. If A is nonsingular, A# = A−1 .

Ex.9. A## = A .

Ex.10. A∗# = A#∗ .

Ex.11. AT# = A#T .

Ex.12. (A`)# = (A#)` for every positive integer `.

Ex.13. Let A have index 1 and denote (A#)j by A−j for j = 1, 2, . . . Also denote AA# by A0. Then
show that

A`Am = A`+m

for all integers ` and m. (Thus, the “powers” of A, positive, negative and zero, constitute an Abelian
group under matrix multiplication.)
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Ex.14. Show that

A# = A(A3)(1)A , (23)

where (A3)(1) is an arbitrary element of A3{1}.
Ex.15. Show that a nonsingular matrix is range–Hermitian.

Ex.16. Show that a normal matrix is range–Hermitian. [Hint : Use Corollary 1.2.]

Remark. It follows from Exs. 7 and 16 that

{Hermitian matrices} ⊂ {normal matrices}
⊂ {range–Hermitian matrices} ⊂ {matrices of index 1} .

Ex.17. A square matrix A is range–Hermitian if and only if A commutes with A†.

Ex. 18. (Katz [824]). A square matrix A is range–Hermitian if and only if there is a matrix Y such
that A∗ = Y A.

Ex.19. (Katz and Pearl [826]). A matrix in Cn×n is range–Hermitian if and only if it is similar to a
matrix of the form [

A O
O O

]
,

where A is nonsingular.

Proof. See Lemma 1. �

5. Spectral properties of the group inverse

Even when A is not diagonable, the group inverse has spectral properties comparable to those
of the inverse of a nonsingular matrix. However, in this case, A# is not the only matrix having such
properties. This has already been illustrated in the case of a nonsingular matrix (see Ex. 5).

We note that if a square matrix A has index 1, its 0–vectors are all of grade 1, i.e., null vectors
of A. This follows from the fact that (12) implies N(A2) = N(A) by Ex. 1.10.

The following two lemmas are needed in order to establish the spectral properties of the group
inverse. The second is stated in greater generality than is required for the immediate purpose
because it will be used in connection with spectral generalized inverses other than the group inverse.

Lemma 2. Let x be a λ–vector of A with λ 6= 0. Then x ∈ R(A`) where ` is an arbitrary positive
integer.

Proof. We have

(A− λI)px = 0

for some positive integer p. Expanding the left member by the binomial theorem, transposing the
last term, and dividing by its coefficient (−λ)p−1 6= 0 gives

x = c1Ax + c2A
2x + · · ·+ cpA

px , (24)

where

ci = (−1)i−1λ−i

(
p

i

)
.

Successive multiplication of (24) by A gives

Ax = c1A
2x + c2A

3x + · · ·+ cpA
p+1x ,

A2x = c1A
3x + c4A

4x + · · ·+ cpA
p+2x ,

· · · = · · · · · · · · · · (25)

A`−1x = c1A
`x + c4A

`+1x + · · ·+ cpA
p+`−1x ,



5. SPECTRAL PROPERTIES OF THE GROUP INVERSE 131

Successive substitution of equations (25) in RHS(24) gives eventually

x = A`q(A)x ,

where q is some polynomial. �

Lemma 3. Let A be a square matrix and let

XA`+1 = A` (26)

for some positive integer `. Then every λ–vector of A of grade p for λ 6= 0 is a λ−1–vector of X of
grade p.

Proof. The proof will be by induction on the grade p. Let λ 6= 0 and Ax = λx. Then
A`+1x = λ`+1x, and therefore x = λ−`−1A`+1x. Accordingly,

Xx = λ−`−1XA`+1x = λ−1x .

proving the lemma for p = 1.
Suppose the lemma is true for p = 1, 2, . . . , r, and let x be a λ–vector of A of grade r+1. Then,

by Lemma 2,

x = A`y

for some y. Thus

(X − λ−1I)x = (X − λ−1I)A` y = X(A` − λ−1A`+1)y

= X(I − λ−1A)A` y = −λ−1X(A− λI)x .

By the induction hypothesis, (A− λI)x is a λ−1–vector of X of grade r. Consequently

(X − λ−1I)r(A− λI)x = 0 ,

z = (X − λ−1I)r−1(A− λI)x 6= 0

Xz = λ−1z .

Therefore

(X − λ−1I)r+1 x = −λ−1X(X − λ−1I)r(A− λI)x = 0 ,

(X − λ−1I)r x = −λ−1X z = −λ−2z 6= 0 .

This completes the induction. �

The following theorem shows that for every matrix A of index 1, the group inverse is the
only matrix in A{1} or A{2} having spectral properties comparable to those of the inverse of a
nonsingular matrix. For convenience, we introduce:

Definition 2. X is an S–inverse of A (or A and X S–inverses of each other) if they share the
property that, for every λ ∈ C and every vector x, x is a λ–vector of A of grade p if and only if it
is a λ†–vector of X of grade p.

Theorem 5. Let A ∈ Cn×n have index 1. Then A# is the unique S–inverse of A in
A{1} ∪ A{2}. If A is diagonable, A# is the only S–inverse of A.

Proof. First we shall show that A# is an S–inverse of A. Since X = A# satisfies (26) with
` = 1, it follows from Lemma 3 that A# satisfies the “if” part of the definition of S–inverse for
λ 6= 0. Replacing A by A# establishes the “only if” part for λ 6= 0, since A## = A (see Ex. 9).

Since both A and A# have index 1, all their 0–vectors are null vectors as pointed out in the
second paragraph of this session. Thus, in order to prove that A# satisfies the definition of S–inverse
for λ = 0, we need only show that N(A) = N(A#). But this follows from the commutativity of A
and A#) and Ex. 1.10.
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Let r = rankA and consider the equation

AP = PJ

where P is nonsingular and J is a Jordan form of A. The columns of P are λ–vectors of A. Since A
has index 1, those columns which are not null vectors are associated with nonzero eigenvalues, and
are therefore in R(A) by Lemma 2. Since there are r of them and they are linearly independent, they
span R(A). But, by hypothesis, these columns are also λ−1–vectors of X and therefore in R(X).
Since rankX = r, these r vectors span R(X), and so R(X) = R(A). Thus X is a {1, 2}–inverse of
A such that R(X) = R(A) and N(X) = N(A). But A# is the only such matrix, and so X = A#.

It was shown in Section 3 that if A is diagonable, an S–inverse of A must be a {1, 2, 5}–inverse.
Since A# is the only such inverse, this completes the proof. �

6. The Drazin inverse

We have seen that the group inverse does not exist for all square matrices, but only those of
index 1. However, we shall show in this section that every square matrix has a unique {1k, 2, 5}–
inverse, where k is its index. This inverse is called the Drazin inverse, because it was first studied by
Drazin [423] (though in the more general context of rings and semigroups without specific reference
to matrices). The spectral properties of the Drazin inverse of a square matrix have been studied by
Cline [352] and Greville [583]; not all of them will be mentioned here.

It is readily seen that the set of three equations (1k), (2) and (5) is equivalent to the set

AX = XA , (5)

Ak+1X = Ak , (27)

AX2 = X . (28)

It is evident also that if (27) holds for some positive integer k, then it holds for every integer ` > k.
It follows also from (27) that

rankAk = rankAk+1 . (11)

Therefore, a solution X for (27) (and, consequently, of the set (5), (27), (28)) exists only if (11)
holds. We shall show presently that if (11) holds, there is a u nique X (the Drazin inverse of A)
satisfying (5), (27), and (28).

The next lemma collects properties of the matrix index (see Definition 1) that are needed below.

Lemma 4. Let A ∈ Cn×n have index k. Then:
(a) All matrices {A` : ` ≥ k} have the same rank, the same range and the same null space.
(b) Their transposes {(A`)T : ` ≥ k} all have the same rank, the same range and the same null
space.
(c) Their conjugate transposes {(A`)∗ : ` ≥ k} all have the same rank, the same range and the
same null space.
(d) Moreover, for no ` less than k do A` and a higher power of A (or their transposes or conjugate
transposes) have the same range or the same null space.

Proof. It may be well to point out first that (11) necessarily holds for some positive integer k
(see Ex. 20).
(a) It follows from (11) and Ex. 1.10 that

R(Ak+1) = R(Ak) . (22)

Therefore (27) holds for some X, and multiplication on the left by A`−k gives

A` = A`+1X (` ≥ k) . (29)

It follows from (29) that all the matrices {A` : ` ≥ k} have the same range and the same rank.
From Ex. 1.10 and the fact that Ak and A` have the same rank, it follows that they have the same
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null space. (See Ex. 6 for an alternative proof of R(A`) = R(A`+1 for all ` ≥ k.).
(b) and (c). The statements about the transposes and conjugate transposes are obtained by applying
(a) to AT and A∗ and noting that (A`)T = (AT )` and (A`)∗ = (A∗)`.
(d) If an equality of ranges of the kind ruled out in part (d) should occur, there must be some ` < k
such that A` or its transpose or conjugate transpose have the same range as the corresponding
matrix with exponent ` + 1. But this would imply rankA` = rankA`+1, and k would not be the
index of A. Similarly, equality of null spaces would imply that A` and A`+1 have the same nullity,
and therefore the same rank. �

Theorem 6. Let A ∈ Cn×n. Then the following statements are equivalent:
(a) The index of A is k.
(b) The smallest positive exponent for which (27) holds is k.
(c) If A is singular and m(λ) is its minimal polynomial, k is the multiplicity of λ = 0 as a zero

of m(λ).
(d) If A is singular, k is the maximal grade of 0–vectors of A.

Proof. (a)⇐⇒ (b). Clearly (29) implies

rankA`+1 = rankA` , (30)

and by Ex. 1.10, (30) implies

R(A`+1) = R(A`) ,

so that (29) holds. Thus (30) and (29) are equivalent, proving (a)
(b)⇐⇒ (c). Let

m(λ) = λ`p(λ)

where p(0) 6= 0. Let k be defined by (b), and we must now show that k = `. We have

p(A)A` = O .

If ` > k, then

O = p(A)A`X = p(A)A`−1 ,

where λ`−1p(λ) is of lower degree than m(λ), contrary to the definition of the minimal polynomial.
Since p(0) 6= 0, we can write2

m(λ) = cλ`(1− λq(λ)) , (31)

where c 6= 0 and q is a polynomial. It follows that

A`+1q(A) = A` . (32)

If ` < k, this would contradict (b).
(a)⇐⇒ (d). Let A have index k and the h be the maximal grade of the 0–vectors of A. We

must whow that h− k. The definition of h implies that N(A`) = N(Ah) for all ` ≥ h, but N(Ah−1)
is a proper subsace of A(Ah). It follows from Lemma 4 that h = k. �

The following lemma will be used in proving the existence of a unique {1k, 2, , 5}–inverse of a
square matrix of index k.

Lemma 5. If Y is a {1`, 5}–inverse of s quare matrix A, then

X = A`Y `+1

is a {1`, 2, 5}–inverse.

2For this device we are indebted to M. R. Hestenes (see [126, p. 687, footnote 56]).
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Proof. We have

A`+1Y = A`, AY = Y A .

Clearly X satisfies (5). We have then

A`XA = A2`+1Y `+1 = A2`Y ` = A2`−1Y `−1 = · · · = A` ,

and

XAX = A2`+1Y 2`+2 = A2`Y 2`+1 = · · · = A`Y `+1 = X .

�

Theorem 7. Let A ∈ Cn×n have index k. Then A has a unique {1k, 2, 5}–inverse, which is
expressible as a polynomial in A, and is also the unique {1`, 2, 5}–inverse for every ` ≥ k.

Proof. The matrix q(A) of (32) is a {1k, 5}–inverse of A. Therefore, by Lemma 5,

X = Ak(q(A))k+1 (33)

is a {1k, 2, 5}–inverse. This proves the existence of such an inverse.
A matrix X that satisfies (27) clearly satisfies (29) for all ` ≥ k. Therefore, a {1k, 2, , 5}–inverse

of A is a {1`, 2, 5}–inverse for all ` ≥ k.
Uniqueness will be proved by adapting the proof of uniqueness of the group inverse given in th

remark following Theorem 1. Let X,Y ∈ A{1`, 2, 5} , E = AX = XA, and F = AY = Y A. Note
that E and F are idempotent. Then E = F , since

E = AX = A`X` = AY A`X` = FAX = FE ,

F = Y A = Y `A` = Y `A`XA = Y AE = FE .

The proof is then completed exactly as in the case of the group inverse. �

This unique {1k, 2, 5}–inverse is the Drazin inverse, and we shall denote it by AD. The group
inverse is the particular case of the Drazin inverse for matrices of index 1.

Corollary 1. (Englefield [465]). Let A ∈ Cn×n. Then there is a {1, 2}–inverse of A expressible
as a polynomial in A if and only if A has index 1, in which case the only such inverse is the group
inverse, which is given by

A# = A(q(A))2 , (34)

where q is defined by (31).

Proof. Only if : A {1, 2}–inverse of A that is a polynomial in A necessarily commutes with
A, and is therefore a {1, 2, 5}–inverse. The group inverse A# is the only such inverse, and A has a
group inverse if and only if its index is 1.

If : If A has index 1, it has a group inverse, which is a {1, 2}–inverse, and in this case coincides
with the Drazin inverse. It is therefore expressible as a polynomial in A by Theorem 7. Formula
(34) is merely the specia;ization of (33) for k = 1. �

Corollary 2. (Pearl [1170]). Let A ∈ Cn×n. Then A† is expressible as polynomial in A if and
only if A is range–Hermitian.
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Exercises.

Ex.20. Let A ∈ Cn×n. Show that (11) holds for some k between 1 and n, inclusive.

Proof. Since n ≥ rank (Ak) ≥ rank (Ak+1) ≥ 0, eventually rankAk = tankAk+1 for some
k ∈ 1, n. �

Ex.21. (A∗)D = (AD)∗.

Ex.22. (AT )D = (AD)T .

Ex.23. (A`)D = (AD)` for ` = 1, 2, . . . .

Ex.24. If A has index k, A` has index 1 and (A`)# = (AD)` for ` ≥ k.

Ex.25. (AD)D = A if and only if A has index 1 (Drazin).

Ex.26. AD has index 1, and (AD)# = A2AD.

Ex.27. ((AD)D)D = AD (Drazin).

Ex.28. If A has index k, R(AD) = R(A`) and N(AD) = N(A`) for all ` ≥ k.

Ex. 29. R(AD) is the subspace spanned by all the λ–vectors of A for all nonzero eigenvalues λ, and
N(AD) is the subspace spanned by all the 0–vectors of A, and these are complementary subspaces.

Ex.30. AAD = ADA is idempotent and is the projector on R(AD) along N(AD). Alternatively, if A
has index k, it is the projector on R(A`) along N(A`) for all ` ≥ k.

Ex.31. If A and X are S–inverses of each other, they have the same index.

Ex.32. AD(AD)# = AAD.

Ex.33. Let A ∈ Cn×n have index k. Then, for all ` ≥ k,

AD = A`(q(A))`+1 ,

where q is defined by (31).

Ex.34. If A is nilpotent, AD = O.

Ex.35. If ` > m > 0 , Am(AD)` = (AD)`−m.

Ex.36. If m > 0 and `−m ≥ k , A`(AD)m = A`−m.

Ex. 37. Let A have index k, and define as follows a set of matrices Bj where j ranges over all the
integers:

Bj =


Aj for j ≥ k,

Ak(AD)k−j for 0 ≤ j < k,

(AD)−j for j < 0.

Is the set of matrices {Bj} an Abelian group under matrix multiplication with unit element B0 and
multiplication rule B`Bm = B`+m? Is there an equivalent, but easier way of defining the matrices
Bj?

Ex.38. If A has index k and ` ≥ k, show that

AD = A`(A2`+1)(1)A` , (35)

where (A2`+1)(1) is an arbitrary element of A2`+1{1} (Greville [583]). Note that (23) is a particular
case of (35).

Ex.39. Let A ∈ Cn×n. Then A has index 1 if and only if the limit

lim
λ→0

(λIn + A)−1A

exists, in which case

lim
λ→0

(λIn + A)−1A = AA# ( Ben–Israel [117]) .
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Remark. Here λ→ 0 means λ→ 0 through any neighborhood of 0 in C which excludes the nonzero
eigenvalues of A.

Proof. Let rankA = r and let A = FG be a full–rank factorization. Then the identity

(λIn + A)−1A = F (λIr +GF )−1G

holds whenever the inverse in question exists. Therefore the existence of lim
λ→0

(λIn + A)−1A is

equivalent to the existence of lim
λ→0

(λIr + GF )−1 which, in turn, is equivalent to the nonsingularity

of GF . The proof is completed by using Theorems 1 and 2. �

Ex.40. Let A ∈ Cn×n. Then A is range–Hermitian if and only if

lim
λ→0

(λIn + A)−1PR(A) = A† .

Proof. Follows from Ex. 39 and Theorem 3. �

Ex.41. Let O 6= A ∈ Cm×n. Then

lim
λ→0

(λIn + A∗A)−1A∗ = A† (den Broeder and Charnes [238]) . (3.31)

Proof.

lim
λ→0

(λIn + A∗A)−1A∗ = lim
λ→0

(λIn + A∗A)−1PR(A∗A)A
∗

(since R(A∗) = R(A∗A))

= (A∗A)†A∗ (by Ex. 40 since A∗A is range–Hermitian)

= A† (by Ex. 1.16(d)) .

�

7. Spectral properties of the Drazin inverse

The spectral properties of the Drazin inverse are the same as those of the group inverse with
regard to nonzero eigenvalues and the associated eigenvectors, but weaker for 0–vectors. The
necessity for such weakening is apparent from the following theorem.

Theorem 8. Let A ∈ Cn×n and let X ∈ A{1} ∪ A{2} be an S–inverse of A. Then both A and X
have index 1.

Proof. First, let X ∈ A{1}, and suppose that x is a 0–vector of A of grade 2. Then, Ax is a
null–vector of A. Since X is an S–inverse of A, Ax is also a null–vector of X. Thus,

0 = XAx = AXAx = Ax ,

which contradicts the assumption that x is a 0–vector of A of grade 2. Hence, A has no 0–vectors
of grade 2, and therefore has index 1, by Theorem 6(d). By Ex. 31, X has also index 1.

If X ∈ A{2}, we reverse the roles of A and X. �

Accordingly, we relax the definition of the S–inverse (Definition 2, p. 131) as follows.

Definition 3. X is an S ′–inverse of A if, for all λ 6= 0, a vector x is a λ−1–vector of X of grade p
if and only if it is a λ–vector of A of grade p, and x is a 0–vector of X if and only if it is a 0–vector
of A (without regard to grade).

Theorem 9. For every square matrix A, A and AD are S ′–inverses of each other.
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Proof. Since AD satisfies

ADAk+1 = Ak , A(AD)2 = AD ,

the part of Definition 3 relating to nonzero eigenvalues follows from Lemma 3. Since AD has index
1 by Ex. 26, all its 0–vectors are null vectors. Thus the part of Definition 3 relating to 0–vectors
follows from Ex. 29. �

8. Index 1–nilpotent decomposition of a square matrix

The following theorem plays an important role in the study of spectral generalized inverses of
matrices of index greater than 1. It is implicit in Wederburn’s [1538] results on idempotent and
nilpotent parts, but is not stated by him in this form.

Theorem 10. A square matrix A has a unique decomposition

A = B +N , (36)

such that B has index 1, N is nilpotent, and

NB = BN = O . (37)

Moreover,

B = (AD)# . (38)

Proof. Suppose A has a decomposition (36) such that B has index 1, N is nilpotent and (37)
holds. We shall first show that this implies (38), and therefore the decomposition is unique if it
exists.

Since

B# = B(B#)2 = (B#)2B ,

we have

B#N = NB# = O .

Consequently,

AB# = BB# = B#A . (39)

Moreover,

A(B#)2 = B(B#)2 = B# . (40)

Because of (37), we have

A` = (B +N)` = B` +N ` (` = 1, 2, . . . ) . (41)

If ` is sufficiently large so that N ` = O,

A` = B` ,

and for such `,

A`+1B# = B`+1B# = B` . (42)

It follows from (39),(40), and (42) that X = B# satisfies (5),(27), and (28), and therefore

B# = AD ,

which is equivalen to (38).
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It remains to show that this decomposition has the required properties. Clearly B has index 1.
By taking

N = A− (AD)# (43)

and noting that

(AD)# = A2AD

by Ex. 26, it is easily verified that (37) holds. Therefore (41) follows, and if k is the index of A,

Ak = Bk +Nk = A2k(AD)k +Nk = Ak +Nk ,

and therefore Nk = O. �

We shall call the matrix N given by (43) the nilpotent part of A and shall denote it by A(N).

Theorem 11. Let A ∈ Cn×n. Then A and X are S ′–inverses of each other if

XD = (AD)# . (44)

Moreover, if X ∈ A{1} ∪ A{2}, it is an S ′–inverse of A only if (44) holds.

Proof. If (44), A and X have the same range and the same null space, and consequently the
projectors XXD and AAD = AD(AD)# are equal. Thus, if ` is the maximum of the indices of A
and X,

XA`+1 = X(AD)#ADA`+1 = XXDA` = A` (45)

by Ex. 30. By interchanging the roles of A and X we obtain also

AX`+1 = X` . (46)

From (45) and (46), Lemma 3, Ex. 29 and the fact that AD and XD have the same null space, we
deduce that A and X are S ′–inverses of each other.

On the other hand, let A and X be S ′–inverses of each other, and let X ∈ A{1}. Then, by
Ex. 29,

N(AD) = N(XD) ,

and so,

(AD)#X(N) = (XD)#A(N) = O .

Similarly, since

R(AD) = R(XD) ,

(2.42) gives

N(AD∗) = N(XD∗) ,

and therefore

X(N)(AD)# = (XD)#A(N) = O .

Consequently

A = AXA = (AD)#(XD)#(AD)# + A(N)X(N)A(N) ,

and therefore

AD = ADAAD = AAD(XD)#AAD = (XD)# , (47)

since AAD is the projector on the range of (XD)# along its null space. But (47) is equivalent to
(44).
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If X ∈ A{2}, we reverse the roles of A and X. �

Referring back to the proof of Theorem 5, we note that if A has index 1, a matrix X that is
an S–inverse of A and also either a {1}–inverse or a {2}–inverse, is automatically a {1, 2}–inverse.
However, a similar remark does not apply when the index of A is greater than 1 and X is an
S ′–inverse of A. This is because A(N) is no longer a null matrix (as it is when A has index 1) and
its properties must be taken into account. (For details see Ex. 49.)

9. Quasi–commuting inverses

Erdélyi [470] calls A and X quasi–commuting inverses of each other if they are {1, 2, 5k, 6k}–
inverses of each other for some positive integer k. He noted that such pairs of matrices the spectrum
of X is obtained by replacing each eigenvalue λ of A by λ†. The following theorem shows that quasi–
commuting inverses have much more extensive spectral properties.

Theorem 12. If A and X are quasi–commuting inverses, they are S ′–inverses.

Proof. If A and X are {1, 2, 5`, 6`}–inverses of each other, then

XA`+1 = A`XA = A` ,

and similarly,

AX`+1 = X` . (46)

In view of Lemma 3 and Ex. 29, all that remains in order to prove that A and X are S ′–inverses of
each other is to show that AD and XD have the same null space. Now,

ADx = 0 =⇒ 0 = A`+1ADx = A`x

=⇒ 0 = X2`A`x = A`X2`x = X`x (by (46)

=⇒ 0 = (XD)`+1X`x = XDx .

Since the roles of A and X are symmetrical, the reverse implication follows by interchanging them.
�

Corollary 3. A and X are quasi–commuting inverses of each other if and only if (44) holds and
A(N) and X(N) are {1, 2}–inverses of each other.

Proof. If : A and X are {1, 2}–inverses of each other by Ex. 46. Choose ` sufficiently large so
that (A(N))` = O. Then

XA` = ((XD)# +X(N))((AD)#)`

= ((XD)# +X(N))((XD)#)` = ((XD)#)`−1 = A`X .

By interchanging A and X, it follows also that A commutes with X`.
Only if : By Theorem 12, A and X are S ′–inverses of each other. Then, by Theorem 11, (44)

holds, and by Ex. 49, A(N) and X(N) are {1, 2}–inverses of each other. �

10. Other spectral generalized inverses

Greville [583] callsX a strong spectral inverse if equations (10) are satisfied. Although this is not
quite obvious, the relationship is a reciprocal one, and they can be called syrong spectral inverses of
each other. If A has index 1, Theorem 4 shows that A# is the only strong spectral inverse. Greville
has shown that strong spectral inverses are quasi–commuting, but, for a matrix A with index greater
than 1, the set of strong spectral inverses is a proper subset of the set of quasi–commuting inverses.
Strong spectral inverses have some remarkable and, in some respects, complicated properties, and
there are a number of open questions concerning them. As these properties relate to matrices of
index greater than 1, which are not for most purposes a very important class, they will not be
discussed further here. The interested reader may consult Greville [583].
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Cline [352] has pointed out that a square matrix A of index 1 has a {1, 2, 3}–inverse whose
range is R(A). This is, therefore, a “least–squares” inverse and also has spectral properties (see
Exs. 49 and 50). Greville [584] has extended this notion to square matrices of arbitrary index, but
his extension raises some questions that have not been answered (see the conclusion of [584]).

Exercises.

Ex.42. If A has index 1, A(N) = O.

Ex.43. If A is nilpotent, rankA`+1 < rankA` unless A` = O,

Ex. 44. If A is nilpotent, the smallest positive integer ` such that A` = O is called the index of
nilpotency of A. Show that this is the same as the index of A (see Definition 1).

Ex.45. A and A(N) have the same index.

Ex.46. rankA = rankAD + rankA(N).

Ex.47. ADA(N) = A(N)AD = O.

Ex.48. Every 0–vector of A of grade p is a 0–vector of A(N) of grade p.

Ex.49. Let A and X satisfy (44). Then X ∈ A{1} if and only if A(N) ∈ A(N){1}. Similar statements
with {1} replaced by {2} and by {1, 2} are also true.

Ex. 50. If A has index 1, show that X = A#AA† ∈ A{1, 2, 3} (Cline). Show that this X has the
properties of an S–inverse of A with respect to nonzero eigenvalues (but, in general, not with respect
to 0–vectors). What is the condition on A that this X be an S–inverse of A?

Ex.51. For square A with arbitrary index, Greville has suggested as an extension of Cline’s inverse

X = ADAA† + A(1)A(N)A† ,

where A(1) is an arbitrary element of A{1}. Show that X ∈ A{1, 2, 3} and has some spectral
properties. Describe its spectral properties precisely.

Ex.52. Can a matrix A of index greater than 1 have an S–inverse? It can if we are willing to accept
an “inverse” that is neither a {1}–inverse nor a {2}–inverse. Let

A(S) = AD + A(N) .

Show that A(S) is an S–inverse of A and that X = A(S) is the unique solution of the four equations

AX = XA , A`+1X = A` ,

AX`+1 = X` , A−X = A`X`(A−X)

for every positive integer ` not less than the index of A. Show also that A(S) = A# if A has index
1 and (A(S))(S) = A. In your opinion, can A(S) properly be called a generalized inverse of A?

Ex.53. Let F be a square matrix ofindex 1, and let G be such that R(FG) ⊂ R(G). Then,

R(FG) = R(F ) ∩R(G) .

Proof. Evidently, R(FG) ⊂ R(F ) and therefore

R(FG) ⊂ R(F ) ∩R(G) .

Now let x ∈ R(F )∩R(G), and we must show that x ∈ R(FG). Since F has index 1, it has a group
inverse F#, which, by Corollary 1, can be expressed as a polynomial in F , say p(F ). We have

x = Fy = Gz

for some y, z, and therefore

x = FF#x = FF#Gz = Fp(F )Gz .

Since R(FG) ⊂ R(G),

FG = GH
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for some H, and, consequently,

F `G = GH`

for every non–negative integer `. Thus

x = Fp(F )Gz = FGp(H)z ⊂ R(FG) . �

(This is a slight extension of a result of Arghiriade [36].)

Ex.54. The “reverse–order” property for the Moore–Penrose inverse. For some pairs of matrices A,B
the relation

(AB)† = B†A† (48)

holds, and for others it does not. There does not seem to be a simple criterion for distinguishing
the cases in which (48) holds. The following result is due to Greville [582].

For matrices A,B such that AB exists,

(AB)† = B†A† (48)

if and only if

R(A∗AB) ⊂ R(B) and R(BB∗A∗) ⊂ R(A∗) . (49)

Proof. If : We have

BB†A∗AB = A∗AB (50)

and

A†ABB∗A∗ = BB∗A∗ . (51)

Taking conjugate transposes of both sides of (50) gives

B∗A∗ABB† = B∗A∗A , (52)

and then multiplying on the right by A† and on the left by (AB)∗† yields

ABB†A† = AB(AB)† . (53)

Multiplying (51) on the left by B† and on the right by (AB)∗† gives

B†A†AB = (AB)†AB . (54)

It follows from (53) and (54) that B†A† ∈ (AB){1, 3, 4}.
Finally, the equations,

B∗A∗ = B∗BB†A†AA∗ , B†A† = B†B∗†B∗A∗A∗†A†

show that

rankB†A† = rankB∗A∗ = rankAB ,

and therefore B†A† ∈ (AB){2} by Theorem 1.2, and so (48) holds.
Only if : We have

B∗A∗ = B†A†ABB∗A∗ ,

and multiplying on the left by ABB∗B gives

ABB∗(I − A†A)BB∗A∗ = O .

Since the left member is Hermitian and I − A†A is idempotent, it follows that

(I − A†A)BB∗A∗ = O ,
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which is equivalent to (51). In an analogous manner, (50) is obtained. �

Ex.55. (Arghiriade [36].) For matrices A,B such that AB exists, (48) holds if and only if A∗ABB∗

is range–Hermitian.

Proof. We shall show that the condition that A∗ABB∗ be range–Hermitian is equivalent to
(49), and the result will then follow from Ex. 54. Let C denote A∗ABB∗, and observe that

R(A∗AB) = R(C) , R(BB∗A∗) = R(C∗)

because

CB∗† = A∗AB , C∗A† = BB∗A∗ .

Therefore it is sufficient to prove that R(C) = R(C∗) if and only if R(C) ⊂ R(B) and R(C∗) ⊂
R(A∗).

If : A∗A and BB∗ are Hermitian, and therefore of index 1 by Ex. 7. Since R(BB∗) = R(B) by
Corollary 1.2, it follows from Ex. 53 with F = A∗A, G = BB∗ that

R(C) = R(A∗) ∩R(B) .

Reversing the assignments of F and G gives

R(C∗) = R(A∗) ∩R(B) .

Thus R(C) = R(C∗).
Only if : Obvious. �

Ex.56. (Cline [352].) If ` is any integer not less than the index of A,

(AD)† = (A`)†A2`+1(A`)† .

[Hint : Use Ex. 2.48, noting that R(AD) = R(A`) and N(AD) = N(A`).]

Ex.57. If the mtrices A,E in Cm×n satisfy

R(E) ⊂ R(A) , (55)

R(E∗) ⊂ R(A∗) , (56)

and

‖A†E‖ < 1 (57)

for any multiplicative matrix norm (see p. 13), then

(A+ E)† = (I + A†E)−1A† . (58)

Proof. The matrix B = I + A†E is nonsingular by (57) and Exs. 0.35 and 0.41. Since

A+ E = A+ AA†E , by (55)

= A(I + A†E) ,

it suffices to show that the matrices A and B = I + A† have the “reverse order” property (48)

(A(I + A†E))† = (I + A†E)−1A† ,

which by Ex. 54 is equivalent to

R(A∗AB) ⊂ R(B) (59)

and

R(BB∗A∗) ⊂ R(A∗) . (60)
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Now (59) holds since B is nonsingular, and (60) follows from

R(BB∗A∗) = R((I + A†E)(I + A†E)∗A∗)

= R(A∗ + E∗A†∗A∗ + A†E(I + A†E)∗A∗)

⊂ R(A∗) , by (56) .

�

Ex. 58. Error bounds for generalized inverses (Ben–Israel [110]). Let A,E satisfy (55), (56), and
(57). Then,

‖(A+ E)† − A†‖ ≤ ‖A
†E‖‖A†‖

1− ‖A†E‖
. (61)

If (55) and (56) hold, but (57) is replaced by

‖A†‖‖E‖ < 1 , (62)

then

‖(A+ E)† − A†‖ ≤ ‖A
†‖2‖E‖

1− ‖A†E‖
. (63)

Proof. From Ex. 57 it follows that

(A+ E)† − A† = (I + A†E)−1A† − A†

=
∞∑

k=0

(−1)k(A†E)kA† − A† , by (57) and Ex. 0.41,

=
∞∑

k=1

(−1)k(A†E)kA†

and hence,

‖(A+ E)† − A†‖ ≤
∞∑

k=1

‖(A†E)‖k‖A†‖

=
‖A†E‖‖A†‖
1− ‖A†E‖

, by (57) .

The condition (62) [which is stronger than (57)] then implies (63). �

For further results see Stewart [1399], Wedin [1540], [1541], Pereyra [1180], Golub and Pereyra
[556] and Moore and Nashed [1090].

Suggested further reading

Section 4 . For range–Hermitian matrices see Arghiriade [36], Katz [824], Katz and Pearl [826],
Pearl ([1168], [1169], [1170]). For matrices of index 1 see Ben–Israel [117]. For the group inverse
see Robert [1278].
Section 10 . Poole and Boullion [1195], Ward, Boullion and Lewis [1537], and Scroggs and Odell
[1331].





CHAPTER 5

Generalized Inverses of Partitioned Matrices

1. Introduction

In this chapter we study linear equations and matrices in partitioned form. For example, in
computing a (generalized or ordinary) inverse of a matrix A ∈ Cm×n, the size or difficulty of the
problem may be reduced if A is partitioned as

A =

[
A11 A12

A21 A22

]
.

The typical result here is the sought inverse expressed in terms of the submatrices Aij.
Partitioning by columns and by rows is used in Section 2 to solve linear equations, and to

compute generalized inverses and related items.
Intersections of linear manifolds are studied in Section 3, and used in Section 4 to obtain common

solutions of pairs of linear equations and to invert matrices partitioned by rows.
Greville’s method for computing A† for A ∈ Cm×n, n ≥ 2, is based on partitioning A as

A =
[
An−1 an

]
where an is the nth column of A. A† is then expressed in terms of an and A†

n−1, which is computed
in the same way, using the partition

An−1 =
[
An−2 an−1

]
, etc.

Greville’s method and some of its consequences are studied in Section 5.
Bordered matrices, the subject of Section 6, are matrices of the form[

A U
V ∗ O

]
where A ∈ Cm×n is given and U and V are chosen so that the resulting bordered matrix is nonsin-
gular. Moreover, [

A U
V ∗ O

]−1

=

[
A† V ∗†

U † O

]
expressing generalized inverses in terms of an ordinary matrix.

2. Partitioned matrices and linear equations

Consider the linear equation

Ax = b (1)

with given matrix A and vector b, in the following three cases.

Case 1. A ∈ Cr×n
r , i.e. A is of full row rank. Let the columns of A be rearranged, if

necessary, so that the first r columns are linearly independent. A rearrangement of columns may
be interpreted as postmultiplication by a suitable permutation matrix; thus,

AQ =
[
A1 A2

]
or A =

[
A1 A2

]
QT , (2)

where Q is an n×n permutation matrix (hence Q−1 = QT ) and A1 consists of r linearly independent
columns, so that A1 ∈ Cr×r

r , i.e., A1 is nonsingular.

145
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The matrix A2 is in Cr×(n−r) and if n = r, this matrix and other items indexed by the subscript
2 are to be interpreted as absent.

Corresponding to (2), let the vector x be partitioned

x =

[
x1

x2

]
, x1 ∈ Cr . (3)

Using (2) and (3) we rewrite (1) as

[
A1 A2

]
QT

[
x1

x2

]
= b (4)

easily shown to be satisfied by the vector[
x1

x2

]
= Q

[
A−1

1 b
O

]
, (5)

which is thus a particular solution of (1).
The general solution of (1) is obtained by adding to (5) the general element of N(A), i.e., the

general solution of

Ax = 0 . (6)

In (2) the columns of A2 are linear combinations of the columns of A1, say,

A2 = A1T or T = A−1
1 A2 ∈ Cr×(n−r) , (7)

where the matrix T is called the multiplier corresponding to the partition (2), a name suggested by
T being the “ratio” of the last n− r columns of AQ to its first r columns.

Using (2), (3), and (7) permits writing (6) as

A1

[
Ir T

]
QT

[
x1

x2

]
= 0 , (8)

whose general solution is clearly [
x1

x2

]
= Q

[
−T
In−r

]
y , (9)

where y ∈ Cn−r is arbitrary.
Adding (5) and (9) we obtain the general solution of (1):[

x1

x2

]
= Q

[
A−1

1 b
O

]
+Q

[
−T
In−r

]
y , y arbitrary . (10)

Thus an advantage of partitioning A as in (2). is that it permits solving (1) by working with
matrices smaller or more convenient than A. We also note that the null space of A is completely
determined by the multiplier T and the permutation matrix Q, indeed (9) shows that the columns
of the n× (n− r) matrix

Q

[
−T
In−r

]
(11)

form a basis for N(A).
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Case 2. A ∈ Cm×r
r , i.e. A is of full column rank. Unlike Case 1, here the linear equation

(1) may be inconsistent. If, however, (1) is consistent, then it has a unique solution. Partitioning
the rows of A is useful for both checking the consistency of (1) and for computing its solution, if
consistent.

Let the rows of A be rearranged, if necessary, so that the first r rows are linearly independent.
This is written, analogously to (2), as

PA =

[
A1

A2

]
or A = P T

[
A1

A2

]
, (12)

where P is an m×m permutation matrix, and A1 ∈ Cr×r
r .

If m = r, the matrix A2 and other items with the subscript 2 are to be interpreted as absent.
In (12) the rows of A2 are linear combinations of the rows of A1, say,

A2 = SA1 or S = A2A
−1
1 ∈ C(m−r)×r , (13)

where again S is called the multiplier corresponding to the partition (12), giving the “ratio” of the
last (m− r) rows of PA to its first r rows.

Corresponding to (12) let the permutation matrix P be partitioned as

P =

[
P1

P2

]
, P1 ∈ Cr×m . (14)

Equation (1) can now be written, using (12), (13), and (14), as[
Ir
S

]
A1x =

[
P1

P2

]
b , (15)

from which the conclusions below easily follow:
(a) Equation (1) is consistent if and only if

P2b = SP1b (16)

i.e., the “ratio” of the last m − r components of the vector Pb to its first r components is the
multiplier S of (13).

(b) If (16) holds, then the unique solution of (1) is

x = A−1
1 P1b . (17)

From (a) we note that the range of A is completely determined by the multiplier S and the
permutation matrix P . Indeed, the columns of the m× r matrix

P T

[
Ir
S

]
(18)

form a basis for R(A).

Case 3. A ∈ Cm×n
r , with r ≤ mnn. This general case has some of the characteristics of both

cases 1 and 2, as here we partition both the columns and rows of A.
Since rankA = r, A has at least one nonsingular r×r submatrix A11, which by a rearrangement

of rows and columns can be brought to the top left corner of A, say

PAQ =

[
A11 A12

A21 A22

]
, (19)

where A and Q are permutation matrices, and A11 ∈ |Cmnrrrr.
By analogy with (2) and (12) we may have to interpret some of these submatrices as absent,

e.g., A12 and A22 are absent if n = r.
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By analogy with (7) and (13) there are multipliers T ∈ Cr×(n−r) and S ∈ C(m−r)×r, satisfying[
A12

A22

]
=

[
A11

A21

]
T and

[
A21 A22

]
= S

[
A11 A12

]
. (20)

These multipliers are given by

T = A−1
11 A12 and S = A21A

−1
11 . (21)

Combining (19) and (20) results in the following partition of A ∈ Cm×n
r

A = P T

[
A11 A12

A21 A22

]
QT

= P T

[
Ir
S

]
A11

[
Ir T

]
QT , (22)

where A11 ∈ Cr×r
r , P and Q are permutation matrices, and S and T are given by (21).

As in cases 1 and 2 we conclude that the multipliers S and T , and the permutation matrices P
and Q, carry all the information about the range and null space of A.

Lemma 1. Let A ∈ Cm×n
r be partitioned as in (22). Then

(a) The columns of the n× (n− r) matrix

Q

[
−T
In−r

]
(11)

form a basis for N(A).
(b) The columns of the m× r matrix

P T

[
Ir
S

]
(18)

form a basis for R(A). �

Returning to the linear equation (1), it may be partitioned by using (22) and (14), in analogy
with (4) and (15), as follows: [

Ir
S

]
A11

[
Ir T

]
QT

[
x1

x2

]
=

[
P1

P2

]
b . (23)

The following theorem summarizes the situation, and includes the results of cases 1 and 2 as special
cases.

Theorem 1. Let A ∈ Cm×n
r , b ∈ Cm be given, and let the linear equation

Ax = b (1)

be partitioned as in (23). Then
(a) Equation (1) is consistent if and only if1

P2b = SP1b (16)

(b) If (16) holds, the general solution of (1) is[
x1

x2

]
= Q

[
A−1

11 P1b
O

]
+Q

[
−T
In−r

]
y , (24)

where y ∈ Cn−r is arbitrary. �

The partition (22) is useful also for computing generalized inverses. We collect some of these
results in the following.

1By convention, (16) is satisfied if m = r, in which case P2, and S are interpreted as absent.
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Theorem 2. Let A ∈ Cm×n
r be partitioned as in (22). Then

(a) A {1, 2}–inverse of A is

A(1,2) = Q

[
A−1

11 O
O O

]
P (Rao [1241]) . (25)

(b) A {1, 2, 3}–inverse of A is

A(1,2,3) = Q

[
A−1

11

O

]
(Ir + S∗S)−1

[
Ir S∗

]
P (Meyer and Painter [1032]) . (26)

(c) A {1, 2, 4}–inverse of A is

A(1,2,4) = Q

[
Ir
T ∗

]
(Ir + TT ∗)−1

[
A−1

11 O
]
P . (27)

(d) The Moore–Penrose inverse of A is

A† = Q

[
Ir
T ∗

]
(Ir + TT ∗)−1A−1

11 (Ir + S∗S)−1
[
Ir S∗

]
P (Noble [1144]) . (28)

Proof. The partition (22) is a full–rank factorization of A (see Lemma 1.4),

A = FG , F ∈ Cm×r
r , G ∈ Cr×n

r (29)

with

F = P T

[
Ir
S

]
A11 , G =

[
Ir T

]
QT (30)

or alternatively

F = P T

[
Ir
S

]
, G = A11

[
Ir T

]
QT . (31)

The theorem now follows from Ex. 1.25 and Ex. 1.15 by using (29) with either (30) or (31). �

Exercises.

Ex.1. Let

A =

[
A11 A12

A21 A22

]
, A11 nonsingular . (32)

Then

rankA = rankA11 (33)

if and only if

A22 = A21A
−1
11 A12 (Brand [233]) . (34)

Ex.2. Let A, A11 satisfy (32) and (33). Then the general solution of[
A11 A12

A21 A22

] [
x1

x2

]
=

[
0
0

]
is given by [

x1

x2

]
=

[
−A−1

11 A12x2

x2

]
, x2 arbitrary .
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Ex.3. Let A, A11 satisfy (32) and (33). Then the linear equation[
A11 A12

A21 A22

] [
x1

x2

]
=

[
b1

b2

]
(35)

is consistent if and only if

A21A
−1
11 b1 = b2

in which case the general solution of (35) is given by[
x1

x2

]
=

[
A−1

11 b1 − A−1
11 A12x2

x2

]
, x2 arbitrary .

Ex.4. Let A, A11 satisfy (32) and (33). Then

A† =
[
A11 A12

]∗
T ∗11

[
A11

A21

]∗
,

where

T11 =

([
A11 A12

]
A∗
[
A11

A21

])−1

(Zlobec [1652]) .

Ex.5. Let A ∈ Cn×n
r , r < n, be partitioned by

A =

[
A11 A12

A21 A22

]
=

[
Ir
S

]
A11

[
Ir T

]
, A11 ∈ Cr×r

r . (36)

Then the group inverse A# exists if and only if Ir + ST is nonsingular, in which case

A# =

[
Ir
S

]
((Ir + TS)A11(Ir + TS))−1 [Ir T

]
(Robert [1278]) . (37)

Ex.6. Let A ∈ Cn×n
r be partitioned as in (36). Then A is range–Hermitian if and only if S = T ∗.

Ex. 7. Let A ∈ Cm×n
r be partitioned as in (22). Then the following orthogonal projectors are given

in terms of the multipliers S, T and the permutation matrices P,Q as:

(a) PR(A) = P T

[
Ir
S

]
(Ir + S∗S)−1

[
Ir S∗

]
P ,

(b) PR(A∗) = Q

[
Ir
T ∗

]
(Ir + TT ∗)−1

[
Ir T

]
QT ,

(c) PN(A) = Q

[
−T
In−r

]
(In−r + T ∗T )−1

[
−T ∗ In−r

]
QT ,

(d) PN(A∗) = P T

[
−S
Im−r

]
(Im−r + SS∗)−1

[
−S Im−r

]
P .

remark. (a) and (d) are alternative computations since

PR(A) + PN(A∗) = Im .

The computation (a) requires inverting the r× r positive definite matrix Ir + S∗S, while in (d) the
dimension of the positive definite matrix to be inverted is (m− r)× (m− r). Accordingly (a) may
be preferred if r < m− r,

Similarly (b) and (c) are alternative computations since

PR(A∗) + PN(A) = In

with (b) preferred if r < n− r.
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Ex.8. (Albert [12]) For a Hermitian matrix H we denote by
H ≥ O the fact that H is positive semidefinite,
H > O that H is positive definite. Let

H =

[
H11 H12

H∗
12 H22

]
,

where H11 and H22 are Hermitian. Then:
(a) H ≥ O if and only if

H11 ≥ O , H11H
†
11H12 = H12 and H22 −H∗

12H
†
11H12 ≥ O

(b) H > O if and only if

H11 > O , H11 −H12H
†
22H

∗
12 > O and H22 −H∗

12H
−1
11 H12 > O

Ex.9. (Rohde [1297]) Let

H =

[
H11 H12

H∗
12 H22

]
,

be Hermitian positive semidefinite, and denote

H(α) =

[
H

(α)
11 +H

(α)
11 H12G

(α)H∗
12H

(α)
11 −H(α)

11 H12G
(α)

−G(α)H∗
12H

(α)
11 G(α)

]
, (38)

where

G = H22 −H∗
12H

(α)
11 H12

and α is an integer, or a set of integers, to be specified below. Then:
(a) The relation (38) is an identity for α = 1 and α = {1, 2}. This means that RHS(38) is an

{α}–inverse of H if in it one substitutes the {α}–inverses of H11 and G as indicated.
(b) If H22 is nonsingular and rankH = rankH11 + rankH22, then (38) is an identity with

α = {1, 2, 3} and α = {1, 2, 3, 4}.

3. Intersection of manifolds

For any vector f ∈ Cn and a subspace L of Cn, the set

f + L = {f + ` : ` ∈ L} (39)

is called a (linear) manifold (also affine set). The vector f in (39) is not unique, indeed

f + L = (f + `) + L for any ` ∈ L .
This nonuniqueness suggests singling out the representation

(f − PLf) + L = PL⊥f + L (40)

of the manifold (39) and calling it the orthogonal representation of f +L. We note that PL⊥f is the
unique vector of least Euclidean norm in the manifold (39).

In this section we study the intersection of two manifolds

{f + L} ∩ {g +M} (41)

for given vectors f and g, and given subspaces L and M in Cn. The results are needed in Section 4
below where the common solutions of pairs of linear equations are studied. Let such a pair be

Ax = a (42a)

and

Bx = b (42b)
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where A and B are given matrices with n columns, and a and b are given vectors. Assuming (42a)
and (42b) to be consistent, their solutions are the manifolds

A†a +N(A) (43a)

and

B†b +N(B) , (43b)

respectively. If the intersection of these manifolds

{A†a +N(A)} ∩ {B†b +N(B)} (44)

is nonempty, then it is the set of common solutions of (42a)–(42b). This is the main reason for our
interest in intersections of manifolds, whose study here includes conditions for the intersection (41)
to be nonempty, in which case its properties and representations are given.

Since linear subspaces are manifolds, this special case is considered first.

Lemma 2. Let L and M be subspaces of Cn, with PL and PM the corresponding orthogonal
projectors. Then

PL+M = (PL + PM)(PL + PM)†

= (PL + PM)†(PL + PM) . (45)

Proof. Clearly L+M = R(
[
PL PM

]
). Therefore,

PL+M =
[
PL PM

] [
PL PM

]†
=
[
PL PM

] [PL

PM

] [
PL PM

]†
(by Ex. 10)

= (PL + PM)(PL + PM)† , since PL and PM are idempotent

= (PL + PM)†(PL + PM)

since a Hermitian matrix commutes with its Moore–Penrose inverse. �

The interesection of any two subspaces L and M in Cn is a subspace L ∩M in Cn, nonempty
since 0 ∈ L ∩M . The orthogonal projector PL∩M is given in terms of PL and PM in the following.

Theorem 3. (Anderson and Duffin [26]). Let L,M,PL, and PM be as in Lemma 2. Then

PL∩M = 2PL(PL + PM)†PM

= 2PM(PL + PM)†PL (46)

Proof. Since M ⊂ L+M , it follows that

PL+MPM = PM = PMPL+M , (47)

and by using (45)

(PL + PM)(PL + PM)†PM = PM = PM(PL + PM)†(PL + PM) . (48)

Subtracting PM(PL + PM)†PM from the first and last expressions in (48) gives

PL(PL + PM)†PM = PM(PL + PM)†PL . (49)

Now, let

H = 2PL(PL + PM)†PM = 2PM(PL + PM)†PL .
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Evidently, R(H) ⊂ L ∩M , and therefore

H = PL∩MH = PL∩M

(
PL(PL + PM)†PM + PM(PL + PM)†PL

)
= PL∩M(PL + PM)†(PL + PM)

= PL∩MPL+M (by Lemma 2)

= PL∩M ,

since L ∩M ⊂ L+M . �

Other expressions for L ∩M are given in the following theorem.

Theorem 4. (Lent [924]). Let L and M be subspaces of Cn. Then

(a) L ∩M =
[
PL O

]
N(
[
PL −PM

]
) =

[
O PM

]
N(
[
PL −PM

]
)

(b) = N(PL⊥ + PM⊥)
(c) = N(I − PLPM) = N(I − PMPL).

Proof. (a) x ∈ L ∩M if and only if

x = PLy = PMz for some y, z ∈ Cn ,

which is equivalent to

x =
[
PL O

] [y
z

]
=
[
O PM

] [y
z

]
, where

[
y
z

]
∈ N(

[
PL −PM

]
) .

(b) Let x ∈ L ∩M . Then PL⊥x = PM⊥x = 0, proving that x ∈ N(PL⊥ + PM⊥). Conversely, let
x ∈ N(PL⊥ + PM⊥), i.e.,

(I − PL)x + (I − PM)x = 0

or

2x = PLx + PMx

and therefore

2‖x‖ ≤ ‖PLx‖+ ‖PMx‖ ,

by the triangle inequality for norms. But by Ex. 2.39,

‖PLx‖ ≤ ‖x‖ , ‖PMx‖ ≤ ‖x‖ .

Therefore,

‖PLx‖ = ‖x‖ = ‖PMx‖

and so, by Ex. 2.39,

PLx = x = PMx ,

proving x ∈ L ∩M .

(c) Let x ∈ L∩M . Then x = PLx = PMx = PLPMx, and therefore x ∈ N(I −PLPM). Conversely,
let x ∈ N(I − PLPM) and therefore,

x = PLPMx ∈ L . (50)
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Also,

‖PMx‖2 + ‖PM⊥x‖2 = ‖x‖2

= ‖PLPMx‖2

≤ ‖PMx‖2 , by Ex. 2.39.

Therefore,

PM⊥x = 0 , i.e., x ∈M

and by (50),

x ∈ L ∩M .

The remaining equality in (c) is proved similarly. �

The intersection of manifolds, which if nonempty is itself a manifold, can now be determined.

Theorem 5. (Ben–Israel [112], Lent [924]). Let f and g be vectors in Cn and let L and M be
subspaces of Cn. Then the intersection of manifolds

{f + L} ∩ {g +M} (41)

is nonempty if and only if

g − f ∈ L+M , (51)

in which case

(a) {f + L} ∩ {g +M} = f + PL(PL + PM)†(g − f) + L ∩M
(a′) = g − PM(PL + PM)†(g − f) + L ∩M
(b) = f + (PL⊥ + PM⊥)†PM⊥(g − f) + L ∩M
(b′) = g − (PL⊥ + PM⊥)†PL⊥(g − f) + L ∩M
(c) = f + (I − PMPL)†PM⊥(g − f) + L ∩M
(c′) = g − (I − PLPM)†PL⊥(g − f) + L ∩M .

Proof. {f + L} ∩ {g +M} is nonempty if and only if

f + ` = g + m , for some ` ∈ L , m ∈M ,

which is equivalent to

g − f = `−m ∈ L+M .

We now prove (a), (b), and (c). The primed statements (a′), (b′), and (c′) are proved similarly to
their unprimed counterparts.

(a) The points x ∈ {f + L} ∩ {g +M} are characterized by

x = f + PLu = g + PMv , for some u,v ∈ Cn . (52)

Thus [
PL −PM

] [u
v

]
= g − f . (53)

The linear equation (53) is consistent, since (41) is nonempty, and therefore the general solution of
(53) is [

u
v

]
=
[
PL −PM

]†
(g − f) +N(

[
PL −PM

]
)

=

[
PL

−PM

]
(PL + PM)†(g − f) +N(

[
PL −PM

]
) by Ex. 10. (54)
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Substituting (54) in (52) gives

x = f +
[
PL O

] [u
v

]
= f + PL(PL + PM)†(g − f) + L ∩M

by Theorem 4(a).
(b) Writing (52) as

PLu− PMv = g − f

and multiplying by PM⊥ gives

PM⊥PLu = PM⊥(g − f) , (55)

which implies

(PL⊥ + PM⊥)PLu = PM⊥(g − f) . (56)

The general solution of (56) is

PLu = (PL⊥ + PM⊥)†PM⊥(g − f) +N(PL⊥ + PM⊥)

= (PL⊥ + PM⊥)†PM⊥(g − f) + L ∩M ,

by Theorem 4(b), which when substituted in (52) proves (b).
(c) Equation (55) can be written as

(I − PMPL)PLu = PM⊥(g − f)

whose general solution is

PLu = (I − PMPL)†PM⊥(g − f) +N(I − PMPL)

= (I − PMPL)†PM⊥(g − f) + L ∩M ,

by Theorem 4(c), which when substituted in (52) proves (c). �

Theorem 5 verifies that the intersection (41), if nonempty, is itself a manifold. We note, in
passing, that parts (a) and (a′) of Theorem 5 give the same representation of (41); i.e., if (51) holds,
then

f + PL(PL + PM)†(g − f) = g − PM(PL + PM)†(g − f) . (57)

Indeed, (51) implies that

g − f = PL+M(g − f)

= (PL + PM)(PL + PM)†(g − f) ,

which gives (57) by rearrangement of terms.
It will now be proved that parts (a), (a′), (b), and (b′) of Theorem 5 give orthogonal represen-

tations of

{f + L} ∩ {g +M} (41)

if the representations {f + L} and {g +M} are orthogonal, i.e., if

f ∈ L⊥ , g ∈M⊥ . (58)

Corollary 1. Let L and M be subspaces of Cn, and let

f ∈ L⊥ , g ∈M⊥ . (58)

If (41) is nonempty, then each of the four representations given below is orthogonal.
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(a) {f + L} ∩ {g +M} = f + PL(PL + PM)†(g − f) + L ∩M
(a′) = g − PM(PL + PM)†(g − f) + L ∩M
(b) = f + (PL⊥ + PM⊥)†PM⊥(g − f) + L ∩M
(b′) = g − (PL⊥ + PM⊥)†PL⊥(g − f) + L ∩M .

Proof. Each of the above representations is of the form

{f + L} ∩ {g +M} = v + L ∩M , (59)

which is an orthogonal representation if and only if

PL∩Mv = 0 . (60)

In the proof we use the facts

PL∩M = PLPL∩M = PL∩MPL = PMPL∩M = PL∩MPM , (61)

which hold since L ∩M is contained in both L and M .
(a) Here v = f + PL(PL + PM)†(g − f). The matrix PL + PM is Hermitian, and therefore

(PL + PM)† is a polynomial in powers of PL + PM , by Theorem 4.7. From (61) it follows therefore
that

PL∩M(PL + PM)† = (PL + PM)†PL∩M (62)

and (60) follows from

PL∩Mv = PL∩M f + PL∩MPL(PL + PM)†(g − f)

= PL∩M f + (PL + PM)†PL∩M(g − f) (by (61) and (62))

= 0 , by (58) .

(a′) follows from (57) and (a).
(b) Here v = f + (PL⊥ +PM⊥)†PM⊥(g− f). The matrix PL⊥ +PM⊥ is Hermitian, and therefore

(PL⊥ + PM⊥)† is a polynomial in PL⊥ + PM⊥ , which implies that

PL∩M(PL⊥ + PM⊥)† = O . (63)

Finally, (60) follows from

PL∩Mv = PL∩M f + PL∩M(PL⊥ + PM⊥)†PM⊥(g − f)

= 0 , by (58) and (58) .

(b′) If (58) holds, then

g − f = PL⊥+M⊥(g − f)

= (PL⊥ + PM⊥)†(PL⊥ + PM⊥)(g − f) ,

by Lemma 2, and therefore

f + (PL⊥ + PM⊥)†PM⊥(g − f) = g − (PL⊥ + PM⊥)†PL⊥(g − f) ,

which proves (b′) identical to (b), if (58) is satisfied. �

Finally, we characterize subspaces L and M for which the intersection (41) is always nonempty.

Corollary 2. Let L and M be subspaces of Cn. Then the intersection

{f + L} ∩ {g +M} (41)

is nonempty for all f ,g ∈ Cn if and only if

L⊥ ∩M⊥ = {0} . (64)
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Proof. The intersection (41) is by Theorem 5 nonempty for all f ,g ∈ Cn, if and only if

L+M = Cn ,

which is equivalent to

{0} = (L+M)⊥

= L⊥ ∩M⊥ ,

by Ex. 11(b). �

Exercises and examples.

Ex.10. Let PL and PM be n× n orthogonal projectors. Then[
PL ±PM

]†
=

[
PL

±PM

]
(PL + PM)† (65)

Proof. Use A† = A∗(AA∗)† with A =
[
PL ±PM

]
, and the fact that PL and PM are Hermitian

idempotents. �

Ex.11. Let L and M be subspaces of Cn. Then:
(a) (L ∩M)⊥ = L⊥ +M⊥

(b) (L⊥ ∩M⊥)⊥ = L+M .

Proof. (a) Evidently L⊥ ⊂ (L ∩M)⊥ and M⊥ ⊂ (L ∩M)⊥; hence

L⊥ +M⊥ ⊂ (L ∩M)⊥ .

Conversely, from L⊥ ⊂ L⊥ +M⊥ it follows that

(L⊥ +M⊥)⊥ ⊂ L⊥⊥ = L .

Similarly (L⊥ +M⊥)⊥ ⊂M , hence

L⊥ +M⊥)⊥ ⊂ L ∩M
and by taking orthogonal complements

(L ∩M)⊥ ⊂ L⊥ +M⊥ .

(b) Follows from (a) by replacing L and M by L⊥ and M⊥, respectively. �

Ex.12. (von Neumann [1507]). Let L1, L2, . . . , Lk be any k linear subspaces of Cn, k ≥ 2, and let

Q = PLk
PLk−1

· · ·PL2PL1PL2 · · ·PLk−1
PLk

. (66)

Then the orthogonal projector on
k⋂

i=1

Li is lim
m→∞

Qm.

Ex.13. (Pyle [1223]). The matrix Q of (66) is Hermitian, so let its spectral decomposition be given
by

Q =

q∑
i=1

λiEi

where

λ1 ≥ λ2 ≥ · · · ≥ λq

are the distinct eigenvalues of Q, and

E1, E2, . . . , Eq

are the corresponding orthogonal projectors satisfying

E1 + E2 + · · ·+ Eq = I
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and

EiEj = O if i 6= j ,

Then

1 ≥ λ1 ≥ λ2 ≥ · · · ≥ λq ≥ 0

and
k⋂

i=1

Li 6= {0} if and only if λ1 = 1 ,

in which case the orthogonal projector on
k⋂

i=1

Li is E1.

Ex.14. A closed–form expression. Using the notation of Ex. 13, the orthogonal projector on
k⋂

i=1

Li is

Qν +
[
(Qν+1 −Qν)† − (Qν −Qν−1)†

]†
, for ν = 2, 3, . . . (67)

If λq, the smallest eigenvalue of Q, is positive then (67) holds also for ν = 1, in which case Q0 is
taken as I. (Pyle [1223]).

4. Common solutions of linear equations and generalized inverses of partitioned
matrices

Consider the pair of linear equations

Ax = a (42a)

Bx = b (42b)

with given vectors a,b and matrices A,B having n columns.
Assuming (42a) and (42b) to be consistent, we study here their common solutions, if any,

expressing them in terms of the solutions of (42a) and (42b).
The common solutions of (42a) and (42b) are the solutions of the partitioned linear equation[

A
B

]
x =

[
a
b

]
, (68)

which is often the starting point, the partitioning into (42a) and (42b) being used to reduce the
size or difficulty of the problem.

The solutions of (42a) and (42b) constitute the manifolds

A†a +N(A) (43a)

and

and

B†b +N(B) , (43b)

respectively. Thus the intersection

{A†a +N(A)} ∩ {B†b +N(B)} (44)

is the set of solutions of (68), and (68) is consistent if and only if (44) is nonempty.
The results of Section 3 are applicable to determining the intersection (44). In particular,

Theorem 5 yields the following
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Corollary 3. Let A and B be matrices with n columns, and let a and b be vectors such that
each of the equations (42a) and (42b) is consistent. Then (42a) and (42b) have common solutions
if and only if

B†b− A†a ∈ N(A) +N(B) (69)

in which case the set of common solutions is the manifold

(a) A†a + PN(A)(PN(A) + PN(B))
†(B†b− A†a) +N(A) ∩N(B)

(a′) = B†b− PN(B)(PN(A) + PN(B))
†(B†b− A†a) +N(A) ∩N(B)

(b) = (A†A+B†B)†(A†a +B†b) +N(A) ∩N(B).

Proof. Follows from Theorem 5 by substituting

f = A†a, L = N(A), g = B†b, M = N(B) . (70)

Thus (69), (a), and (a′) follow directly from (51), (a), and (a′) of Theorem 5, respectively, by using
(70).

That (b) follows from Theorem 5(b) or 5(b′) is proved as follows. Substituting (70) in Theo-
rem 5(b) gives

{A†a +N(A)} ∩ {B†b +N(B)}
= A†a + (A†A+B†B)†B†B(B†b− A†a) +N(A) ∩N(B)

= (A† − (A†A+B†B)†B†BA†)a + (A†A+B†B)†B†b

+N(A) ∩N(B) , (71)

since PN(X)⊥ = PR(X∗) = X†X for X = A,B.

Now R(A†) = R(A∗) ⊂ R(A∗) +R(B∗) and therefore

A† = (A†A+B†B)†(A†A+B†B)A†

by Lemma 2, from which it follows that

A† − (A†A+B†B)†B†BA† = (A†A+B†B)†A† ,

which when substituted in (71) gives (b). �

Since each of the parts (a), (a′), and (b) of Corollary 3 gives the solutions of the partitioned
equation (68), these expressions can be used to obtain the generalized inverses of partitioned ma-
trices.

Theorem 6. (Ben–Israel [112], Katz [825], Mihalyffy [1048]). Let A and B be matrices with
n columns. Then each of the following expressions is a {1, 2, 4}–inverse of the partitioned matrix[
A
B

]
:

(a) X =
[
A† O

]
+ PN(A)(PN(A) + PN(B))

† [−A† B†] (72)

(a′) Y =
[
O B†]− PN(B)(PN(A) + PN(B))

† [−A† B†] (73)

(b) Z = (A†A+B†B)†
[
A† B†] . (74)

Moreover, if

R(A∗) ∩R(B∗) = {0} , (75)

then each of the expressions (72), (73), (74) is the Moore–Penrose inverse of

[
A
B

]
.
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Proof. From Corollary 3 it follows that whenever[
A
B

]
x =

[
a
b

]
, (68)

is consistent, then X

[
a
b

]
, Y

[
a
b

]
, and Z

[
a
b

]
are among its solutions. Also the representations

(43a) and (43b) are orthogonal, and therefore, by Corollary 1, the representations (a), (a′) and (b)

of Corollary 3 are also orthogonal. Thus X

[
a
b

]
, Y

[
a
b

]
, and Z

[
a
b

]
are all perpendicular to

N(A) ∩N(B) = N

[
A
B

]
.

By Theorem 3.2, it follows therefore that X,Y, and Z are {1, 4}–inverses of

[
A
B

]
.

We show now that X,Y, and Z are {2}–inverses of

[
A
B

]
.

(a) From (72) we get

X

[
A
B

]
= A†A+ PN(A)(PN(A) + PN(B))

†(−A†A+B†B) .

But

−A†A+B†B) = PN(A) − PN(B) = (PN(A) + PN(B))− 2PN(B) .

Therefore, by Lemma 2 and Theorem 3,

X

[
A
B

]
= A†A+ PN(A)PN(A)+N(B) − PN(A)∩N(B)

= A†A+ PN(A) − PN(A)∩N(B) (since N(A) ⊂ N(A) +N(B))

= In − PN(A)∩N(B) (since PN(A) = I − A†A) . (76)

Since R(H†) = R(H∗) = N(H)⊥ for H = A,B,

PN(A)∩N(B)A
† = O , PN(A)∩N(B)B

† = O , (77)

and therefore (76) gives

X

[
A
B

]
X = X − PN(A)∩N(B)PN(A)(PN(A) + PN(B))

† [−A† B†] .
Since

PN(A)∩N(B) = PN(A)∩N(B)PN(A) = PN(A)∩N(B)PN(B) ,

X

[
A
B

]
X = X − 1

2
PN(A)∩N(B)(PN(A) + PN(B))(PN(A) + PN(B))

† [−A† B†]
= X − 1

2
PN(A)∩N(B)PN(A)+N(B)

[
−A† B†] (by Lemma 2)

= X − 1

2
PN(A)∩N(B)

[
−A† B†] (since N(A) ∩N(B) ⊂ N(A) +N(B))

= X (by (77)) .

(a′) That Y given by (73) is a {2}–inverse of

[
A
B

]
is similarly proved.
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(b) The proof that Z given by (74) is a {2}–inverse of

[
A
B

]
is easy since

Z

[
A
B

]
= (A†A+B†B)†(A†A+B†B)

and therefore

Z

[
A
B

]
Z = (A†A+B†B)†(A†A+B†B)(A†A+B†B)†

[
A† B†]

= (A†A+B†B)†
[
A† B†]

= Z .

Finally, we show that (75) implies that X, Y, and Z given by (72), (73), and (74) respectively, are

{3}–inverses of

[
A
B

]
. Indeed (75) is equivalent to

N(A) +N(B) = Cn , (78)

since N(A) +N(B) = {R(A∗) ∩R(B∗)}⊥ by Ex. 11(b).
(a) From (72) it follows that

BX =
[
BA† O

]
+BPN(A)(PN(A) + PN(B))

† [−A† B†] . (79)

But

(PN(A) + PN(B))(PN(A) + PN(B))
† = In (80)

by (78) and Lemma 2. Therefore

PN(A)(PN(A) + PN(B))
† = B(PN(A) + PN(B) − PN(A))(PN(A) + PN(B))

† = B ,

and so (79) becomes

BX =
[
O BB†] .

Consequently, [
A
B

]
X =

[
AA† O
O BB†

]
,

which proves that X is a {3}–inverse of

[
A
B

]
.

(a′) That Y given by (73) is a {3}–inverse of

[
A
B

]
whenever (75) holds is similarly proved, or,

alternatively, (72) and (73) give

Y −X =
[
−A† B†]− (PN(A) + PN(B))(PN(A) + PN(B))

† [−A† B†]
= O , by (80) .

(b) Finally we show that Z is the Moore–Penrose inverse of

[
A
B

]
when (75) holds. By Ex. 2.29,

the Moore–Penrose inverse of any matrix H is the only {1, 2}–inverse U such that R(U) = R(H∗)
and N(U) = N(H∗). Thus, H† is also the unique matrix U ∈ H{1, 2, 4} such that N(H∗) ⊂ N(U).

Now, Z has already been shown to be a {1, 2, 4}–inverse of

[
A
B

]
, and it therefore suffices to prove

that

N(
[
A∗ B∗]) ⊂ N(Z) . (81)
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Let

[
u
v

]
∈ N(

[
A∗ B∗]). Then

A∗u +B∗v = 0 ,

and therefore

A∗u = −B∗v = 0 , (82)

since, by (75), the only vector common to R(A∗) and R(B∗) is the zero vector. Since N(H†) =
N(H∗) for any H, (82) gives

A†u = B†v = 0 ,

and therefore by (74), Z

[
u
v

]
= 0. Thus (81) is established, and the proof is complete. �

If a matrix is partitioned by columns instead of by rows, then Theorem 6 may still be used.
Indeed, [

A B
]

=

[
A∗

B∗

]∗
(83)

permits using Theorem 6 to obtain generalized inverses of

[
A∗

B∗

]
, which is partitioned by rows, and

then translating the results to the matrix
[
A B

]
, partitioned by columns.

In working with the conjugate transposes of a matrix, we note that

X ∈ A{i} ⇐⇒ X∗ ∈ A∗{i} , (i = 1, 2) ,

X ∈ A{3} ⇐⇒ X∗ ∈ A∗{4} , (84)

X ∈ A{4} ⇐⇒ X∗ ∈ A∗{3} .

Applying Theorem 6 to

[
A∗

B∗

]
as in (83), and using (84), we obtain the following.

Corollary 4. Let A and B be matrices with n rows. Then each of the following expressions is a
{1, 2, 3}–inverse of the partitioned matrix

[
A B

]
:

(a) X =

[
A†

O

]
+

[
−A†

B†

]
(PN(A∗) + PN(B∗))

†PN(A∗) , (85)

(a′) Y =

[
O
B†

]
−
[
−A†

B†

]
(PN(A∗) + PN(B∗))

†PN(B∗) , (86)

(b) Z =

[
A†

B†

]
(AA† +BB†)† . (87)

Moreover, if

R(A) ∩R(B) = {0} , (88)

then each of the expressions (85), (86), (87) is the Moore–Penrose inverse of
[
A B

]
. �

Other and more general results on Moore–Penrose inverses of partitioned matrices were given
in Cline [350]. However, these results are too formidable for reproduction here.
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Exercises and examples.

Ex.15. Let the partitioned matrix

[
A
B

]
be nonsingular. Then

(a)

[
A
B

]−1

=
[
A† O

]
+ PN(A)(PN(A) + PN(B))

−1
[
−A† B†]

(a′) =
[
O B†]− PN(B)(PN(A) + PN(B))

−1
[
−A† B†]

(b) = (A†A+B†B)−1
[
A† B†] .

Proof. Follows from Theorem 6. Indeed the nonsingularity of

[
A
B

]
guarantees that (75) is

satisfied, and also that the matrices PN(A)+PN(B) and A†A+B†B = PR(A∗)+PR(B∗) are nonsingular.
�

Ex. 16. Let A =
[
1 1

]
, B =

[
1 2

]
. Then

[
A
B

]
=

[
1 1
1 2

]
is nonsingular. We calculate now its

inverse using Ex. 15(b).
Here

A† =
1

2

[
1
1

]
, A†A =

1

2

[
1 1
1 1

]
,

B† =
1

5

[
1
2

]
, B†B =

1

5

[
1 2
2 4

]
,

A†A+B†B =
1

10

[
7 9
9 13

]
, (A†A+B†B)−1 =

[
13 −9
−9 7

]
,

and finally, [
A
B

]−1

= (A†A+B†B)−1
[
A† B†]

=

[
13 −9
−9 7

]
1

10

[
7 9
9 13

]
=

[
2 −1
−1 1

]
.

Ex.17. Series expansion. Let the partitioned matrix

[
A
B

]
be nonsingular. Then

A†A+B†B = I +K , (89)

where K is Hermitian and

‖K‖ < 1 . (90)

From (89) and (90) it follows that

(A†A+B†B)−1 =
∞∑

j=0

(−1)jKj , (91)

Substituting (91) in Ex. 15(b) gives[
A
B

]−1

=
∞∑

j=0

(−1)jKj
[
A† B†] . (92)
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Similarly,

PN(A) + PN(B) = I − A†A+ I −B†B

= I −K , with K as in (89)

and therefore

(PN(A) + PN(B))
−1 =

∞∑
j=0

Kj . (93)

Substituting (93) in Ex. 15(a) gives[
A
B

]−1

=
[
A† O

]
+ (I − A†A)

∞∑
j=0

Kj
[
−A† B†] . (94)

Ex.18. Let the partitioned matrix

[
A
B

]
be nonsingular. Then the solution of[

A
B

]
x =

[
a
b

]
, (68)

for any given a and b is

x =
∞∑

j=0

(−1)jKj(A†a +B†b) (95)

= A†a + (I − A†A)
∞∑

j=0

Kj(B†b− A†a) , (96)

with K given by (89).

Proof. Use (92) and (94). �

Remark. If the nonsingular matrix

[
A
B

]
is ill–conditioned, then slow convergence may be ex-

pected in (91) and (93), and hence in (92) and (94). Even then the convergence of (95) or (96) may

be reasonable for certain vectors

[
a
b

]
. Thus for example, if ‖B†b− A†a‖ is sufficiently small, then

(96) may be reasonably approximated by its first few terms.

Ex.19. Common solutions for n matrix equations. For each i ∈ 1, n let the matrices Ai ∈ Cp×q, Bi ∈
Cp×r be given, and consider the n matrix equations

AiX = Bi i ∈ 1, n . (97)

For k ∈ 1, n define recursively

Ck = AkFk−1 , Dk = Bk − AkEk−1 ,

Ek = Ek−1 + Fk−1C
†
kDk and Fk = Fk−1(I − C†

kCk) , (98)

where

E0 = Oq×r , F0 = Iq .

Then the n matrix equations (97) have a common solution if and only if

CiC
†
iDi = Di i ∈ 1, n , (99)
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in which case the general common solution of (97) is

X = En + FnZ , (100)

where Z ∈ Cq×r is arbitrary (Morris and Odell [1096]).

Ex.20. (Morris and Odell [1096]). For i ∈ 1, n let Ai ∈ C1×q, and let Ci be defined by (98) for i ∈ 1, n.
Let the vectors {A1, A2, . . . , Ak} be linearly independent. Then the vectors {A1, A2, . . . , Ak+1} are
linearly independent if and only if Ck+1 = O.

Ex.21. (Morris and Odell [1096]). For i ∈ 1, n let Ai, Ci be as in Ex. 20. For any k ≤ n the vectors
{C1, C2, . . . , Ck} are orthogonal and span the subspace spanned by {A1, A2, . . . , Ak}.

5. Greville’s method and related results

Greville’s method for computing the Moore–Penrose inverse A† of a matrix A ∈ Cm×n is a finite
iterative method. The main variant of this method, described in Theorem 7 below, uses n iterations.
At the kth iteration (k = 1, 2, . . . , n) it computes A†

k, where Ak is the submatrix of A consisteing
of its first k columns.

First we need some notation. For k = 2, . . . , n the matrix Ak is partitioned as

Ak =
[
Ak−1 ak

]
(101)

where ak is the kth column of A. For k = 2, . . . , n let the vectors dk and ck be defined by

dk = A†
k−1ak (102)

ck = ak − Ak−1dk (103)

= ak − Ak−1A
†
k−1ak

= ak − PR(Ak−1)ak

= PN(A∗k−1)ak .

Theorem 7. (Greville [580]). Let A ∈ Cm×n. Using the above notation, the Moore–Penrose
inverse of Ak (k = 2, . . . , n) is[

Ak−1 ak

]†
=

[
A†

k−1 − dkb
∗
k

b∗k

]
, (104)

where

b∗k = c†k if ck 6= 0 , (105)

b∗k = (1 + d∗kdk)
−1d∗kA

†
k−1 if ck = 0 . (106)

Proof. Let A†
k =

[
Ak−1 ak

]†
be partitioned as

A†
k =

[
Bk

b∗k

]
(107)

where b∗k is the kth row of A†
k. Multiplying (101) and (107) gives

AkA
†
k = Ak−1Bk + akb

∗
k . (108)

Now by (101), Ex. 2.29 and Corollary 2.7

N(A†
k−1) = N(A∗

k−1) ⊃ N(A∗
k) = N(A†

k) = N(AkA
†
k) ,

and it follows from Ex. 2.20 that

A†
k−1AkA

†
k = A†

k−1 . (109)
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Moreover, since

R(A†
k) = R(A∗

k)

by Ex. 2.29, it follows from (101), (107), and Corollary 2.7 that

R(Bk) ⊂ R(A∗
k−1) = R(A†

k−1) = R(A†
k−1Ak−1) ,

and therefore

A†
k−1Ak−1Bk = Bk (110)

by Ex. 2.20. It follows from (109) and (110) that premultiplication of (108) by A†
k−1 gives

A†
k−1 = Bk + A†

k−1akb
∗
k

= Bk + dkb
∗
k , (111)

by (102). Thus we may write [
Ak−1 ak

]†
=

[
A†

k−1 − dkb
∗
k

b∗k

]
, (104)

with b∗k still to be determined. We distinguish two cases according as ak is or is not in R(Ak−1),
i.e., according as ck is or is not 0.

Case I (ck 6= 0)

By using (111), (108) becomes

AkA
†
k = Ak−1A

†
k−1 + (ak − Ak−1dk)b

∗
k

= Ak−1A
†
k−1 + ckb

∗
k (112)

by (103). Since AkA
†
k is Hermitian, it follows from (112) that ckb

∗
k is Hermitian, and therefore

b∗k = δc∗k , (113)

where δ is some real number. From (101) and (103) we obtain

Ak = AkA
†
kAk =

[
Ak−1 + ckb

∗
kAk−1 ak − ck + (b∗kak)ck

]
,

and comparison with (101) shows that

b∗kak = 1 , (114)

since ck 6= 0. Now, by (103),

ck = Pak ,

where P denotes the orthogonal projector on N(A∗
k−1). Therefore, (113) and (114) give

1 = b∗kak = δc∗kak = δa∗kPak

= δa∗kP
2ak = δc∗kck , (115)

since P is idempotent. By (113), (115), aand Ex. 1.17(a)

b∗k = δc∗k = c†k .

Case II (ck = 0)

Here R(Ak) = R(Ak−1), and so, by (107) and (2.48),

N(b∗k) ⊃ N(A†
k) = N(A∗

k) = N(A∗
k−1) = N(A†

k−1)

= N(Ak−1A
†
k−1) .
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Therefore, by Ex. 2.20,

b∗kAk−1A
†
k−1 = b∗k . (116)

Now, (101) and (104) give

A†
kAk =

[
A†

k−1 − dkb
∗
kAk−1 (1− α)dk

b∗kAk−1 α

]
, (117)

where

α = b∗kak (118)

is a scalar (real, in fact, since it is a diagonal element of a Hermitian matrix). Since (117) is
Hermitian we have

b∗kAk−1 = (1− α)d∗k .

Thus, by (116),

b∗k = b∗kAk−1A
†
k−1 = (1− α)d∗kA

†
k−1 . (119)

Substitution of (119) in (118) gives

α = (1− α)d∗kdk , (120)

by (102). Adding 1− α to both sides of (120) gives

(1− α)(1 + d∗kdk) = 1

and substitution for 1− α in (119) gives (106). �

Greville’s method as described above, thus computes A† recursively in terms of A†
k (k =

1, 2, . . . , n). This method was adapted by Greville [580] for the computation of A†y, for any
y ∈ Cm, without computing A†. This is done as follows:

Let

Ã =
[
A y

]
. (121)

Then (104) gives

A†
kÃ =

[
A†

k−1Ã− dkb
∗
kÃ

b∗kÃ

]
. (122)

By (102) it follows that dk is the kth column of A†
k−1Ã for k = 2, . . . , n. Therefore only the vector

b∗kÃ is needed to get A†
kÃ from A†

k−1Ã by (122).

If ck = 0, then (106) gives b∗kÃ as

b∗kÃ = (1 + d∗kdk)
−1d∗kA

†
k−1Ã (ck = 0) . (123)

If ck 6= 0, then from (105)

b∗kÃ = (c∗kck)
−1c∗kÃ (ck 6= 0) . (124)

The computation of (124) is simplified by noting that the kth element of the vector c∗kÃ is c∗kak (k =
1, 2, . . . , n). Premultiplying (103) by c∗k we obtain

c∗kck = c∗kak , (125)

since c∗kAk−1 = 0 by (103). Thus the vector (124) may be computed by computing c∗kÃ and
normalizing it by dividing by its kth element. In the Greville method as described above, the
matrix to be inverted is modified at each iteration by adjoining an additional column. This is
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the natural approach to some applications. Consider, for example, the least–squares polynomial

approximation problem where a real function y(t) is to be approximated by polynomials
k∑

j=0

xjt
j. In

the discrete version of this problem, the function y(t) is represented by the m–dimensional vector

y =
[
yi

]
=
[
y(ti)

]
(i = 1, . . . ,m) , (126)

whose ith component is the function y evaluated at t = ti, where the points t1, t2, . . . , tm are given.
Similarly, the polynomial tj (j = 0, 1, . . . ) is represented by the m–dimensional vector

aj+1 =
[
ai,j+1

]
=
[
(ti)

j
]

(i = 1, . . . ,m) . (127)

The problem is, therefore, for a given approximation error ε > 0 to find an integer k = k(ε) and a
vector x ∈ Rk−1 such that

‖Ak−1x− y‖ ≤ ε , (128)

where y is given by (126) and Ak−1 ∈ Rm×(k−1) is the matrix

Ak−1 =
[
a1 a2 · · · ak−1

]
(129)

for aj given by (127). For any k, the Euclidean norm ‖Ak−1x− y‖ is minimized by

x = A†
k−1y . (130)

If for a given k, the vector (130) does not satisfy (128), i.e., if

‖Ak−1A
†
k−1y − y‖ > ε , (131)

then we try achieving (128) with the matrix

Ak =
[
Ak−1 ak

]
, (101)

where, in effect, the degree of the approximating polynomial has been increased from k−2 to k−1.
Greville’s method described above computes A†

ky in terms of A†
k−1y, and is thus the natural method

for solving the above polynomial approximation problem and similar problems in approximation
and regression.

There are applications on the other hand which call for modifying the matrix to be inverted
by adjoining additional rows. Consider, for example, the problem of solving (or approximating the
solution of) the following linear equation:

n∑
j=1

Aijxj = yi (i = 1, . . . , k − 1) , (132)

where n is fixed and the data {aij, yi : i = 1, . . . , k − 1, j = 1, . . . , n} are the result of some
experiment or observation repeated k − 1 times, with the row[

ai1 ai2 · · · ain yi

]
(i = 1, . . . , k − 1)

the result of the ith experiment.
Let x̂k−1 be the least–squares solution of (132), i.e.,

x̂k−1 = A†
(k−1)y(k−1) , (133)

where A(k−1) =
[
aij

]
and y(k−1) =

[
yi

]
, i = 1, . . . , k − 1 ; j = 1, . . . , n . If the results of an

additional experiment or observation become available after (132) is solved, then it is necessary to
update the solution (133) in light of the additional information. This explains the need for the
variant of Greville’s method described in Corollaries 5 and 6 below, for which some notation is
needed.
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Let n be fixed and let A(k) ∈ Ck×n be partitioned as

A(k) =

[
A(k−1)

a∗k

]
, a∗k ∈ C1×n . (134)

Also, in analogy with (102) and (103), let

d∗k = a∗kA
†
(k−1) , (135)

c∗k = a∗k − d∗kA(k−1) . (136)

Corollary 5. (Kishi [859]). Using the above notation

A†
(k) =

[
A†

(k−1) − bkd
∗
k bk

]
, (137)

where

bk = c∗†k , if c∗k 6= 0 (138)

bk = (1 + d∗kdk)
−1A†

(k−1)dk , if c∗k = 0 . (139)

Proof. Follows by applying Theorem 7 to the conjugate transpose of the matrix (134). �

In some applications it is necessary to compute

x̂k = A†
(k)y(k) for given y(k) ∈ Ck

but A†
(k) is not needed. Then x̂k may be obtained from x̂k−1 very simply, as follows.

Corollary 6. (Albert and Sittler [16]). Let the vector y(k) ∈ Ck be partitioned as

y(k) =

[
y(k−1)

yk

]
, yk ∈ C , (140)

and let

x̂k = A†
(k)y(k) , x̂k−1 = A†

(k−1)y(k−1) (141)

using the notation (134). Then

x̂k = x̂k−1 + (yk − a∗kx̂k−1)bk , (142)

with bk given by (138) or (139).

Proof. Follows directly from Corollary 5. �

Exercises and examples.

Ex. 22. A converse of Theorem 7. Let the matrix Ak−1 ∈ Cm×(k−1) be obtained from Ak ∈ Cm×k by
deleting its kth column ak. If Ak is of full column rank[

A†
(k−1)

0T

]
= A†

k −
A†

kbkb
∗
k

b∗kbk

, (143)

where b∗k is the last row of A†
k (Fletcher [496]).

Ex.23. Let

A2 =
[
a1 a2

]
=

1 0
2 1
0 −1

 .
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Then

A†
1 = a†1 =

1
2
0

† =
1

5

[
1 2 0

]
,

d2 = A†
1a2 =

1

5

[
1 2 0

]  0
1
−1

 =
2

5
,

c2 = a2 − A1d2 =

 0
1
−1

−
1

2
0

 2

5
=

−2
5

1
5
−1

 ,

and by (105)

b∗2 = c†2 =
1

6

[
−2 1 −5

]
.

A†
2 is now computed by (104) as

A†
2 =

1

5

[
1 2 0
0 0 0

]
+

[
−2

5
1

] [
−2

6
1
6
−5

6

]
=

[ 1
3

1
3

1
3

−1
3

1
6
−5

6

]
.

Let now a†2 be computed by (143), i.e., by deleting a1 from A2. Interchanging columns of A2 and

rows of A†
2 we obtain

A†
2b2 =

[
−1

3
1
6
−5

6
1
3

1
3

1
3

]1
3
1
3
1
3

 =

[
−1

3
1
3

]

and

b∗2b2 =
[

1
3

1
3

1
3

] 1
3
1
3
1
3

 =
1

3
,

and finally from (143)

[
A†

1

0T

]
=

[
−1

3
1
6
−5

6
1
3

1
3

1
3

]
−
[
−1
1

] [
1
3

1
3

1
3

]
=

[
−1
1

] [
1
3

1
3

1
3

]
=

[
0 1

2
−1

2

0 0 0

]
,

or

a†2 =

 0
1
−1

† =
1

2

 0
1
−1

 (Fletcher [496]) .
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6. Generalized inverses of bordered matrices

Partitioning was shown above to permit working with submatrices smaller in size and better
behaved (e.g., nonsingular) than the original matrix. In this section a nonsingular matrix is obtained
from the original matrix by adjoining to it certain matrices. Thus from a given matrix A ∈ Cm×n

we obtain the matrix [
A U
V ∗ O

]
, (144)

which, under certain conditions on U and V ∗, is nonsingular, and from its inverse A† can be read off.
These ideas find applications in differential equations ( Reid [1261]) and eigenvalue computation
(Blattner [185]).

The following theorem is based on the results of Blattner [185].

Theorem 8. Let A ∈ Cm×n
r and let the matrices U and V satisfy

(a) U ∈ Cm×(m−r)
(m−r) and the columns of U are a basis for N(A∗).

(b) V ∈ Cn×(n−r)
(n−r) and the columns of U are a basis for N(A).

Then the matrix [
A U
V ∗ O

]
, (144)

is nonsingular and its inverse is [
A† V ∗†

U † O

]
. (145)

Proof. Premultiplying (145) by (144) gives[
AA† + UU † AV ∗†

V ∗A† V ∗V ∗†

]
. (146)

Now, R(U) = N(A∗) = R(A)⊥ by assumption (a) and (2.47), and therefore

AA† + UU † = In (147)

by Ex. 2.43. Moreover,

V ∗A† = V ∗A†AA† = V ∗A∗A†∗A† = (AV )∗A†∗A† = O , (148)

by (1.2), (1.4), and assumption (b), while

AV ∗† = AV †∗ = A(V †V V †)∗ = A(V †V †∗V ∗)∗

= AV V †V †∗ = O , (149)

by (1.2), Ex. 1.16(b), (1.3), and assumption (b). Finally, V ∗ is of full row rank by assumption (b),
and therefore

V ∗V ∗† = In−r , (150)

by Lemma 1.2(b). By (147)–(150), (146) reduces to Im+n−r, and therefore (144) is nonsingular and
(145) is its inverse. �

The next two corollaries apply Theorem 8 for the solution of linear equations.

Corollary 7. Let A,U, V be as in Theorem 8, let b ∈ Cn, and consider the linear equation

Ax = b . (1)

Then the solution x,y of [
A U
V ∗ O

] [
x
y

]
=

[
b
0

]
. (151)
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satisfies

x = A†b , the minimal–norm least squares solution of (1) ,

Uy = PN(A∗)b , the residual of (1) .

Corollary 8. (Cramer’s rule, Ben–Israel [120], Verghese [1502]). Let A,U, V,b be as in Corol-
lary 7. Then the minimal–norm least–squares solution x = [xj] of (1) is given by

xj =

det

[
A[j ← b] U
V ∗[j ← 0] O

]
det

[
A U
V ∗ O

] , j ∈ 1, n . (152)

Proof. Apply the proof of Cramer’s rule, Ex. 0.49, to (151). �

Exercises.

Ex. 24. A special case of Theorem 8. Let A ∈ Cm×n
r and let the matrices U ∈ Cm×(m−r) and

V ∈ Cn×(n−r) satisfy

AV = O , V ∗V = In−r , A∗U = O , and U∗U = Im−r . (153)

Then the matrix [
A U
V ∗ O

]
, (144)

is nonsingular and its inverse is [
A† V
U∗ O

]
(Reid [1261]) . (154)

Ex.25. Let A, U , and V be as in Ex. 24, and let

α = min{‖Ax‖ : x ∈ R(A∗), ‖x‖ = 1} , (155)

β = max{‖A†y‖ : y ∈ Cn, ‖y‖ = 1} . (156)

Then

αβ = 1 (Reid [1261]) . (157)

Proof. If y ∈ Cn, ‖y‖ = 1, then

z = A†y

is the solution of

Az = (Im − UU∗)y , V ∗z = 0 ,

Therefore,

α‖A†y‖ = α‖z‖ ≤ ‖Az‖ (by (155))

= ‖(Im − UU∗)y‖
≤ ‖y‖ (by Ex. 2.39 since Im − UU∗ is an orthogonal projector)

= 1 ,

Therefore αβ ≤ 1. On the other hand, let

x ∈ R(A∗) , ‖x‖ = 1 ;
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then

x = A†Ax ,

so that

1 = ‖x‖ = ‖A†Ax‖ ≤ β‖Ax‖ ,
proving that αβ ≥ 1, and completing the proof. �

See also Exs. 6.5 and 6.7.

Ex.26. A generalization of Theorem 8. Let

A =

[
B C
D O

]
be nonsingular of order n, where B is m× p, 0 < m < n and 0 < p < n. Then A−1 is of the form

A−1 =

[
E F
G O

]
, (158)

where E is p×m, if and only if B is of rank m+ p− n, in which case

E = B
(1,2)
N(D),R(C) , F = D

(1,2)
N(B),{0} , G = C

(1,2)
R(In−p),R(B) . (159)

Proof. We first observe that since A is nonsingular, C is of full column rank n−p, for otherwise
the columns of A would not be linearly independent. Similarly, D is of full row rank n−m. Since
C is m× (n− p), it follows that n− p ≤ m, or, in other words,

m+ p ≥ n .

If. Since A is nonsingular, the m× n matrix
[
B C

]
is of full row rank m, and therefore of column

rank m. Therefore, a basis for Cm can be chosen from among its columns. Moreover, this basis
can be chosen so that it includes all n − p columns of C, and the remaining m + p − n basis
elements are columns of B. Since B is of rank m+ p− n, the latter columns span R(B). Therefore
R(B)∩R(C) = {0}, and consequently R(B) and R(C) are complementary subspaces. Similarly, we
can shos that R(B∗) and R(D∗) are complementary subspaces of Cp, and therefrore their orthogonal
complements N(B) and N(D) aare complementary spaces.

The results of the preceding paragraph guarantee the existence of all {1, 2}–inverses in the right
member of Eqs. 159). if X now denotes RHS(158) with E,F,G given by (159), as easy computation
shows that AX = In.

Only if. It was shown in the “if” part of the proof that rank B is at least m+ p− n. If A−1 is
of the form (158) we must have

BF = O . (160)

Since A−1 is nonsingular, it follows from (158) that F is of full column rank n −m. Thus, (160)
exhibits n−m independent linear relations among the columns of B. Therefore the rank of B is at
most p− (n−m) = m+ p− n. This completes the proof. �

Suggested further reading

Section 2 . Ben–Israel [116], Burns, Carlson, Haynsworth and Markham [245], and Carlson,
Haynsworth and Markham [293].
Section 3 . Afriat [6].
Section 4 . Hartwig [668], and Harwood, Lovass–Nagy and Powers [698].
Section 5 . Meyer [1024].
Section 6 . Further references on bordered matrices are Blattner [185], Reid [1261], Hearon [705],
and Germain–Bonne [539].
Further extensions of Cramer’s rule are Cimmino [343], Wang ([1519], [1522]), and Werner [1575].





CHAPTER 6

A Spectral Theory for Rectangular Matrices

1. Introduction

Linear transformations in L(Cn,Cm) and their matrix representations (see § 0.2.5, p. 12) are
studied in this chapter, resulting in the simplest (diagonal) representations of linear transformations.

The main result, Theorem 2 (a restatement of the Autonne–Eckart–Young Theorem) states that
for any A ∈ Cm×n

r with singular values1 α(A) = {α1, α2, . . . , αr} ordered by

α1 ≥ α2 ≥ · · · ≥ αr > 0 , (1)

and for any scalars d(A) = {d1, d2, . . . , dr} satisfying

|di| = αi , i ∈ 1, r (2)

there exist two unitary matrices U ∈ Um×m (the set of m × m unitary matrices) and V ∈ Un×n

such that the m× n matrix

D = U∗AV =



d1
...

. . .
... O

dr
...

· · · · · · · · · · · · · · ·
O

... O


(3)

is diagonal. Thus any m× n complex matrix is unitarily equivalent to a diagonal matrix

A = UDV ∗ . (4)

The corresponding statement for linear transformations is that for any linear transformations A :
Cn → Cm with dim R(A) = r, and for any set of scalars d(A) = {d1, d2, . . . , dr} satisfying (2),
there exist two orthogonal bases U = {u1,u2, . . . ,um} and V = {v1,v2, . . . ,vn} of Cm and Cn,
respectively, such that the corresponding matrix representation A{U ,V} is diagonal,

A{U ,V} =



d1
...

. . .
... O

dr
...

· · · · · · · · · · · · · · ·
O

... O


,

i.e., {
Avj = djuj , j = 1, . . . , r ,

Avj = 0 , j = r + 1, . . . , n .
(5)

If d(A) = α(A), i.e., if the scalars {d1, . . . , dr} in (2) are chosen as the singular values of A,

di = αi , i ∈ 1, r , (6)

1See Exs. 1–11 below.
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then (4)

A = UDV ∗ , D =



α1
...

. . .
... O

αr
...

· · · · · · · · · · · · · · ·
O

... O


(7)

is called the singular value decomposition (abbreviated SVD) of A. In the general case, we will call
(4) a UDV ∗–decomposition of A.

While (6) is the most common choice, there are cases where other choices seem more natural.
Thus if A ∈ Cn×n

r is normal, then the choice d(A) = λ(A)\{0}, i.e., choosing the scalars {d1, . . . , dr}
to be the nonzero eigenvalues of A, guarantees that U = V in (3) and (4), giving the spectral theorem
for normal matrices2 as a special case of (4).

The UDV ∗–decomposition studied in Section 2 is the basis for a generalized spectral theory for
rectangular matrices; this theory generalizes and extends the classical spectral theory for normal
matrices (Theorem 2.13), replacing orthogonal projectors and eigenvalues by partial isometries and
scalars d(A) satisfying (2), respectively. This generalized spectral theory, essentially due to Penrose
[1177], Lanczos [906], Hestenes ([723], [724], [725], [726]), and Hawkins and Ben–Israel [700], is
developed in Section 4, following the discussion of partial isometries in Section 3.

Exercises and examples.

Ex. 1. Singular values. Let A ∈ Cm×n
r and let λj(A

∗A), j ∈ 1, n, denote the eigenvalues of A∗A
ordered by

λ1(A
∗A) ≥ λ2(A

∗A) ≥ · · · ≥ λr(A
∗A) > λr+1(A

∗A) = · · · = λn(A∗A) = 0 . (8)

The singular values of A, denoted by αj(A), j ∈ 1, r, are defined as

αj(A) = +
√
λj(A∗A) , j ∈ 1, r . (9)

The set of singular values of A is denoted by α(A). Ordering the eigenvalues of AA∗ as in (8), it
follows from

λj(AA
∗) = λj(A

∗A) , j = 1, . . . ,min{m,n}
that the singular values can be defined equivalently by

αj(A) = +
√
λj(AA∗) , j ∈ 1, r . (10)

Ex.2. A and A∗ have the same singular values.

Ex.3. Unitarily equivalent matrices have the same singular values.

Proof. Let A ∈ Cm×n, and let U ∈ Um×m and V ∈ Un×n be any two unitary matrices. Then
the matrix

(UAV )(UAV )∗ = UAV V ∗A∗U∗ = UAA∗U∗

is similar to AA∗, and thus has the same eigenvalues. Therefore the matrices UAV and A have the
same singular values. �

Ex. 4. (Lanczos [906]). Let A ∈ Cm×n
r . Then the matrix

[
O A
A∗ O

]
has 2r nonzero eigenvalues given

by ±αj(A), j ∈ 1, r.

2Theorem 2.13; see also Ex. 0.16(a) and Ex. 25 below.
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Ex.5. An extremal characterization of singular values. Let A ∈ Cm×n
r . Then

αk(A) = max {‖Ax‖ : ‖x‖ = 1, x ⊥ x1, . . . ,xk−1} , k = 1, . . . , r , (11)

where

‖ ‖ denotes the Euclidean norm,

{x1,x2, . . . ,xk−1} is an orthonormal set of vectors in Cn, defined recursively by

‖Ax1‖ = max {‖Ax‖ : ‖x‖ = 1}
‖Axj‖ = max {‖Ax‖ : ‖x‖ = 1, x ⊥ x1, . . . ,xj−1} , j = 2, . . . , k − 1 ,

and RHS(11) is the (attained) supremum of ‖Ax‖ over all vectors x ∈ Cn with norm one, which
are perpendicular to x1,x2, . . . ,xk−1.

Proof. Follows from the corresponding extremal characterization of the eigenvalues of A∗A
(see, e.g., Marcus and Minc [996, p. 114]),

λk(A
∗A) = max {〈x, A∗Ax〉 : ‖x‖ = 1, x ⊥ x1, . . . ,xk−1}

= 〈xk, A
∗Axk〉 , k = 1, . . . , n

since 〈x, A∗Ax〉 = 〈Ax, Ax〉 = ‖Ax‖2. Here the vectors {x1, . . . ,xn} are an orthonormal set of
eigenvectors of A∗A,

A∗Axk = λk(A
∗A)xk , k = 1, . . . , n .

�

The singular values can be characterized equivalently as

αk(A) = max {‖A∗y‖ : ‖y‖ = 1, y ⊥ y1, . . . ,yk−1} ,
= ‖A∗yk‖

where the vectors {y1, . . . ,yr} are an orthonormal set of eigenvectors of AA∗, corresponding to its
positive eigenvalues

AA∗yk = λk(AA
∗)yk , k ∈ 1, r .

We can interpret this extremal characterization as follows: let the columns of A be aj, j = 1, . . . , n.
Then

‖A∗yk‖2 =
n∑

j=1

|〈aj,y〉|2

Thus y1 is a normalized vector maximizing the sum of squares of mduli of its inner products with
the columns of A, the maximum value being α2

1(A), etc.

Ex.6. If A ∈ Cn×n
r is normal and its eigenvalues are ordered by

|λ1(A)| ≥ |λ2(A)| ≥ · · · ≥ |λr(A)| > |λr+1(A)| = · · · = |λn(A)| = 0

then the singular values of A are

αj(A) = |λj(A)| , j ∈ 1, r .

Hint. Use Ex. 5 and the spectral theorem for normal matrices, Theorem 2.13.

Ex.7. Let A ∈ Cm×n
r , and let the singular values of A† be ordered by

α1(A
†) ≥ α2(A

†) ≥ · · · ≥ αr(A
†) .

Then

αj(A
†) =

1

αr−j+1(A)
, j ∈ 1, r . (12)
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Proof.

α2
j (A

†) = λj(A
†∗A†) , by definition (9)

= λj((AA
∗)†) , since A†∗A† = A∗†A† = (AA∗)†

=
1

λr−j+1(AA∗)

=
1

α2
r−j+1(A)

, by definition (10) .

�

Ex.8. Let ‖ ‖ be the matrix norm

‖A‖ = (traceA∗A)1/2 =

(
m∑

i=1

n∑
j=1

|aij|2
)1/2

(13)

defined on Cm×n, see, e.g., Ex. 0.27. Then for any A ∈ Cm×n
r ,

‖A‖2 =
r∑

j=1

α2
j (A) . (14)

Proof. Follows from traceA∗A =
r∑

j=1

λj(A
∗A). �

See also Ex. 51 below.

Ex.9. Let ‖ ‖2 be the spectral norm, defined on Cm×n by

‖A‖2 = max {
√
λ : λ an eigenvalue of A∗A}

= α1(A) ; (15)

see, e.g., Ex. 0.32. Then for any A ∈ Cm×n
r , r ≥ 1,

‖A‖2‖A†‖2 =
α1(A)

αr(A)
. (16)

Proof. Follows from Ex. 7 and definition (15). �

Ex.10. A condition number. Let A be an n× n nonsingular matrix, and consider the equation

Ax = b (17)

for b ∈ Cn. The sensitivity of the solution of (17) to changes in the right–hand side b, is indicated
by the condition number of A, defined for ant multiplicative matrix norm ‖ ‖ by

cond(A) = ‖A‖‖A−1‖ . (18)

Indeed, changing b to (b + δb) results in a change of the solution x = A−1b to x + δx, with

δx = A−1δb . (19)

For any consistent pair of vector and matrix norms (see Exs. 0.28–0.30), it follows from (17) that

‖b‖ ≤ ‖A‖‖x‖ . (20)

Similarly, from (19)

‖δx‖ ≤ ‖A−1‖‖δb‖ . (21)
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From (20) and (21) we get the following bound:

‖δx‖
‖x‖

≤ ‖A‖‖A−1‖‖δb‖
‖b‖

= cond(A)
‖δb‖
‖b‖

(22)

relating the change of the solution to the change in data and the condition number (18).
The spectral condition number corresponding to the spectral norm (15) is, by (16)

cond(A) =
α1(A)

αn(A)
. (23)

Prove that for this condition number

cond(A∗A) = (cond(A))2 ,

showing that A∗A is worse conditioned than A, if cond(A) > 1 (Taussky [1434]).

Ex.11. Weyl’s inequalities. Let A ∈ Cm×n
r have eigen values λ1, . . . , λn ordered by

|λ1| ≥ |λ2| ≥ · · · ≥ λn|
and singular values

α1 ≥ α2 ≥ · · · ≥ αr .

Then
k∑

j=1

|λj| ≥
k∑

j=1

αj , (24)

k∏
j=1

|λj| ≥
k∏

j=1

αj , (25)

for k = 1, . . . , r (Weyl [1590], Marcus and Minc [996, pp. 115–116]).

A Historical note

TEXT (p. 242)

2. The UDV ∗ decomposition

The UDV ∗ decomposition studied here is a variation of the singular value decomposition proved
by Beltrami, Jordan, and Sylvester for square real matrices (see, e.g., MacDuffee [986, p. 78]), by
Autonne [49] for square complex matrices, and by Eckart and Young [451] for rectangular matrices.
Our approach follows that of Eckart and Young [451]. First we require the following theorem.

Theorem 1. Let O 6= A ∈ Cm×n
r , let α(A), the singular values of A, be

α1 ≥ α2 ≥ · · · ≥ αr > 0 , (1)

and let d(A) = {d1, . . . , dr} be any complex scalars satisfying

|di| = αi , i ∈ 1, r . (2)

Let {u1,u2, . . . ,ur} be an orthonormal set of eigenvectors of AA∗ corresponding to its nonzero
eigenvalues:

AA∗ui = α2
i ui , i ∈ 1, r (26)

〈ui,uj〉 = δij , i, j ∈ 1, r . (27)

Let {v1,v2, . . . ,vr} be defined by

vi =
1

di

A∗ui , i ∈ 1, r (28)
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Then {v1,v2, . . . ,vr} is an orthonormal set of eigenvectors of A∗A corresponding to its nonzero
eigenvalues

A∗Avi = α2
i vi , i ∈ 1, r (29)

〈vi,vj〉 = δij , i, j ∈ 1, r . (30)

Furthermore

ui =
1

di

Avi , i ∈ 1, r . (31)

Dually, let the vectors {v1,v2, . . . ,vr} satisfy (29) and (30) and let the vectors {u1,u2, . . . ,ur} be
defined by (31). Then {u1,u2, . . . ,ur} satisfy (26), (27) and (28).

Proof. Let {vi : i ∈ 1, r} be given by (28). Then

A∗Avi =
1

di

A∗AA∗ui

= diA
∗ui , by (26) and (2)

= α2
i vi , by (28) and (2)

and

〈vi,vi〉 =
1

didj

〈A∗ui, A
∗uj〉

=
1

didj

〈AA∗ui,uj〉

=
di

dj

〈ui,uj〉 , by (26) and (2)

= δij , by (27) .

Equations (31) follow from (28) and (26). The dual statement follows by interchanging A and
A∗. �

An easy consequence of Theorem 1 is the following.

Theorem 2. (Autonne [49], Eckart and Young [451]). Let O 6= A ∈ Cm×n
r , and let d(A) =

{d1, . . . , dr} be complex scalars satisfying

|di| = αi , i ∈ 1, r , (2)

where

α1 ≥ α2 ≥ · · · ≥ αr > 0 (1)

are the singular values of A.
Then there exist unitary matrices U ∈ Um×m and V ∈ Un×n such that the matrix

D = U∗AV =



d1
...

. . .
... O

dr
...

· · · · · · · · · · · · · · ·
O

... O


(3)

is diagonal.
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Proof. For the given A ∈ Cm×n
r we construct two such matrices U and V as follows.

Let the vectors {u1, . . . ,ur} in Cm satisfy (26) and (27), and thus form an orthonormal basis of
R(AA∗) = R(A); see, e.g., Corollary 1.2. Let {ur+1, . . . ,um} be an orthonormal basis of R(A)⊥ =
N(A∗). Then the set {u1, . . . ,ur,ur+1, . . . ,um} is an orthonormal basis of Cm satisfying (26) and

A∗ui = 0 , i ∈ r + 1,m . (32)

The matrix U defined by

U =
[
u1 . . . ur ur+1 . . . um

]
(33)

is thus an m×m unitary matrix.
Let now the vectors {v1, . . . ,vr} in Cn be defined by (28). Then these vectors satisfy (29)

and (30), and thus form an orthonormal basis of R(A∗A) = R(A∗). Let {vr+1, . . . ,vn} be an
orthonormal basis of R(A∗)⊥ = N(A). Then the set {v1, . . . ,vr,vr+1, . . . ,vn} is an orthonormal
basis of Cn satisfying (29) and

Avi = 0 , i ∈ r + 1, n . (34)

The matrix V defined by

V =
[
v1 . . . vr vr+1 . . . vn

]
(35)

is thus an n× n unitary matrix.
With U and V as given above, the matrix

D = U∗AV = [dij] , i ∈ 1,m, j ∈ 1, n

satisfies

dij = u∗iAvj = 0 if i > r or j > r , by (32) and (34) ,

and for i, j = 1, . . . , r

dij = u∗iAvj

=
1

dj

u∗iAA
∗uj , by (28)

= dj u∗i uj , by (26) and (2)

= dj δij , by (27) ,

completing the proof. �

A corresponding decomposition of A† is given in

Corollary 1. (Penrose [1177]). Let A, D, U, and V be as in Theorem 2. Then

A† = V D†U∗ (36)

where

D† =



1

d1

...

. . .
... O

1

dr

...

· · · · · · · · · · · · · · ·
O

... O


. (37)
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Proof. Equation (36) follows from (4) and Ex. 1.21. The form (37) for D† is obvious since

D =



d1
...

. . .
... O

dr
...

· · · · · · · · · · · · · · ·
O

... O


.

�

Exercises and examples.

Ex.12. Let A ∈ Cm×n
r , let {u1, . . . ,ur} satisfy (26) and (27), and let {v1, . . . ,vr} be given by (28).

Then

A =
r∑

i=1

diuiv
∗
i . (38)

Proof. The vectors {v1, . . . ,vr} form an orthonormal basis for R(A∗). Therefore,
r∑

i=1

diuiv
∗
i x = 0 for all x ∈ R(A∗)⊥ = N(A) ,

and for any j = 1, . . . , r

r∑
i=1

diuiv
∗
i vj = djuj , by (30)

= Avj , by (31)

proving that for all x ∈ Cn

r∑
i=1

diuiv
∗
i x = Ax .

�

Ex.13. Best matrix approximations of given rank. For a given A ∈ Cm×n
r and an integer k, 1 ≤ k ≤ r,

a best rank-k approximation of A is a matrix A(k) ∈ Cm×n
k satisfying

‖A− A(k)‖ = inf
X∈Cm×n

k

‖A−X‖ , (39)

where ‖ ‖ is the matrix norm (13).
For the matrices D, U, and V of Theorem 2, let D(k), U(k), and V(k) denote their submatrices

defined by

D(k) =

d1

. . .
dk

 ∈ Ck×k , U(k) =
[
u1 . . . uk

]
∈ Cm×k , V(k) =

[
v1 . . . vk

]
∈ Cn×k .

(40)

Then a best rank-k approximation of A is

A(k) = U(k)D(k)V
∗
(k) , (41)

which is unique if, and only if, the k th and the (k + 1) st singular values of A are distinct:

αk 6= αk+1 . (42)
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The approximation error of A(k) is

‖A− A(k)‖ =

(
r∑

i=k+1

α2
i

)1/2

(Eckart and Young [450]) . (43)

Proof. Using Ex. 0.34 and (3) we have, for any X ∈ Cm×n,

‖A−X‖2 = ‖U∗(A−X)V ‖2 = ‖D − Y ‖2 = f(Y ) , say , (44)

where

Y = U∗XV = [yij] . (45)

Let L be any subspace with dimL ≤ k, and let PL denote the orthogonal projector on L. Then
the matrix Y = PLD minimizes f(Y ) among all matrices Y with R(Y ) ⊂ L, and the corresponding
minimum value is

‖D − PLD‖2 = ‖QD‖2 = traceD∗Q∗QD

= traceD∗QD =
m∑

i=1

α2
i qii (46)

where Q = I − PL = [qij] is the orthogonal projector on L⊥. Now

inf
X∈Cm×n

k

‖A−X‖2 = inf
Y ∈Cm×n

k

‖D − Y ‖2

= inf {‖D − PLD‖2 : over all subspaces L with dim L ≤ k}

= inf

{
m∑

i=1

α2
i qii : Q = [qij] = PL⊥ , dimL ≤ k

}
(47)

and since 0 ≤ qii ≤ 1 (why?),
m∑

i=1

qii = m− dimL, it follows that the minimizing

Q =

[
O O
O Im−k

]
is unique if and only if αk 6= αk+1 ,

and the minimizing Y is accordingly

Y = PLD =

[
Ik O
O O

]
D

or

yij =

{
di , if 1 ≤ i = j ≤ k
0 , otherwise .

(48)

The remaining statements are easily proved. �

See also Householder and Young [755], Golub and Kahan [553]; Gaches, Rigal, and Rousset de
Pina [526], and Franck [514].

Ex.14. Let A ∈ Cm×n
r . Then, using the notation of Ex. 13,

A = U(r)D(r)V
∗
(r) = A(r) , (49)

A† = V(r)D
−1
(r)U

∗
(r) = A†

(r) . (50)
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Ex.15. Let O 6= A ∈ Cm×n
r have singular values

α1 ≥ α2 ≥ · · · ≥ αr > 0

and let Mr−1 =
r−1⋃
k=0

Cm×n
k be the set of m × n matrices of rank ≤ r − 1. Then the distance, using

either norm (13) or the spectral norm (15), of A from Mr−1 is

inf
X∈Mr−1

‖A−X‖ = αr . (51)

Two easy consequences of (51) are:
(a) Let A be as above, and let B ∈ Cm×n satisfy

‖V ‖ < αr ;

then

rank (A+B) ≥ rankA .

(b) For any 0 ≤ k ≤ min{m,n}, the m× n matrices of rank ≤ k form a closed set in Cm×n.
In particular, the n × n singular matrices form a closed set in Cn×n. For any nonsingular

A ∈ Cn×nth singular values

α1 ≥ α2 ≥ · · · ≥ αn > 0

the smallest singular value αn is a measure of the nonsingularity of A.

Ex.16. A minimal rank matrix approximation. Let A ∈ Cm×n and let ε > 0. Find a matrix B ∈ Cm×n

of minimal rank, satisfying

‖A−B‖ ≤ ε

for the norm (13).
Solution. Using the notation of Ex. 13,

B = A(k) ,

where k is determined by(
r∑

i=k

αi(A)2

)1/2

> ε ,

(
r∑

i=k+1

αi(A)2

)1/2

≤ ε (Golub [549]) .

Ex. 17. A unitary matrix approximation. Let Un×n denote the set of n × n unitary matrices. Let
A ∈ Cn×n

r with a singular–value decomposition

A = UDV ∗ , D ==



α1
...

. . .
... O

αr
...

· · · · · · · · · · · · · · ·
O

... O


.

Then

inf
W∈Un×n

‖A−W‖ = ‖D − I‖ =

√√√√ r∑
i=1

(1− αi)2 + n− r

is attained for

W = UV ∗ (Fan and Hoffman [481], Mirsky [1056], Golub [549]) .
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Ex. 18. The following generalization of Ex. 17 arises in factor analysis; see, e.g., Green [573] and
Schönemann [1318].

For given A,B ∈ Cm×n, find a W ∈ Un×n such that

‖A−BW‖ ≤ ‖A−BX‖ for any X ∈ Un×n .

Solution. W = UV ∗ where B∗A = UDV ∗ is a singular–value decomposition of B∗A.

Ex. 19. Let A(k) be a best rank–k approximation of A ∈ Cm×n
r (as given by Ex. 13). Then

A∗
(k), A(k)A

∗
(k), and A∗

(k)A(k) are best rank–k approximations of A,AA∗, and A∗A, respectively. If

A is normal, then Aj
(k) is a best rank–k approximation of Aj for all j = 1, 2 . . . (Householder and

Young [755]).

Ex. 20. Real matrices. If A ∈ Rm×n
r , then the unitary matrices U and V in the singular value

decomposition (7) can also be taken to be real, hence orthogonal.

Ex.21. Simultaneous diagonalization. Let A1, A2 ∈ Cm×n. Then the following are equivalent:
(a) There exist two unitary matrices U, V such that both

D1 = U∗A1V ,

D2 = U∗A2V

are diagonal real matrices (in which case one of them, say D1, can be assumed to be non–negative).
(b) A1A

∗
2 and A∗

2A1 are both Hermitian (Eckart and Young [451]).

Ex.22. Let A1, A2 ∈ Cn×n be Hermitian matrices. Then the following are equivalent:
(a) There is a unitary matrix U such that both

D1 = U∗A1U ,

D2 = U∗A2U

are diagonal real matrices.
(b) A1A2 and A2A1 are both Hermitian.
(c) A1A2 = A2A1.

Ex.23. Let A1, A2 ∈ Cm×n. Then the following are equivalent:
(a) There exist two unitary matrices U, V such that both

D1 = U∗A1V ,

D2 = U∗A2V

are diagonal matrices.
(b) There is a polynomial f such that

A1A
∗
2 = f(A2A

∗
1)

A∗
2A1 = f(A∗

1A2) (Williamson [1599]) .

Ex.24. Normal matrices. If O 6= A ∈ Cn×n
r is normal and its nonzero eigenvalues are ordered by

|λ1| ≥ |λ2| ≥ · · · ≥ |λr| > 0 ,

then the scalars d(A) = {d1, . . . , dr} in (2) can be chosen as the corresponding eigenvalues

di = λi , i ∈ 1, r . (52)

This choice reduces both (28) and (31) to

ui = vi , i ∈ 1, r . (53)

Proof. The first claim follows from Ex. 6.
Using Exs. 0.16 it can be shown that all four matrices A,A∗, AA∗, and A∗A have common

eigenvectors. Therefore, the vectors {u1, . . . ,ur} of (26) and (27) are also eigenvectors of A∗, and
(28) reduces to (53). �
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Ex.25. Normal matrices. If O 6= A ∈ Cn×n
r is normal, and the scalars d(A) are chosen by (52), then

the UDV ∗–decomposition (4) of A reduces to the statement that A is unitarily similar to a diagonal
matrix

A = UDU∗ ; see Ex. 0.16(a) .

3. Partial isometries and the polar decomposition theorem

A linear transformation U : Cn → Cm is called a partial isometry (sometimes also a subunitary
transformation) if it is norm preserving on the orthogonal complement of its null space, i.e., if

‖Ux‖ = ‖x‖ for all x ∈ N(U)⊥ = R(U∗) , (54)

or equivalently, if it is distance preserving

‖Ux− Uy‖ = ‖x− y‖ for all x,y ∈ N(U)⊥ .

Except where otherwise indicated, the norms used here are the Euclidean vector norm and the
corresponding spectral norm for matrices, see Ex. 0.32.

Partial isometries in Hilbert spaces were studied extensively by von Neumann [1507], Halmos
[646], Halmos and McLaughlin [647], Erdelyi [474], and others. Most of the results given here are
special cases for the finite dimensional space Cn.

A nonsingular partial isometry is called an isometry (or a unitary transformation). Thus a
linear transformation U : Cn → Cn is an isometry if ‖Ux‖ = ‖x‖ for all x ∈ Cn.

We recall that U ∈ Cn×n is a unitary matrix if and only if U∗ = U−1. Analogous characterizations
of partial isometries are collected in the following theorem, drawn from Halmos [646], Hestenes [723]
and Erdélyi [467].

Theorem 3. Let U ∈ Cm×n. Then the following eight statements are equivalent.

(a) U is a partial isometry.
(a∗) U∗ is a partial isometry.
(b) U∗U is an orthogonal projector.
(b∗) UU∗ is an orthogonal projector.
(c) UU∗U = U .
(c∗) U∗UU∗ = U∗.
(d) U∗ = U †.
(d∗) U † is a partial isometry.

Proof. We prove (a)⇐⇒ (b), (a)⇐⇒ (e), and (b)⇐⇒ (c)⇐⇒ (d). The obvious equivalence
(c)⇐⇒ (c∗) then takes care of the dual statements (a∗) and (b∗).

(a) =⇒ (b). Since R(U∗U) = R(U∗), (b) can be rewritten as

U∗U = PR(U∗) . (55)

From Ex. 0.16(b) it follows for any Hermitian H ∈ Cn×n that

〈Hx,x〉 = 0 , for all x ∈ Cn , (56)

implies H = O. Consider now the matrix

H = PR(U∗) − U∗U .

Clearly,

〈Hx,x〉 = 0 for all x ∈ R(U∗)⊥ = N(U) ,
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while for x ∈ R(U∗)

〈PR(U∗)x,x〉 = 〈x,x〉
= 〈Ux, Ux〉 by (a)

= 〈U∗Ux,x〉 .

Thus (a) implies that the Hermitian matrix H = PR(U∗)−U∗U satisfies (56), which in turn implies
(55).

(b) =⇒ (a). This follows from

〈Ux, Ux〉 = 〈U∗Ux,x〉
= 〈PR(U∗)x,x〉 by (55)

= 〈x,x〉 if x ∈ R(U∗) .

(a)⇐⇒ (e). Since

y = Ux , x ∈ R(U∗)

is equivalent to

x = U †y , y ∈ R(U) ,

it follows that

〈Ux, Ux〉 = 〈x,x〉 for all x ∈ R(U∗)

is equivalent to

〈y,y〉 = 〈U †y, U †y〉 for all y ∈ R(U) = N(U †)⊥ .

(b)⇐⇒ (c)⇐⇒ (d). The obvious equivalence (c)⇐⇒ (c∗) states that U∗ ∈ U{1} if, and only if,
U∗ ∈ U{2}. Since U∗ is (always) a {3, 4}–inverse of U , it follows that U∗ is a {1}–inverse of U if,
and only if, U∗ = U †. �

Returning to the UDV ∗–decomposition of Section 2, we identify some useful partial isometries
in the following theorem.

Theorem 4. (Hestenes [723]). Let O 6= A ∈ Cm×n
r , and let

A = UDV ∗ , (4)

where the unitary matrices U ∈ Um×m, V ∈ Un×n and the diagonal matrix D ∈ Cm×n are given as
in Theorem 2. Let U(r), D(r), and V(r) be defined by (40). Then

(a) The matrices U(r), V(r) are partial isometries with

U(r)U
∗
(r) = PR(A) , U∗

(r)U(r) = Ir , (57)

V(r)V
∗
(r) = PR(A∗) , V ∗

(r)V(r) = Ir . (58)

(b) The matrix

E = U(r)V
∗
(r) (59)

is a partial isometry with

EE∗ = PR(A) , E∗E = PR(A∗) . (60)
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Proof. (a) That U(r), V(r) are partial isometries is obvious from their definitions and the uni-
tarity of U and V (see, e.g., Ex. 28). Now

U∗
(r)U(r) = Ir ,

by Definition (40), since U is unitary, and

PR(A∗) = A†A = A†
(r)A(r) , by Ex. 13

= V(r)D
−1
(r)U

∗
(r)U(r)D(r)V

∗
(r) , by (49) and (50)

= V(r)V
∗
(r) ,

with the remaining statements in (a) similarly proved.
(b) using (57) and (58), it can be verified that

E† = V(r)U
∗
(r) = E∗ ,

from which (60) follows easily. �

The partial isometry E thus maps R(A∗) isometrically onto R(A). Since A also maps R(A∗)
onto R(A), we should expect A to be a “multiple” of E. This is the essence of the following
theorem, proved by Autonne [49] and Williamson [1599] for square matrices, by Penrose [1177]
for rectangular matrices, and by Murray and von Neumann [1103] for linear operators in Hilbert
spaces.

Theorem 5. (The polar decomposition theorem). Let O 6= A ∈ Cm×n
r . Then A can be written as

A = GE = EH , (61)

where E ∈ Cm×n is a partial isometry and G ∈ Cm×m, H ∈ Cn×n are Hermitian and positive
semi–definite.

The matrices E, G, and H are uniquely determined by

R(E) = R(G) , (62)

R(E∗) = R(H) , (63)

in which case

G2 = AA∗ , (64)

H2 = A∗A , (65)

and E is given by

E = U(r)V
∗
(r) . (59)

Proof. Let

A = UDV ∗ , D =



α1
...

. . .
... O

αr
...

· · · · · · · · · · · · · · ·
O

... O


(7)

be the singular–value decomposition of A. For any k, r ≤ k ≤ min{m,n}, we use (40) to define the
three matrices

D(k) =

α1

. . .
αr

 ∈ Ck×k , U(k) =
[
u1 . . . uk

]
∈ Cm×k , V(k) =

[
v1 . . . vk

]
∈ Cn×k .
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Then (7) can be rewritten as

A = U(k)D(k)V
∗
(k)

= (U(k)D(k)U
∗
(k))(U(k)V

∗
(k)) , since U∗

(k)U(k) = Ik

= (U(k)V
∗
(k))(V(k)D(k)V

∗
(k)) , since V ∗

(k)V(k) = Ik ,

which proves (61) with the partial isometry

E = U(k)V
∗
(k) (66)

and the positive semi–definite matrices

G = U(k)D(k)U
∗
(k) , H = V(k)D(k)V

∗
(k) . (67)

This also shows E to be nonunique if r < min{m,n}, in which case G and H are also nonunique,
for (67) can then be replaced by

G = U(k)D(k)U
∗
(k) + uk+1u

∗
k+1 ,

H = V(k)D(k)V
∗
(k) + vk+1v

∗
k+1 ,

which satisfies (61) for the E given in (66).
Let now E and G satisfy (62). Then from (61)

AA∗ = GEE∗G = GEE†G = GPR(E)G = G2 ,

which proves (64) and the uniqueness of G; see also Ex. 26 below. The uniqueness of E follows
from

E = EE†E = GG†E = G†GE = G†A . (68)

Similarly (63) implies (65) and the uniqueness of H,E.
Finally from

G2 = AA∗

= U(r)D(r)V
∗
(r)V(r)D(r)U

∗
(r) , by (49)

= U(r)D
2
(r)U

∗
(r)

we conclude that

G = U(r)D(r)U
∗
(r)

and consequently

G† = U(r)D
−1
(r)U

∗
(r) . (69)

Therefore,

E = G†A , by (68)

= U(r)D
−1
(r)U

∗
(r)U(r)D(r)V

∗
(r) , by (69) and (49)

= U(r)V
∗
(r) , proving (59) .

�

If, in the proof of Theorem 5, one uses a general UDV ∗–decomposition of A instead of the
singular–value decomposition, then the matrices G and H defined by (67) are merely normal ma-
trices, and need not be Hermitian. Hence, the following corollary.
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Corollary 2. Let O 6= A ∈ Cm×n
r . Then, for any choice of the scalars d(A) in (2), there exist a

partial isometry E ∈ Cm×n and two normal matrices G ∈ Cm×m, H ∈ Cn×n, satisfying (61). The
matrices E, G, and H are uniquely determined by (62) and (63), in which case

GG∗ = AA∗ , (70)

H∗H = A∗A , (71)

and E is given by (59). �

Theorem 5 is the matrix analog of the polar decomposition of a complex number

z = x+ iy , x, y real

as

z = |z|eiθ , (72)

where

|z| = (zz̄)1/2 = (x2 + y2)1/2

and

θ = arctan
y

x
.

Indeed, the complex scalar z in (72) corresponds to the matrix A in (61), while z̄, |z|. and eiθ corre-
spond to A∗, G (or H) and E, respectively. This analogy is natural since |z| = (zz̄)1/2 corresponds
to the square roots G = (AA∗)1/2 or H = (A∗A)1/2, while the scalar eiθ satisfies

|zeiθ| = |z| for all z ∈ C ,

which justifies its comparison to the partial isometry E; see also Exs. 44 and 48.

Exercises and examples.

Ex.26. Square roots. Let A ∈ Cn×n
r be Hermitian positive semi–definite. Then there exists a unique

Hermitian positive semi–definite matrix B ∈ Cn×n
r satisfying

B2 = A ; (73)

B is called the square root of A, denoted by A1/2.

Proof. Writing A as

A = UDU∗ , U unitary , D =



λ1
...

. . .
... O

λr
...

· · · · · · · · · · · · · · ·
O

... O


we see that

B = UD1/2U∗ , D1/2 =



λ
1/2
1

...
. . .

... O

λ
1/2
r

...
· · · · · · · · · · · · · · ·

O
... O


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is a Hermitian positive semi–definite matrix satisfying (73). To prove uniqueness, assume that B
is a Hermitian matrix satisfying (73). Then, since B and A = B2 commute, it follows from Ex. 22
that

B = UD̃U∗

where D̃ is diagonal and real, by Ex. 0.16(b), hence

D̃ = D1/2 , by (73).

�

Ex. 27. Linearity of isometries. Let X,Y be real normed vector spaces and let f : X → Y be
isometric, i.e.,

‖f(x1)− f(x2)‖Y = ‖x1 − x2‖X for all x1, x2 ∈ X
where ‖ ‖X and ‖ ‖Y are the norms in X and Y , respectively. If f(0) = 0 then f is a linear
transformation (Mazur and Ulam). For extensions and references see Dunford and Schwartz [441,
p. 91] and Vogt [1503].

Ex. 28. Partial isometries. If the n × n matrix U is unitary, and U(k) is any n × k submatrix of

U , then U(k) is a partial isometry. Conversely, if W ∈ Cn×k
k is a partial isometry, the there is an

n× (n− k) partial isometry V such that the matrix U =
[
W V

]
is unitary.

Ex.29. Any matrix unitarily equivalent to a partial isometry is a partial isometry.

Proof. Let A = UBV ∗, U ∈ Um×m, V ∈ Un×n. Then

A† = V B†U∗ , by Ex. 1.21

= V B∗U∗ , if B is a partial isometry

= A∗ .

�

Ex.30. Let A ∈ Cm×n
r be a partial isometry with singular values α(A) = {αi : i ∈ 1, r}. Then

αi = 1 , i = 1, . . . , r .

Consequently, in any UDV ∗–decomposition of a partial isometry, teh diagonal factor

D =



d1
...

. . .
... O

dr
...

· · · · · · · · · · · · · · ·
O

... O


has |di| = 1, i = 1, . . . , r.

Ex.31. A linear transformation E : Cn → Cm with dimR(E) = r is a partial isometry if, and only if,
there are two orthonormal bases {v1, . . . ,vr} and {u1, . . . ,ur} of R(E∗) and R(E), respectively,
such that

ui = Evi , i = 1, . . . , r .

Ex.32. Contractions. A matrix A ∈ Cm×n is called a contraction if

‖Ax‖ ≤ ‖x‖ for all x ∈ Cn . (74)

For any A ∈ C×n the following statements are equivalent:
(a) A is a contraction.
(b) A∗ is a contraction.
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(c) For any subspace L of Cm containing R(A), the matrix PL − AA∗ is positive semi–definite.

Proof. (a)⇐⇒ (b). By Exs. 0.28 and 0.32, (a) is equivalent to

‖A‖2 ≤ 1 ,

but

‖A‖2 = ‖A∗‖2 by (15) and Ex. 2.

(b)⇐⇒ (c). By definition (74), the statement (b) is equivalent to

0 ≤ 〈x,x〉 − 〈A∗x, A∗x〉
= 〈(I − AA∗)x,x〉 for all x ∈ Cm ,

which in turn is equivalent to (c). �

Ex.33. Let A ∈ Cm×n be a contraction and let L be any subspace of Cm containing R(A). Then the
(m+ n)× (m+ n) matrix M(A) defined by

M(A) =

A
...
√
PL − AA∗

· · · · · · · · · · · · · · ·
O

... O


is a partial isometry (Halmos and McLaughlin [647], Halmos [646]).

Proof. The square root
√
PL − AA∗ exists and is unique by Exs. 32(c) and 26. The proof the

follows by verifying that

M(A)M(A)∗M(A) = M(A) .

�

Ex.34. Eigenvalues of partial isometries. Let U be an n×n partial isometry and let λ be an eigenvalue
of U corresponding to the eigenvector x. Then

|λ| =
‖PR(U∗)x‖
‖x‖

;

hence

|λ| ≤ 1 (Erdélyi [467]).

Proof. From Ux = λx we conclude

|λ|‖x‖ = ‖Ux‖ = ‖UPR(U∗)x‖ = ‖PR(U∗)x‖ .

�

Ex.35. The partial isometry

U =

1 0 0

0
√

3/2 0
0 1/2 0


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has the following eigensystem:

λ = 0 , x =

0
0
1

 ∈ N(U) ,

λ = 1 , x =

1
0
0

 ∈ R(U∗) ,

λ =
√

3/2 , x =

 0√
3/2

1/2

 =

 0√
3/2
0

+

 0
0

1/2

 ,

 0√
3/2
0

 ∈ R(U∗) ,

 0
0

1/2

 ∈ N(U) .

Ex.36. Normal partial isometries. Let U be an n×n partial isometry. Then U is normal if and only
if it is range–Hermitian.

Proof. Since any normal matrix is range–Hermitian, only the “if” part need proof. Let U be
range–Hermitian, i.e., let R(U) = R(U∗). Then UU∗ = U∗U , by Theorem 3. �

Ex.37. Let U be an n× n partial isometry. If U is normal, then its eigenvalues have absolute values
0 or 1.

Proof. For any nonzero eigenvalue λ of a normal partial isometry U , it follows from Ux = λx
that x ∈ R(U) = R(U∗), and therefore

|λ|‖x‖ = ‖Ux‖ = ‖x‖ .
�

Ex.38. The converse of Ex. 37 is false. Consider, for example, the partial isometry

U =

[
0 1
0 0

]
.

Ex. 39. Let E ∈ Cn×n be a contraction. Then E is a normal partial isometry if, and only if, the
eigenvalues of E have absolute values 0 or 1 and rank E = rank E2 (Erdelyi [471, Lemma 2]).

Ex.40. A matrix E ∈ Cn×n is a normal partial isometry if, and only if,

E = U

W
... O

· · · · · · · · ·
O

... O

U∗ ,

where U and W are unitary matrices (Erdelyi [471]).

Ex.41. Polar decompositions. Let A ∈ Cn×n, and let

A = GE , (61)

where G is positive semi–definite and E is a partial isometry satisfying

R(E) = R(G) . (62)

Then A is normal if, and only if

GE = EG ,

in which case E is a normal partial isometry (Hearon [707, Theorem 1], Halmos [646, Problem
108]).

Ex. 42. Let A ∈ Cn×n have the polar decompositions (61) and (62). Then A is a partial isometry if
and only if G is an orthogonal projector.
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Proof. If. Let

G = G∗ = G2 . (75)

Then

AA∗ = GEE∗G , by (61)

= G2 , since EE∗ = PR(G) by Theorem 3(b∗) and (62)

= G , by (75) ,

proving that A is a partial isometry by Theorem 3(b∗).
Only if. Let A be a partial isometry and let A = GE be its unique polar decomposition

determined by (62). Then

AA∗ = G2

is a Hermitian idempotent, by Theorem 3(b∗), and hence its square root is also idempotent. �

Ex. 43. Let A ∈ Cn×n have the polar decompositions (61) satisfying (62) and (63). Then α is a
singular value of A if, and only if,

Ax = αEx , for some 0 6= x ∈ R(E∗) (76)

or equivalently, if and only if

A∗y = αE∗y , for some 0 6= y ∈ R(E) (Hestenes [723]) . (77)

Proof. From (61) it follows that (76) is equivalent to

G(Ex) = α(Ex) ,

which, by (64), is equivalent to

AA∗(Ex) = α2(Ex) .

The equivalence of (77) is similarly proved. �

Ex.44. Let z be any complex number with the polar decomposition

z = |z|eiθ . (76)

Then, for any real α, the following inequalities are obvious:

|z − eiθ| ≤ |z − eiα| ≤ |z − eiθ| .
Fan and Hoffman [481] established the followinganalogous matrix inequalities:

Let A ∈ Cn×n be decomposed as

A = UH ,

where U is unitary and H is positive semi–definite. Then for any unitary W ∈ Un×n, the inequalities

‖A− U‖ ≤ ‖A−W‖ ≤ ‖A+ U‖
hold for every unitarily invariant norm.

Give the analogous inequalities for the polar decomposition of rectangular matrices given in
Theorem 5.

Ex.45. Generalized Cayley transforms. Let L be a subspace of Cn. Then the equations

U = (PL + iH)(PL − iH)† , (78)

H = i(PL − U)(PL + U)† , (79)

establish a one–to–one correspondence between all Hermitian matrices H with

R(H) ⊂ L (80)
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and all normal partial isometries U with

R(U) = L (81)

whose spectrum excludes −1 (Ben–Israel [109], Pearl [1166], [1167] and Nanda [1110]).

Proof. Note that

(PL ± iH) and (PL + U)

map L onto itself for Hermitian H satisfying (80) and normal partial isometries satisfying (81),
whose spectrum excludes −1. Since on L, (PL± iH) and (PL±U) reduce to (I ± iH) and (I ±U),
respectively, the proof follows from the classical theorem; see, e.g., Gantmacher [533, Vol. I, p.
279]. �

Ex. 46. Let H be a given Hermitian matrix. Let L1 and L2 be two subspaces containing R(H),
and let U1 and U2 be the normal partial isometries defined, respectively, by (78). If L1 ⊂ L2 then
U1 = U2PL1 , i.e., U1 is the restriction of U2 to L1. Thus the “minimal” normal partial isometry
corresponding to a given Hermitian matrix H is

U = (PR(H) + iH)(PR(H) − iH)† .

Ex. 47. A well known inequality of Fan and Hoffman [481, Theorem 3] is extended to the singular
case as follows.

If H1, H2 are Hermitian with R(H1) = R(H2) and if

Uk = (PR(Hk) + iHk)(PR(Hk) − iHk)
† , k = 1, 2 ,

then

‖U1 − U2‖ ≤ 2‖H1 −H2‖

for every unitaril invariant norm (Ben–Israel [109]).

Trace inequalities.

Ex.48. Let z be a complex scalar. Then, for any real α, the following inequality is obvious:

|z| ≥ <{zeiα} .

An analogous matrix inequality can be stated as follows:
Let H ∈ Cn×n be Hermitian positive semi–definite. Then

traceH ≥ <{trace(HW )} , for all W ∈ Un×n .

where Un×n is the class of n× n unitary matrices.

Proof. Suppose there is a W0 ∈ Un×n with

traceH < <{trace (HW0)} . (82)

Let

H = UDU∗ with U ∈ Un×n

and

D =

α1

. . .
αn

 ,
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where {α1, · · · , αn} are the eigenvalues of H. Then∑
αi = traceH < <{trace(UDU∗W0)} , by (82)

= <{traceA} , where A = UDV ∗ , V ∗ = U∗W0 (83)

= <{
∑

λi} , where {λ1, . . . , λn} are the eigenvalues of A .

But AA∗ = UDV ∗V DU∗ = UD2U∗, proving that the nonzero {αi} are the singular values of A.
Thus (83) implies that ∑

αi <
∑
|λi| ,

a contradiction of Weyl’s inequality (24). �

Ex. 49. Let A ∈ Cm×n
r be given, and let Wm×n

` denote the class of all partial isometries in Cm×n
` ,

where ` = min{m,n}. Then

sup
W∈W m×n

`

<{trace(AW )}

is attained for some W0 ∈Wm×n
` . Moreover, AW0 is Hermitian positive semi–definite, and

sup
W∈W m×n

`

<{trace(AW )} = trace(AW0) =
r∑

i=1

αi , (84)

where {α1, . . . , αr} are the singular values of A. (For m = n, and unitary W , this result is due to
von Neumann [1506].)

Proof. Without a loss of generality, assume that m ≤ n. Let

A = GE (61)

be a polar decomposition, where the partial isometry E is taken to be of full rank (using (66) with
k = m), so E ∈Wm×n

m . The, for any W ∈ Wm×n
m ,

trace(AW ) = trace(GEW )

= trace


G

... O
· · · · · · · · ·
O

... O


 E· · ·
E⊥

[W ... W⊥
] , (85)

where the submatrices E⊥ and W⊥ are chosen so as to make E
· · ·
E⊥

 and
[
W

... W⊥
]

unitary matrices; see, e.g., Ex. 28. SinceG
... O

· · · · · · · · ·
O

... O

 is positive semi–definite, and

 E· · ·
E⊥

[W ... W⊥
]

is unitary, it follows from Ex. 48 and (85), that

sup
W∈W n×m

m

<{trace(AW )}

is attained for W0 ∈W n×m
m satisfying

AW0 = G ,

and (84) follows from (67). �
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Ex.50. Let A ∈ Cm×n
r and B ∈ Cn×m

s have singular values

α1 ≥ α2 ≥ · · · ≥ αr > 0

and

β1 ≥ β2 ≥ · · · ≥ βs > 0

respectively. Then

sup
X∈Un×n, W∈Um×m

<{trace(AXBW )}

is attained for some X0 ∈ Un×n,W0 ∈ Um×m, and is given by

trace (AX0BW0) =

min{r,s}∑
i=1

αiβi .

This result was proved by von Neumann [1506, Theorem 1] for the case m = n. The general case
is proved by “squaring the matrices A and B, i.e., adjoining sero rows and columns to make them
square.

Gauge functions and singular values.
The following two exercises relate gauge functions (Ex. 3.49) to matrix norms and inequalities. The
unitarily invariant matrix norms are characterized in Ex. 51 as symmetric gauge functions of the
singular values. For square matrices these results were proved by von Neumann [1506] and Mirsky
[1056].

Ex.51. Unitarily invariant matrix norms. We use here the notation of Ex. 3.49.

Let the functions ‖ ‖φ : Cm×n → R and φ̂ : Cmn → R be defined, for any function φ : R` →
R, ` = min{m,n}, as follows: For any A = [aij] ∈ Cm×n with singular values

α1 ≥ α2 ≥ · · · ≥ αr > 0 ,

‖A‖φ and φ̂(a11, . . . , amn) are defined as

‖A‖φ = φ̂(a11, . . . , amn) = φ(α1, . . . , αr, 0, . . . , 0) . (86)

Then:
(a) If φ : R` → R satisfies conditions (G1)–(G3) of Ex. 3.49, so does φ̂ : Cmn → R.
(b) ‖UAV ‖φ = ‖A‖φ for all A ∈ Cm×n, U ∈ Um×m, V ∈ Un×n.
(c) Let φ : R` → R satisfies conditions (G1)–(G3) of Ex. 3.49, and let φD : R` → R be its dual,

defined by (3.85). Then, for any A ∈ Cm×n, the following supremum is attained, and

sup
X∈Cn×m, ‖X‖φ=1

<{trace(AX)} = ‖A‖φD
. (87)

(d) If φ : R` → R is a symmetric gauge function, then φ̂ : Cmn → R is a gauge function, and
‖ ‖φ : Cm×n → R is a unitarily invariant norm.

(e) If ‖ ‖ : Cm×n → R is a unitarily invariant norm, then there is a symmetric gauge function
φ : R` → R such that ‖ ‖ = ‖ ‖φ.

Proof. (a) Follows from definition (86).
(b) Obvious by Ex. 3.
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(c) For the given A ∈ Cm×n

sup
X∈Cn×m, ‖X‖φ=1

<{trace(AX)} =

= sup
X∈Cn×m, ‖X‖φ=1

<{trace(AUXV ) : U ∈ Un×n, V ∈ Um×m} , by (b)

= sup
φ(ξ1,... ,ξ`)=1

∑
i

αiξi , by Ex. 50

= φD(α1, . . . , αr) , by (3.86) and (3.88)

= ‖A‖φD
, by (86) ,

where

α1 ≥ α2 ≥ · · · ≥ αr > 0

and

ξ1 ≥ ξ2 ≥ · · · ≥ ξ` > 0

are the singular values of A and X, respectively.

(d) Let φD be the dual of φ, and let [(φD) : Cmn → R be defined by (86) as

[(φD)(a11, . . . , amn) = ‖A‖φD
, for A = [aij] .

Then

[(φD)(a11, . . . , amn) = ‖A∗‖φD
, by Ex. 2

= sup
X=[xij ]∈Cm×n,bφ(x11,... ,xmn)=1

<{trace(A∗X)} , by (87)

= sup
bφ(x11,... ,xmn)=1

∑
i,j

aij xij

proving that [(φD) : Cmn → R is the dual of φ̂ : Cmn → R, by using (3.86) and (3.88). Since φ is the

dual φD (by Ex. 3.49(d)), it follows that φ̂ is the dual of [(φD) and, by Ex. 3.49(d), φ̂ : Cmn → R is
a gauge function, That ‖ ‖φ is a unitarily invariant norm follows then from (b) and Ex. 3.53.

(e) Let ‖ ‖ : Cm×n → R be a unitarily invariant matrix norm, and define φ : R` → R by

φ(x) = φ(x1, x2, . . . , x`) = ‖[diag|xi|]‖ ,

where

[diag|xi|] =

|x1|
. . .
|x`|

 ∈ C`×` .

Then φ is a symmetric gauge function and ‖ ‖ = ‖ ‖φ. �

Ex.52. Inequalities for singular values. Let A,B ∈ Cm×n and let

α1 ≥ · · · ≥ αr > 0

and

β1 ≥ · · · ≥ βs > 0

be the singular values of A and B, respectively. Then for any symmetric gauge function φ : R` →
R, ` = min{m,n}, the singular values

γ1 ≥ · · · ≥ γt > 0
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of A+B satisfy

φ(γ1, . . . , γt, 0, . . . , 0) ≤ φ(α1, . . . , αr, 0, . . . , 0) + φ(β1, . . . , βs, 0, . . . , 0) (88)

(von Neumann [1506]).

Proof. The inequality (88) follows from (86) and Ex. 51(d), since

‖A+B‖φ ≤ ‖A‖φ + ‖B‖φ .
�

4. A spectral theory for rectangular matrices

The following theorem, due to Penrose [1177], is a generalization to rectangular matrices of the
classical spectral theorem for normal matrices (Theorem 2.13).

Theorem 6. (Spectral theorem for rectangular matrices). Let O 6= A ∈ Cm×n
r , and let d(A) =

{d1, . . . , dr} be complex scalars satisfying

|di| = αi , i = 1, . . . , r (2)

where

α1 ≥ α2 ≥ · · · ≥ αr > 0 (refeq:6-2)

are the singular values, α(A), of A.
Then there exist r partial isometries {Ei : i = 1, . . . , r} in Cm×n

1 satisfying

EiE
∗
j = O , E∗

iEj = O , 1 ≤ i 6= j ≤ r (89)

EiE
∗A = AE∗Ei , i = 1, . . . , r (90)

where

E =
r∑

i=1

Ei (91)

is the partial isometry given by (59), and

A =
r∑

i=1

diEi (92)

Furthermore, for each i = 1, . . . , r, the partial isometry (d̄i/|di|)Ei is unique if the corresponding
singular value is simple, i.e., if αi < αi−1 and αi > αi+1 for 2 ≤ i ≤ r and 1 ≤ i ≤ r−1, respectively.

Proof. Let the vectors {u1,u2, . . . ,ur} satisfy (26) and (27), let vectors {v1,v2, . . . ,vr} be
defined by (28), and let

Ei = uiv
∗
i , i = 1, . . . , r . (93)

The Ei is a partial isometry by Theorem 3(c), since EiE
∗
iEi = Ei by (27) and (30), from which (89)

also follows. The statement on uniqueness follows from (93), (2), (26), (27), and (28). The result
(92) was proved in Ex. 12, which also shows the matris E of (59) to be given by (91). Finally, (90)
follows from (91), (92). and (89). �

As shown by the proof of Theorem 6, the spectral representation (92) of A is just a way of
rewriting its UDV ∗–decomposition. The following spectral representation of A† similarly follows
from Corollary 1.

Corollary 3. Let A, di, and Ei, i = 1, . . . , r, be as in Theorem 6. Then

A† =
r∑

i=1

1

di

Ei . (94)
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�

If A ∈ Cn×n
r is a normal matrix with nonzero eigenvalues {λi : i = 1, . . . , r} ordered by

|λ1| ≥ |λ2| ≥ · · · ≥ |λr| ,

then, by Ex. 24, the choice

di = λi , i ∈ 1, r (52)

guarantees that

ui = vi , i ∈ 1, r (53)

and consequently, the partial isometries Ei of (93) are orthogonal projectors

Pi = uiu
∗
i , i ∈ 1, r (95)

and (92) reduces to

A =
r∑

i=1

λiPi , (96)

giving the spectral theorem for normal matrices as a special case of Theorem 5.
The classical spectral theory for square matrices (see, e.g., Dunford and Schwartz [441, pp.

556–565] makes extensive use of matrix functions f : Cn×n → Cn×n, induced by scalar functions
f : C→ C, according to the definition given in Ex. 53. Similarly, the spectral theory for rectangular
matrices given here uses matrix functions f : Cm×n → Cm×n which correspond to scalar functions
f : C→ C, according to the following.

Definition 1. Let f : C→ C be any scalar function. Let A ∈ Cm×n
r have a spectral representation

A =
r∑

i=1

diEi (92)

as in Theorem 6. Then the matrix function f : Cm×n → Cm×n corresponding to f : C → C is
defined at A by

f(A) =
r∑

i=1

f(di)Ei . (97)

Note that the value of f(A) defined by (97) depends on the particular choice of the scalars d(A)
in (2). In particular, for a normal matrix A ∈ Cn×n, the choice of d(A) by (52) reduces (97) to the
classical definition – see (114) below – in the case that f(0) = 0 or that A is nonsingular.

Let

A = U(r)D(r)V
∗
(r) , D(r) =

d1

. . .
dr

 (49)

be a UDV ∗–decomposition of a given A ∈ Cm×n
r . Then Definition 1 gives f(A) as

f(A) = U(r)f(D(r))V
∗
(r) , f(D(r)) =

f(d1)
. . .

f(dr)

 (98)

An easy consequence of Theorem 6 and Definition 1 is the following:
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Theorem 7. Let f, g, h : C → C be scalar functions and let f, g, h : Cm×n → Cm×n be the
corresponding matrix functions defined by Definition 1.

Let A ∈ Cm×n
r have a UDV ∗–decomposition

A = U(r)D(r)V
∗
(r) (49)

and let the partial isometry E be given by

E = U(r)V
∗
(r) . (59)

Then
(a) If f(z) = g(z) + h(z), then f(A) = g(A) + h(A) .
(b) If f(z) = g(z)h(z), then f(A) = g(A)E∗h(A) .
(c) If f(z) = g(h(z)), then f(A) = g(h(A)) .

Proof. Parts (a) and (c) are obvious by Definition 97).
(b) If f(z) = g(z)h(z), then

g(A)E∗h(A) =

(
r∑

i=1

g(di)Ei

)(
r∑

j=1

E∗
j

)(
r∑

k=1

h(dk)Ei

)
,

by (97) and (91) ,

=
r∑

i=1

g(di)h(di)Ei , by (89) and Theorem 3(c) ,

=
r∑

i=1

f(di)Ei = f(A) .

�

For matrix functions defined as above, an analog of Cauchy’s integral theorem is given in Corol-
lary 4 below. First we require

Lemma 1. Let A ∈ Cm×n
r be represented by

A =
r∑

i=1

diEi (92)

Let {d̂j : j = 1, . . . , q} be the set of distinct {di : i = 1, . . . , r} and let

Êj =
∑

i

{Ei : di = d̂j} , j = 1, . . . , q (99)

For each j ∈ 1, q let Γj be a contour (i.e., a closed rectifiable Jordan curve, positiveky oriented ib

the customary way) surrounding d̂j but no other d̂k.
Then:

(a) For each j ∈ 1, q, Êj is a partial isometry and

Êj

∗
=

1

2πi

∫
Γi

(zE − A)†dz . (100)

(b) If f : C→ C is analytic in a domain containing the set surrounded by

Γ =

q⋃
j=1

Γj ,
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then
r∑

j=1

f(dj)E
∗
j =

1

2πi

∫
Γ

f(z)(zE − A)†dz ; (101)

in particular,

A† =
1

2πi

∫
Γ

1

z
(zE − A)†dz ; (102)

Proof. (a) From (89) and Theorem 3 it follows that Êj and Êj

∗
are partial isometries for each

j = 1, . . . , q. Also, from (91), (92), and Corollary 3

(zE − A)† =
r∑

k=1

1

z − dk

E∗
k , (103)

hence

1

2πi

∫
Γj

(zE − A)†dz =
r∑

k=1

(
1

2πi

∫
Γj

dz

z − dk

)
E∗

k

=
∑
{dk= bdj

E∗
k

by the assumptions on Γj and Cauchy’s integral theorem

= Êj

∗
, by (99) .

(b) Similarly we calculate

1

2πi

∫
Γ

f(z)(zE − A)†dz =

q∑
j=1

r∑
k=1

(
1

2πi

∫
Γj

f(z)

z − dk

)
E∗

k

=

q∑
j=1

f(d̂j)Êj

∗

=
r∑

j=1

f(dj)E
∗
j , proving (101) .

Finally, (102) follows from (101) and Corollary 3. �

Corollary 4. Let A,E,Γ, and f be as in Lemma 1. Then

f(A) = E

(
1

2πi

∫
Γ

f(z)(zE − A)†dz

)
E . (104)

Proof. Using (91) and (101) we calculate

E

(
1

2πi

∫
Γ

f(z)(zE − A)†dz

)
E =

(
r∑

i=1

Ei

)(
r∑

j=1

f(dj)E
∗
j

)(
r∑

k=1

Ek

)

=
r∑

j=1

f(dj)Ej , by (89) and Theorem 3(c) ,

= f(A) .

�
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The generalized resolvent of a matrix A ∈ Cm×n is the function R(z, A) : C→ Cn×m given by

R(z, A) = (zE − A)† , (105)

where the partial isometry E is given as in Theorem 6. This definition is suggested by the classical
definition of the resolvent of a square matrix as

R(z, A) = (zI − A)−1 , for all z 6∈ λ(A) .

In analogy to the classical case – see, e.g., Dunford and Schwartz [441, p. 568] – we state the
following identity, known as the (first) resolvent equation.

Lemma 2. Let A ∈ Cm×n
r and let d(A) and E be as in THeorem 6. Then

R(λ,A)−R(µ,A) = (µ− λ)R(λ,A)R(µ,A) (106)

for any scalars λ, µ 6∈ d(A).

Proof.

R(λ,A)−R(µ,A) = (λE − A)† − (µE − A)† , by (105)

=
r∑

k=1

(
1

λ− dk

− 1

µ− dk

)
E∗

k , by (103)

=
r∑

k=1

(
µ− λ

(λ− dk)(µ− dk)

)
E∗

k

= (µ− λ)

(
r∑

k=1

1

λ− dk

E∗
k

)
E

(
r∑

`=1

1

µ− d`

E∗
`

)
,

by (89), (91) and Theorem 3(c) ,

= (µ− λ)R(λ,A)R(µ,A) , by (103) .

�

The resolvent equation, (106), is used in the following lemma, based on Lancaster [902, p. 552].

Lemma 3. Let A ∈ Cm×n, let d(A) an dE be given as in Theorem 6, and let the scalar functions
f, g : C → C be analytic in a domain D containing d(A). If Γ is a contour surrounding d(A) and
lying in the interior of D, then(

1

2πi

∫
Γ

f(λ)R(λ,A)dλ

)
E

(
1

2πi

∫
Γ

g(λ)R(λ,A)dλ

)
=

1

2πi

∫
Γ

f(λ)g(λ)R(λ,A)dλ (107)

Proof. Let Γ1 be a contour surrounding Γ and still lying in the interior of D. Then

1

2πi

∫
Γ

g(λ)R(λ,A)dλ =
1

2πi

∫
Γ1

g(µ)R(µ,A)dµ ,
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which when substituted in LHS(107) gives(
1

2πi

∫
Γ

f(λ)R(λ,A)dλ

)
E

(
1

2πi

∫
Γ1

g(µ)R(µ,A)dµ

)
= − 1

4π2

∫
Γ1

∫
Γ

f(λ)g(µ)R(λ,A)ER(µ,A)dλdµ

=
1

4π2

∫
Γ1

∫
Γ

f(λ)g(µ)
R(λ,A)−R(µ,A)

λ− µ
dλdµ , by (106)

=
1

4π2

∫
Γ

f(λ)R(λ,A)

(∫
Γ1

g(µ)

λ− µ
dµ

)
dλ

− 1

4π2

∫
Γ1

(∫
Γ

f(λ)

λ− µ
dλ

)
g(µ)R(µ,A)dµ

=
1

2πi

∫
Γ

f(λ)g(λ)R(λ,A)dλ , since

∫
Γ1

g(µ)

λ− µ
dµ = −2πig(λ)

and

∫
Γ

f(λ)

λ− µ
dλ = 0 ,

by our assumptions on Γ,Γ1. �

We illustrate now the application of the above concepts to the solution of the matrix equation

AXB = D (108)

studied in Theorem 2.1. Here the matrices A ∈ Cm×n, B ∈ Ck×`, and D ∈ Cm×` are given, and, in
addition, the matrices A and B have spectral representations , given by Theorem 6 as follows:

A =

p∑
i=1

dA
i E

A
i , EA =

p∑
i=1

EA
i , p = rankA (109)

and

B =

q∑
i=1

dB
i E

B
i , EB =

q∑
i=1

EB
i , q = rankB . (110)

Theorem 8. LetA,B,D be as above, and let Γ1 and Γ2 be contours surrounding d(A) = {dA
1 , . . . , d

A
p }

and d(B) = {dB
1 , . . . , d

B
q }, respectively. If (108) is consistent, then it has the following solution:

X = − 1

4π2

∫
Γ1

∫
Γ2

R(λ,A)DR(µ,B)

λµ
dµ dλ . (111)

Proof. From (104) it follows that

A = EA

(
1

2πi

∫
Γ1

λR(λ,A)dλ

)
EA

and

B = EB

(
1

2πi

∫
Γ2

µR(µ,B)dµ

)
EB .
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Therefore,

AXB = EA

[
1

2πi

∫
Γ1

λR(λ,A)dλ

]
× EA

[
1

2πi

∫
Γ1

R(λ,A)

λ
D

(
1

2πi

∫
Γ2

R(µ,B)

µ
dµ

)
dλ

]
× EB

[
1

2πi

∫
Γ2

µR(µ,B)dµ

]
EB

= EA

[
1

2πi

∫
Γ1

R(λ,A)dλ

]
D

[
1

2πi

∫
Γ2

R(µ,B)dµ

]
EB ,

by a double application of Lemma 3

= EA(EA)∗D(EB)∗EB , by (101) with f ≡ 1

= PR(A)DPR(B∗) , by (60)

= AA†DB†B

= D if and only if (108) is consistent, by Theorem 2.1 .

Alternatively, it follows from (102) that X in (111) is X = A†DB†, a solution of (108) if it is
consistent. �

For additional results along these lines see Lancaster [902] and Wimmer and Ziebur [1608].

Exercises and examples.

Ex. 53. Matrix functions: The classical definition. For any A ∈ Cn×n with spectrum σ(A), let
F (A) denote the class of all functions f : C → C which are analytic in some open set containing
σ(A). For any scalar function which is analytic in some open set, the corresponding matrix function
f : Cn×n → Cn×n is defined, at those A ∈ Cn×n such that f ∈ F (A), by

f(A) = p(A) , (112)

where p(A) is any polynomial such that, for each λ ∈ σ(A),

p(i)(λ) = f (i)(λ) , i = 0, 1, . . . , ν(λ)− 1 (113)

where ν(λ) is the index (see Definition 4.1) of the matrix A − λI, also called the index of the
eigenvalue λ.

For other definitions of matrix functions, and their relations to the one given here, see Rinehart
[1274]. Additional results and references on matrix functions are Dunford and Schwartz [441, pp.
556–565], Gantmacher [533], Frame [508], and Lancaster [902].

Ex.54. If A ∈ Cn×n is normal with a spectral representation

A =
r∑

i=1

λiPi (96)

then, for any f ∈ F (A), definition (112) gives

f(A) =
r∑

i=1

f(λi)Pi + f(0)PN(A) , (114)

since the eigenvalues of a normal matrix have index one.

Ex. 55. Generalized powers The matrix function f : Cm×n → Cm×n corresponding to the scalar
function

f(z) = zk , k any integer ,
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is denoted by

f(A) = A<k>

and called the generalized kth power of A ∈ Cm×n. Definition 1 shows that

A<k> =
r∑

i=1

dk
iEi , by (97) (115)

or equivalently

A<k> = U(r)D
k
(r)V

∗
(r) , by (98) . (116)

The generalized powers of A satisfy

A<k> =

 E , k = 0 ,
A<k−1>E∗A , k ≥ 1 , in particular A<1> = A ,
A<k+1>E∗A<−1> , k ≤ −1 .

(117)

Ex.56. If in Theorem 6 the scalars d(A) are chosen as the singular values of A, i.e., if d(A) = α(A),
then for any integer k

A∗<k> = A<k>∗ , (118)

A<2k+1> = A(A∗A)k = (AA∗)kA , (119)

in particular

A<−1> = A∗† . (120)

Ex. 57. If A ∈ Cn×n
r is normal, and if the scalars d(A) are chosen as the eigenvalues of A, i.e., if

d(A) = σ(A), then

A<k> =

 Ak , k ≥ 1 ,
PR(A) , k = 0 ,
(A†)k , k ≤ −1 .

(121)

Ex. 58. Ternary powers. From (119) follows the definition of a polynomial in ternary powers of
A ∈ Cm×n, as a polynomial ∑

k

pkA
<2k+1> =

∑
k

pk(AA
∗)kA .

Such polynomials were studied by Hestenes [726] in the more general context of ternary algebras.
In (124) below, we express A† as a polynomial in ternary powers of A∗. First we require the

following.

Ex. 59. Let A ∈ Cn×n be Hermitian, and let a vanishing polynomial of A, i.e., a polynomial m(λ)
satisfying m(A) = O, be given in the form

m(λ) = cλ`(1− λq(λ)) (4.31)

where c 6= 0, ` ≥ 0, and the leading coefficient of q is 1.
Then

A† = q(A) + q(O)[Aq(A)− I] , (122)

and in particular

A−1 = q(A) , if A is nonsingular ( Albert [13, p. 75]) .
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Proof. From (4.31) it follows that

A` = A`+1q(A)

and since A is Hermitian

A† = (A†)`+1A` = AA†q(A)

= AA†[q(A)− q(O)] + AA†q(O)

= q(A)− q(O) + AA†q(O) (123)

since q(A)− q(O) contains only positive powers of A. Postmultiplying (123) by A gives

A†A = [q(A)− q(O)]A+ Aq(O)

= q(A)A = Aq(A) ,

which when substituted in (123), gives (122). �

Alternatively, (122) can be shown to follow from the results of Section 4.6, since here AD = A†.

Ex.60. Let A ∈ Cm×n and let

m(λ) = cλ`(1− λq(λ)) (4.31)

be a vanishing polynomial of A∗A, as in Ex. 59. Then

A† = q(A∗A)A∗ (124)

(Penrose [1177], Hestenes [726], Ben-Israel and Charnes [126]).

Proof. From (122) it follows that

(A∗A)† = q(A∗A) + q(O)[A∗Aq(A∗A)− I] ,
so, by Ex. 1.16(d),

A† = (A∗A)†A∗ = q(A∗A)A∗ .

�

A computational method based on (124) is given in Decell [390] and in Albert [13].

Ex.61. Partial isometries. Let W ∈ Cm×n. Then W is a partial isometry if and only if

W = eiA

for some A ∈ Cm×n.

Proof. Follows from (98) and Exs. 29–30. �

Ex.62. Let U ∈ Cn×n. Then U is a unitary matrix if and only if

U = eiH + PN(H) (125)

for some Hermitian matrix H ∈ Cn×n. Note that the exponential in (125) is defined according to
Definition 1. For the classical definition given in Ex. 53, Eq. (125) should be replaced by

U = eiH . (125’)

Ex.63. Polar decompositions. Let A ∈ Cm×n
r and let

A = GE = EH (61)

be a polar decomposition of A, given as in Corollary 2. Then for any function f , Definition 1 gives

f(A) = f(G)E = Ef(H) , (126)

in particular

A<k> = GkE = EHk , for any integer k . (127)
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Suggested further reading

Section 2 . Businger and Golub [247], Golub and Kahan [553], Golub and Reinsch [557], Good
[562], Hartwig [671], Hestenes [723], Lanczos [906], and Wedin [1540].
Section 3 . Erdélyi ([467], [473], [471], [474], [472]), Erdélyi and Miller [478], Halmos and Wallen
[648], Hearon ([707], [706]), Hestenes ([723], [724], [725], [726]) and Poole and Boullion [1195].



CHAPTER 7

Computational Aspects of Generalized Inverses

1. Introduction

There are three principal situations in which it is required to obtain numerically a generalized
inverse of a given matrix: (i) the case in which any {1}–inverse will suffice, (ii) the cases in which
any {1, 3}–inverse (or sometimes any {1, 4}–inverse) will do, and (iii) the case in which a {2}–inverse
having a specified range and null space is required.

The inverse desired in case (iii) is, in the majority of cases, the Moore–Penrose inverse, which
is the unique {2}–inverse of the given matrix A having the same range and null space as A∗. The
Drazin inverse can also be fitted into this pattern, being the unique {2}–inverse of A having the
same range and null space as A`, where ` is any integer not less than the index of A. When ` = 1,
this is the group inverse.

Generalized inverses are closely associated with linear equations, orthonormalization, least
squares solutions, singular values, and various matrix factorizations. These topics have been studied
extensively, and many excellent references are available in the numerical analysis literature. for this
reason we can keep this chapter brief, restricting our effort to listing some computational methods
for generalized inversion, and discussing the mathematics behind these methods. No error analysis
is attempted.

Iterative methods for generalized inversion are discussed in Section 5. The remaining sections
deal with direct methods.

2. Computation of unrestricted {1}–inverses and {1, 2}–inverses

Let A be a given matrix for which a {1}–inverse is desired, when any {1}–inverse will suffice. If
it should happen that A is of such a structure, or has risen in such a manner, that a nonsingular
submatrix of maximal order is known, we can write

PAQ =

[
A11 A12

A21 A22

]
, (5.19)

where A11 is nonsingular and P and Q are permutation matrices used to bring the nonsingular
submatrix into the upper left position. (If A is of full (column or row) rank, some of the submatrices
in (5.19) will be absent.) Since rank A is the order of A11, this implies that

A22 = A21A
−1
11 A12 ( Brand [233]) (5.34)

and a {1, 2}–inverse of A is

A(1,2) = Q

[
A−1

11 O
O O

]
P ( C. R. Rao [1241]) . (5.25)

In the more usual case in which a nonsingular submatrix of maximal order is not known, and likewise,
rank A is not known, perhaps the simplest method is that of Section 1.2, using Gaussian elimination
to bring A to Hermite normal form. (It should be noted, however, that we are employing the “looser”
definition of the Hermite normal form, Definition 0.1 (p. 22), and not the strict definition used in
some texts, e.g., Marcus and Minc [996].) Thus if

EAP =

[
Ir K
O O

]
(0.46)

209
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(with modifications in the case that A is of full rank), where E is nonsingular and P is a permutation
matrix, then

A(1) = P

[
Ir K
O L

]
E (1)

is a {1}–inverse of A for arbitrary L. Of course, the simplest choice is L = O, which gives the
{1, 2}–inverse

A(1,2) = P

[
Ir K
O O

]
E .

On the other hand, when A is square, a nonsingular {1}–inverse may sometimes be desired. This
is obtained by taking L in (1) to be nonsingular. The simplest choice for L is a unit matrix, which
gives

A(1) = PE .

If the calculations are performed on a computer, then, as in the nonsingular case, the accuracy may
depend on the choice of pivots used in the Gaussian elimination. (For a discussion of pivoting see,
e.g., Pennington [1176]; for a simple illustration, see Ex. 2 below.)

Exercises.

Ex.1. Show that (1) gives a {1, 2}–inverse of A if and only if L = O.

Ex.2. Consider the two nonsingular matrices

A =

[
ε 1
0 1

]
, B =

[
ε 1
1 1

]
,

where ε is a small, positive number. Compare the various ways (i.e., choices of pivots) of transform-
ing A and B to their Hermite normal forms. The objective is a numerically stable process, which
here means to avoid, or to postpone, division by ε.

3. Computation of unrestricted {1, 3}–inverses

Let A ∈ Cm×n
r and let

A = FG (2)

be a full–rank factorization. Then, by Ex. 1.25(b),

X = G(1)F † , (3)

where G(1) is an arbitrary element of G{1}, is a {1, 2, 3}–inverse of A. If the factorization (2) has
been obtained from the Hermite normal form of A by the procedure described in Section 1.7, then

F = AP1 , (4)

where P1 denotes the first r columns of the permutation matrix P . Moreover, we may takeG(1) = P1,
and (3) gives

X = P1F
† . (5)

Since F is of full column rank,

F † = (F ∗F )−1F ∗ (6)

by (1.24). Thus (4), (6), and (5), in that order, give a {1, 2, 3}–inverse of A.
Note that (4) shows that F is a submatrix of A consisting of r linearly independent columns.

In fact, the only purpose served by the computation of the Hermite normal form is in the selection
of the r columns. Thus, the method is equally valid if r linearly independent columns have been
determined in some other manner; see, e.g., Exs. 4–5 below.
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Observe also that (5) shows that each of the r rows of F † is a row of X (in general, not the
corresponding row), while the remaining n− r rows of X are rows of zeros. Thus, in the language
of linear programming, X is a “basic” {1, 2, 3}–inverse of A.

Exercises.

Ex.3. Use (4), (6), and (5) to obtain a {1}–inverse of

A =


1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1

 .

Ex. 4. Gram–Schmidt orthogonalization. Given a nonzero A ∈ Cm×n, a full column rank submatrix
can be found by the Gram–Schmidt orthogonalization process (abbreviated GSO) as follows.

Applying GSO (without normalization) to the columns [a1, a2, . . . , an] of A gives an orthogonal
basis {v1,v2, . . . ,vr} of R(A), where

v1 = ac1 if ac1 6= 0 = aj for 1 ≤ j < c1 (7a)

xj = aj −
k−1∑
`=1

〈aj,v`〉
‖v`‖2

, j = ck−1 + 1, ck−1 + 2, . . . , ck (7b)

and

vk = xck
if xck

6= 0 = xj for ck−1 + 1 ≤ j < ck , k = 2, . . . , r . (7c)

Then

F = [ac1 , ac2 , . . . , acr ] , P1 = [ec1 , ec2 , . . . , ecr ] (8)

are two matrices satisfying (4).

Ex.5. If F is given by (8) and (7), then

F † =


a∗c1/‖ac1‖2
a∗c2/‖ac2‖2
· · · · · ·

a∗cr
/‖acr‖2

 (9)

Thus the GSO gives everything needed in (5) to compute a {1, 2, 3}–inverse. See also Ex. 9 below.

Ex.6. Use (7), (8), (9), and (5) to calculate a {1, 2, 3}–inverse of the matrix given in Ex. 3.

4. Computation of {2}–inverses with prescribed range and null space

Let A ∈ Cm×n
r , let A{2}S,T contain an nonzero matrix X, and let U and V be such that

R(U) = R(X), N(V ) = N(X), and the product V AU us defined. Then, by Theorems 2.11 and
2.12, rank U = rank V = rank V AU , and

X = U(V AU)(1)V , (10)

where (V AU)(1) is an arbitrary element of (V AU){1}. This is the basic formula for the case
considered in this section. Zlobec’s formula

A† = A∗(A∗AA∗)(1)A∗ (11)

(see Ex. 2.30) and Greville’s formula

AD = A`(A2`+1)(1)A` (4.35)

where ` is a positive integer not less than the index of A, are particular cases. Formula (10) has
the advantage that it does not require inversion of any nonsingular matrix. Aside from matrix
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multiplication, only the determination of a {1}–inverse of V AU is needed, and this can be obtained
by the method of Section 1.2.

It should be noted, however, that when ill–conditioning of A is a problem, this is accentuated
by forming products like A∗AA∗ or A2`+1, and in such cases, other methods are preferable.

In the case of the Moore–Penrose inverse, Noble’s formula

A† = Q

[
Ir
T ∗

]
(Ir + TT ∗)−1A−1

11 (Ir + S∗S)−1
[
Ir S∗

]
P (5.28)

is available, if a maximal nonsingular (and well–conditioned) submatrix A11 is known, where the
permutation matrices P and Q and the “multipliers” S and T are defined by

A = P T

[
A11 A12

A21 A22

]
QT

= P T

[
Ir
S

]
A11

[
Ir T

]
QT ; see Ex. 7. (1.19)

Otherwise, it is probably best to use the method of Section 1.7 to obtain a full–rank factorization

A = FG . (1.19)

Then, the Moore–Penrose inverse is

A† = G∗(F ∗AG∗)−1F ∗ , (1.22)

while the group inverse is

A# = F (GF )−2G , (4.16)

whenever GF is nonsingular.
In the computation of AD when the index of A exceeds 1, it is not easy to avoid raising A to a

power. When ill–conditioning of A is serious, perhaps the best method is the sequential procedure
of Cline [352], which involves full–rank factorization of matrices of successively smaller order, until
a nonsingular matrix is reached. Thus, we take

A = B1G1 , (12)

GiBi = Bi+1Gi+1 (i = 1, 2, . . . , k − 1) , (13)

where k is the index of A. Then

AD = B1B2 · · ·Bk(GkBk)
−k−1GkGk−1 · · ·G1 . (14)

Exercises.

Ex. 7. Noble’s method. Let the nonzero matrix A ∈ Cm×n
r be transformed to a column–permuted

Hermite normal form

PEAQ =

 Ir
... T

· · · · · · · · ·
O

... O

 = (PEP T )(PAQ) (15)

where P and Q are permutation matrices and E is a product of elementary row matrices of types
(i) and (ii) (see Section 1.2),

E = EkEk−1 · · ·E2E1 ,

which does not involve permutation of rows.
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Then E can be chosen so that

PE
[
A

... Im

]Q
... O

· · · · · · · · ·
O

... P T

 =

 Ir
... T

... A−1
11

... O
· · · · · · · · · · · · · · · · · · · · ·
O

... O
... −S ... Im−r

 (16)

giving all the matrices P,Q, T, S, and A−1
11 which appear in (5.28). Note that after the left–hand

portion of RHS(16) has been brought to the form (15), still further row operations may be needed
to bring the right–hand portion to the required form (Noble [1144]).

Ex.8. Singular value decomposition. Let

A = U(r)D(r)V
∗
(r) (6.49)

be a singular value decomposition of A ∈ Cm×n. Then

A† = V(r)D
−1
(r)U

∗
(r)

= V(r)(U
∗
(r)AV(r))

−1U∗
(r) (6.50)

is shown to be a special case of (10) by taking

U = V(r) , V = U∗
(r) .

A method for computing the Moore–Penrose inverse, based on (6.50), has been developed by Golub
and Kahan [553]. See also Businger and Golub [246], [247] and Golub and Reinsch [557].

Ex. 9. Gram–Schmidt orthogonalization. The GSO of Exs. 4–5 can be modified to compute the
Moore–Penrose inverse. This method is due to Rust and Burrus and Schneeberger [1312]; see also
Albert [13, Chapter V].

Ex.10. For the matrix A of Ex. 3, calculate A† by:
(a) Zlobec’s formula (11).
(b) Noble’s formula (5.28).
(c) MacDuffee’s formula (1.22).
(d) Greville’s method, Section 5.5.

Ex.11. For the matrix A of Ex. 3, calculate A# by:
(a) Formula (4.23).
(b) Cline’s formula (4.16).

Ex. 12. Show that, for a matrix A of index k that is not nilpotent, with Bi and Gi defined by (12)
and (13), GkBk is nonsingular. [Hints : Express Ak and Ak+1 in terms of Bi and Gi (i = 1, 2, . . . , k),
and let rk denote the number of columns of Bk, which is also the number of rows of Gk. Show that
rankAk = rk, while rankAk+1 = rankGkBk. Therefore rankAk+1 = rankAk implies that GkBk is
nonsingular.]

Ex.13. Use Theorem 4.7 to verify (14).

5. Iterative methods for computing A†

An iterative method for computing A† is a set of instructions for generating a sequence {Xk :
k = 1, 2, . . . } converging to A†. The instructions specify how to select the initial approximation
X0, how to proceed from Xk to Xk+1 for each k, and when to stop, having obtained a reasonable
approximation of A†.

The rate of convergence of such an iterative method is determined in terms of the corresponding
sequence of residuals {Rk : k = 0, 1, . . . }

Rk = PR(A) − AXk , k = 0, 1, . . . (17)
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which converges to O as Xk → A†. An iterative method is said to be a p th–order method, for some
p > 1, if there is a positive constant c such that

‖Rk+1‖ ≤ c‖Rk‖p , k = 0, 1, . . . (18)

for any multiplicative matrix norm; see, e.g., Ex. 0.27.
In analogy with the nonsingular case – see, e.g., Householder [753, pp. 94–95] – we consider

iterative methods of the type

Xk+1 = Xk + CkRk , k = 0, 1, . . . , (19)

where {Ck : k = 0, 1, . . . } is a suitable sequence, and X0 is the initial approximation (to be
specified).

One objection to (19) as an iterative method for computing A† is that (19) requires at each
iteration the residual Rk, for which one needs the projection PR(A), whose computation is a task
comparable to computing A†. This difficulty will be overcome here by choosing the sequence {Ck}
in (19) to satisfy

Ck = CkPR(A) , k = 0, 1, . . . (20)

For such a choice we have

CkRk = Ck (PR(A) − AXk) , by (17)

= Ck (I − AXk) , by (20) , (21)

and (19) can therefore be rewritten as

Xk+1 = Xk + CkTk , k = 0, 1, . . . (22)

where

Tk = I − AXk , k = 0, 1, . . . (23)

The iterative method (19), or (22), is suitable for the case where A is an m×n matrix with m ≤ n,
for then Rk and Tk are m ×m matrices. However, if m > n the following dual version of (19) is
preferable to it

X ′
k+1 = X ′

k +R′
k C

′
k , k = 0, 1, . . . , (19 ′)

where

R′
k = PR(A∗) −X ′

kA (17 ′)

and {C ′
k : k = 0, 1, . . . } is a suitable sequence, satisfying

C ′
k = PR(A∗)C

′
k , k = 0, 1, . . . (20 ′)

a condition which allows rewriting (19 ′) as

X ′
k+1 = X ′

k + T ′kC
′
k , k = 0, 1, . . . (22 ′)

where

T ′k = I −X ′
kA , k = 0, 1, . . . (23 ′)

Indeed, if m > n then (22 ′) is preferable to (22), for the former method uses the n × n matrix T ′k
while the latter uses Tk, which is an m×m matrix.
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Since all the results and proofs pertaining to the iterative method (19) or (22) hold true, with
obvious modifications, fo r the dual method (19 ′) or (22 ′), we will, for the same of convenience,
restrict the discussion to the case

m ≤ n , (24)

leaving to the reader the details of the complementary case.
A first–order iterative method for computing A†, of type (22), is presented in the following.

Theorem 1. Let O 6= A ∈ Cm×n and let the initial approximation X0 and its residual R0 satisfy

X0 ∈ R(A∗, A∗) (25)

(i.e. X0 = A∗BA∗ for some B ∈ Cm×n, see Ex. 3.25, p. 96), and

ρ(R0) < 1 (26)

respectively. Then the sequence

Xk+1 = Xk +X0Tk

= Xk +X0(I − AXk) , k = 0, 1, . . . (27)

converges to A† as k →∞, and the corresponding sequence of residuals satisfies

‖Rk+1‖ ≤ ‖R0‖‖Rk‖ , k = 0, 1, . . . (28)

for any multiplicative matrix norm.

Proof. The sequence (27) is obtained from (22) by choosing

Ck = X0 , k = 0, 1, . . . (29)

a choice which, by (25), satisfies (20), and allows rewriting (27) as

Xk+1 = Xk +X0Rk

= Xk +X0(PR(A) − AXk) , k = 0, 1, . . . (30)

From (30) we compute the residual

Rk+1 = PR(A) − AXk+1

= PR(A) − AXk − AX0Rk

= Rk − AX0Rk

= PR(A)Rk − AX0Rk , by (17)

= R0Rk , k = 0, 1, . . .

= Rk+2
0 , by repeating the argument. (31)

For any multiplicative matrix norm, it follows from (31) that

‖Rk+1‖ ≤ ‖R0‖‖Rk‖ . (28)

From

Rk+1 = Rk+2
0 , k = 0, 1, . . . (31)

it also follows, by using (26) and Ex. 0.38, that the sequence of residuals converges to the zero
matrix:

PR(A) − AXk → O as k →∞ . (32)
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We will prove now that the sequence (27) converges. Rewriting the sequence (27) as

Xk+1 = Xk +X0Rk , (30)

it follows from (31) that

Xk+1 = Xk +X0R
k+1
0

= Xk1 +X0R
k
0 +X0R

k+1
0

= X0 (I +R0 +R2
0 + · · ·+Rk+1

0 ) , k = 0, 1, . . . (33)

which, by (26) and Exs. 0.38–0.39, converges to a limit X∞.
Finally we will show that X∞ = A†. From (32) it follows that

AX∞ = PR(A) ,

and in particular, that X∞ is a {1}–inverse of A. From (25) and (27) it is obvious that all Xk lie
in R(A∗, A∗), and therefore

X∞ ∈ R(A∗, A∗) ,

proving that X∞ = A†, since A† is the unique {1}–inverse which lies in R(A∗, A∗); see Ex. 3.28. �

For any integer p ≥ 2, a p th–order iterative method for computing A†, of type (22), is described
in the following.

Theorem 2. Let O 6= A ∈ Cm×n and let the initial approximation X0 and its residual R0 satisfy
(25) and (26), respectively. Then for any integer p ≥ 2, the sequence

Xk+1 = Xk (I + Tk + T 2
k + · · ·+ T p−1

k )

= Xk (I + (I − AXk) + (I − AXk)
2 + · · ·+ (I − AXk)

p−1) , k = 0, 1, . . . (34)

converges to A† as k →∞, and the corresponding sequence of residuals satisfies

‖Rk+1‖ ≤ ‖Rk‖p , k = 0, 1, . . . (35)

Proof. The sequence (34) is obtained from (22) by choosing

Ck = Xk (I + Tk + T 2
k + · · ·+ T p−2

k ) . (36)

From (25) and (34) it is obvious that all the Xk lie in R(A∗, A∗), and therefore the sequence {Ck},
given by (36), satisfies (20), proving that the sequence (34) can be rewritten in tyhe form (19)

Xk+1 = Xk (I +Rk +R2
k + · · ·+Rp−1

k ) , k = 0, 1, . . . (37)

From (37) we compute

Rk+1 = PR(A) − AXk+1

= PR(A) − AXk (I +Rk +R2
k + · · ·+Rp−1

k )

= Rk − AXk (Rk +R2
k + · · ·+Rp−1

k ) , (38)

Now for any j = 1, . . . , p− 1

Rj
k − AXkR

j
k = PR(A)R

j
k − AXkR

j
k

= RkR
j
k = Rj+1

k ,

and therefore, the last line in (38) collapses to

Rk+1 = Rp
k , (39)
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which implies (35). The remainder of the proof, namely, that the sequence (37) converges to A†,
can be given analogously to the proof of Theorem 1. �

The iterative methods (27) and (34) are related by the following:

Theorem 3. Let O 6= A ∈ Cm×n and let the sequence {Xk : k = 0, 1, . . . } be constructed as in

Theorem 1. Let p be any integer ≥ 2, and let a sequence {X̃j : j = 0, 1, . . . } be constructed as in
Theorem 2 with the same initial approximation X0 as the first sequence

X̃0 = X0 ,

X̃j+1 = X̃j (I + T̃j + T̃ 2
j + · · ·+ T̃ p−1

j ) , j = 0, 1, . . . , (34)

where

T̃j = I − AX̃k , j = 0, 1, . . . (23)

Then

X̃j = Xpj−1 , j = 0, 1, . . . (40)

Proof. We use induction on j to prove (40), which obviously holds for j = 0. Assuming

X̃j = Xpj−1 , (40)

we will show that

X̃j+1 = Xpj+1−1 .

From

Xk = X0 (I +R0 +R2
0 + · · ·+Rk

0) (33)

and (40), it follows that

X̃j = X0 (I +R0 +R2
0 + · · ·+Rpj−1

0 ) . (41)

Rewriting (34) as

X̃j+1 = X̃j (I + R̃j + R̃2
j + · · ·+ R̃p−1

j ) , (37)

it follows from

R̃j = PR(A) − AX̃j

= PR(A) − AXpj−1 , by (40) ,

= Rpj−1

= Rpj

0 , by (31) ,

that

X̃j+1 = X̃j (I +Rpj

0 +R2pj

0 + · · ·+R
(p−1)pj

0 )

= X0 (I +R0 +R2
0 + · · ·+Rpj−1

0 )(I +Rpj

0 +R2pj

0 + · · ·+R
(p−1)pj

0 ) , by (41) ,

= X0 (I +R0 +R2
0 + · · ·+Rpj+1−1

0 )

= Xpj+1−1 , by (33) .

�
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Theorem 3 shows that an approximation X̃j obtained by the p th–order method (34) in j iter-
ations, will require pj − 1 iterations of the 1 st–order method (27), both methods using the same
initial approximation. For any two iterative methods of different orders, the higher–order method
will, in general, require fewer iterations but more computations per iteration. A discussion of the
optimal order p for methods of type (34) is given in Ex. 20.

Exercises and examples.

Ex.14. The condition

X0 ∈ R(A∗, A∗) (25)

is necessary for the convergence of the iterative methods (27) and (34): let

A =
1

2

[
1 1
1 1

]
, B = ε

[
1 −1
−1 1

]
, ε 6= 0 ,

and let

X0 = A+B ,

Then

R0 = PR(A) − AX0 = O

and in particular (26) holds, but

X0 6∈ R(A∗, A∗)

and both sequences (27) and (34) reduce to

Xk = X0 , k = 0, 1, . . . ,

without converging to A†.

Ex.15. Let O 6= A ∈ Cm×n, and let X0 and R0 = PR(A) − AX0 satisfy

X0 ∈ R(A∗, A∗) , (25)

ρ(R0) < 1 . (26)

Then

A† = X0(I −Ro)
−1 . (42)

Proof. The proof of Theorem 1 shows A† to be the limit of

Xk = X0 (I +R0 +R2
o + · · ·+Rk

0) (33)

as k →∞. But the sequence (33) converges, by Ex. 0.39, to RHS(42). �

The special case X0 = βA∗

A frequent choice of the initial approximation X0, in the iterative methods (27) and (34), is

X0 = βA∗ (43)

for a suitable real scalar β. This special case is treated in the following three exercises.
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Ex.16. Let O 6= A ∈ Cm×n
r , let β be a real scalar, and let

R0 = PR(A) − βAA∗ ,

T0 = I − βAA∗ .

Then the following are equivalent.
(a) The scalar β satisfies

0 < β <
2

λ1(AA∗)
, (44)

where

λ1(AA
∗) ≥ λ2(AA

∗) ≥ · · · ≥ λr(AA
∗) > 0

are the nonzero eigenvalues of AA∗.
(b) ρ(R0) < 1.
(c) ρ(T0) ≤ 1 and λ = −1 is not an eigenvalue of T0.

Proof. The nonzero eigenvalues of R0 and T0 are among

{1− βλi(AA
∗) : i = 1, . . . , r}

and

{1− βλi(AA
∗) : i = 1, . . . ,m}

respectively. The equivalence of (a), (b), and (c) then follows from the observation that (44) is
equivalent to

|1− βλi(AA
∗)| < 1 , i = 1, . . . , r .

�

Ex.17. Let O 6= A ∈ Cm×n
r , and let the real scalar β satisfy

0 < β <
2

λ1(AA∗)
. (44)

Then:
(a) The sequence

X0 = βA∗ , Xk+1 = Xk (I − βAA∗) + βA∗ , k = 0, 1, . . . (45)

or equivalently

Xk = β
k∑

j=0

A∗ (I − βAA∗)j , k = 0, 1, . . . (46)

is a first–order method for computing A†.
(b) The corresponding residuals Rk = PR(A) − AXk are given by

Rk = (PR(A) − βAA∗)k+1 , k = 0, 1, . . . (47)

(c) For any k, the spectral norm of Rk, ‖Rk‖2, is minimized by choosing

β =
2

λ1(AA∗) + λr(AA∗)
, (48)

in which case the minimal ‖Rk‖2 is

‖Rk‖2 =

(
λ1(AA

∗)− λr(AA
∗)

λ1(AA∗) + λr(AA∗)

)k+1

, k = 0, 1 . . . (49)
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Proof. (a) Substituting (43) in (27) results in (45) or equivalently in (46).
(b) Follows from (46).
(c) Rk is Hermitian and therefore

‖Rk‖2 = ρ(Rk) , by Ex. 0.38

= ρ(Rk+1
0 ) , by (31)

= ρk+1(R0) , by Ex. 0.37 .

Thus, ‖Rk‖2 is minimized by the same β that minimizes ρ(R0). Since the nonzero eigenvalues of
R0 = PR(A) − βAA∗ are

1− βλi(AA
∗) , i = 1, . . . , r

it is clear that β minimizes

ρ(R0) = max{|1− βλi(AA
∗)| : i = 1, . . . , r}

if and only if

−(1− βλ1(AA
∗)) = 1− βλr(AA

∗) , (50)

which is (48). Finally (49) is obtained by substituting (48) in

ρ(Rk) = max {|1− βλi(AA
∗)|k+1 : i = 1, . . . , r} , by (47)

= |1− βλr(AA
∗)|k+1 , for β satisfying (50) .

�

Ex.18. Let A, β be as in Ex. 17. Then for any integer p ≥ 2, the sequence

Xk+1 = Xk (I + Tk + T 2
k + · · ·+ T p−1

k ) (34)

with

X0 = βA∗ (43)

is a p th–order method for computing PA†. The corresponding residuals are

Rk = (PR(A) − βAA∗)pk+1

and their spectral norms are minimized by β of (48). The iterative methods of Exs. 17 and 18 were
studied by Ben-Israel and Cohen [130], Petryshyn [1183], and Zlobec [1650].

Ex. 19. A second–order iterative method. An important special case of Theorem 2 is the case p = 2,
resulting in the following second–order iterative method for computing A†. Let O 6= A ∈ Cm×n and
let the initial approximation X0 and its residual R0 satisfy (25) and (26), respectively. Then the
sequence

Xk+1 = Xk (2I − AXk) , k = 0, 1, . . . (51)

converges to A† as k →∞, and the corresponding sequence of residuals satisfies

‖Rk+1‖ ≤ ‖Rk‖2 , k = 0, 1, . . . � (52)

The iterative method (51) is a generalization of the well–known method of Schulz [1323] for the
iterative inversion of a nonsingular matrix, see, e.g., Householder [753, p. 95]. The method (51)
was studied by Ben–Israel [108], Ben–Israel and Cohen [130], Petryshyn [1183], and Zlobec [1650].
A detailed error analysis of (51) is given in Söderstörm and Stewart [1376].
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Ex. 20. Discussion of the optimum order p. As in Theorem 3 we denote by {Xk} and {X̃k} the
sequences generated by the 1 st–order method (27) and by the p th–order method (34), respectively,

using the same initial approximation X0 = X̃0. Taking the sequence {Xk} as the standard for
comparing different orders p in (34), we use (40) to conclude that for each k = 0, 1, . . . , the

smallest integer k̃ such that the iterate X̃ek is beyond Xk is the smallest integer k̃ satisfying

p
ek − 1 ≥ k

and therefore

k̃ = 〈ln(k + 1)/ ln p〉 , (53)

where for any real α, 〈α〉 is the smallest integer ≥ α.
In assessing the computational effort per iteration, we assume that the amount of computational

effort required to add or subtract an identity matrix is negligible compared to the effort to perform
a matrix multiplication. Assuming (24) and hence the usage of the methods (27) and (34), rather
than their duals based on (22 ′), we define a unit of computational effort as the effort required to
multiply two m ×m matrices. Accordingly, premultiplying an n ×m matrix by an m × n matrix
requires n/m units, as does the premultiplication of an m ×m matrix by an n ×m matrix. The
iteration

Xk+1 = Xk (I + Tk + T 2
k + · · ·+ T p−1

k ) (34)

= Xk (I + Tk(I + · · ·+ Tk(I + Tk) · · · ))

thus requires:
n/m units of effort to compute Tk,
p− 2 units of effort to compute Tk(I + · · ·+ Tk(I + Tk) · · · )),
n/m units of effort to multiply Xk (I + · · ·+ T p−1

k ), adding to

p− 2 + 2
n

m
(54)

units of effort.
The figure (54) can be improved for certain p. For example, the iteration (34) can be written

for p = 2q , q = 1, 2, . . . , as

Xk+1 = Xk

2q−1∏
j=1

(I + T j
k )

= Xk (I + Tk)(I + T 2
k )(I + T 4

k ) · · · (I + T 2q−1

k ) (55)

requiring only

2(q − 1) + 2
n

m
(56)

units of effort, improving on (54) for all q ≥ 3; see also Lonseth [969].
In comparing the first–order iterative method (27) and the second–order method (51) (obtained

from (34) for p = 2) one sees that both methods require 2(n/m) units of effort per iteration.
Therefore, by Theorem 3, the second–order method (51) is superior to the first–order method (27).

For a given integer k = 1, 2, . . . we define the optimal order p as as the order of the iterative
method (34) which, starting with an initial approximation X0, minimizes the computational effort
required to obtain, or go beyond, the approximation Xk, obtained by the first–order method (27)
in k iterations.
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Combining (53), (54), and (55) it follows that for a given k, the optimal p is the integer p
minimizing (

p− 2 + 2
n

m

)
〈 ln(k + 1)

ln p
〉 , p = 2, 3, . . . , p 6= 2q , q = 1, 2, . . . (57)

or (
2q − 2 + 2

n

m

)
〈 ln(k + 1)

q ln 2
〉 , p = 2q , q = 1, 2, . . . (58)

Lower bounds for (57) and (58) are

ln(k + 1)
p− 2 + 2(n/m)

ln p
, p = 2, 3, . . . , p 6= 2q , q = 1, 2, . . . (57 ′)

and

ln(k + 1)
2q − 2 + 2(n/m)

q ln 2
, p = 2q , q = 1, 2, . . . (58 ′)

respectively, suggesting the following definition which is independent of k. The approximate opti-
mum order p is the integer p ≥ 2 minimizing

f(p) =


p− 2 + 2(n/m)

ln p
p 6= 2q , p = 1, 2, . . .

2(q − 1 + (n/m)

q ln 2
p = 2q , q = 1, 2, . . .

(59)

The approximate optimum order p depends on the ratio n/m.

Ex. 21. Iterative methods for computing projections. Since AA† = PR(A), it follows that for any
sequence {Xk}, the sequence {Yk = AXk} satisfies

Yk → PR(A) if Xk → A|dag .

Thus, for any iterative method for computing A† defined by a sequence of successive approximations
{Xk}, there is an associated iterative method for computing PR(A) defined by the sequence {Yk =
AXk}. Similarly, an iterative method for computing PR(A∗) is given by the sequence {Y ′

k = XkA}
since A†A = PR(A∗).

The residuals Rk, k = 0, 1, . . . , of the sequence {Yk} will still be defined by (1), or equivalently

Rk = PR(A) − Yk , k = 0, 1, . . . (60)

Therefore, the iterative method {Yk = AXk} for computing PR(A) is of the same order as the
iterative method {Xk} for computing A†.

In particular, a p th–order iterative method for computing PR(A), based on Theorem 2, is given
as follows.

Let O 6= A ∈ Cm×n and let the initial approximation Y0 and its residual R0 satisfy

Y0 ∈ R(A,A∗) (61)

ρ(R0) < 1 , (26)

respectively. Then for any integer p ≥ 2, the sequence

Yk+1 = Yk (I + Tk + T 2
k + · · ·+ T p−1

k ) (62)

with

Tk = I − Yk , k = 0, 1, . . .
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converges to PR(A) as k →∞, and the corresponding sequence of residuals (60) satisfies

‖Rk+1‖ ≤ ‖Rk‖p , k = 0, 1, . . . , (35)

for any multiplicative matrix norm.

Ex. 22. A monotone property of (62). Let O 6= A ∈ Cm×n, let p be an even positive integer, and let
the sequence {Yk} be given by (62), (61), (26), and the additional condition that Y0 be Hermitian.
Then the sequence {traceYk : k = 1, 2, . . . } is monotone increasing and converges to rank A.

Proof. From (60), (31), and Theorem 3 it follows that

Yk = PR(A) −Rpk

0 . (63)

From the fact that the trace of a matrix equals the sum of its eigenvalues, it follows that

tracePR(A) = dim R(A) = rankA

and

traceRpk

0 =
m∑

i=1

λi(R
pk

0 )

=
m∑

i=1

λpk

i (R0)

which is a monotone decreasing sequence converging to zero, since p is even, R0 is Hermitian (by
(60) and the assumption that Y0 is Hermitian), and therefore its eigenvalues λi(R0), which by (26)
have moduli less than 1, are real. The proof is completed by noting that, by (63),

traceYk = tracePR(A) − traceRpk

0

= rankA−
m∑

i=1

λpk

i (R0) .

�

Ex.23. A lower bound on rank A. Let O 6= A ∈ Cm×n and let the sequence {Yk : k = 0, 1, . . . } be as
in Ex. 22. Then

rankA ≥ 〈traceYk〉 , k = 1, 2, . . . (64)

where 〈α〉 is the smallest integer ≥ α.

Ex. 24. Iterative methods for computing matrix products involving generalized inverses. In some
applications one has to compute a matrix product A†B or BA†, where A ∈ Cm×n is given, and B
is a given matrix or vector. The iterative methods for computing A† given above can be adapted
for computing such products.

Consider, for example, the iterative method

Xk+1 = Xk (I + Tk + T 2
k + · · ·+ T p−1

k ) , k = 0, 1, . . . (34)

where p is an integer ≥ 2,

Tk = I − AXk , k = 0, 1, . . . (23)

and the initial approximation X0 satisfies (25) and (26). A corresponding iterative method for
computing BA†, for a given B ∈ Cq×n, is given as follows.

Let X0 ∈ Cn×m satisfy (25) and (26) and let the sequence {Zk : k = 0, 1, . . . } be given by

Z0 = BX0 , (65)

Zk+1 = ZkMk , k = 0, 1, . . . (66)
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where

Mk = I + Tk + T 2
k + · · ·+ T p−1

k , k = 0, 1, . . . (67)

Tk+1 = I +Mk(Tk − I) , k = 0, 1, . . . (68)

and

T0 = I − AX0 .

Then the sequence {Zk} converges to BA† as k →∞ (Garnett, Ben–Israel and Yau [534]).

Suggested further reading

Section 4 . Albert [13], Businger and Golub [247], Decell [389], Germain–Bonne [539], Golub and
Reinsch [557], Graybill, Meyer and Painter [572], Ijiri [766], Kublanovskaya [889], Noble ([1144],
[1146]), Pereyra and Rosen [1181], Peters and Wilkinson [1182], Pyle [1222], Shinozaki, Sibuya
and Tanabe [1351], Stallings and Boullion [1388], Tewarson ([1439], [1444], [1445]), Urquhart
[1480], and Willner [1601].
Section 5 . Kammerer and Nashed ([814], [813], [815], [816]), Nashed ([1114], [1115]), Showalter
[1353], Showalter and Ben–Israel [1354], Whitney and Meany [1591], and Zlobec ([1650], [1653]).



CHAPTER 8

Generalized Inverses of Linear Operators between Hilbert Spaces

1. Introduction

The observation that generalized inverses are like prose (“Good Heavens! For more than forty
years I have been speaking prose without knowing it” – Molière, Le Bourgois Gentilhomme) is
nowhere truer than in the literature of linear operators. In fact, generalized inverses of integral
and differential operators were studied by Fredholm, Hilbert, Schmoidt, Bounitzky, Hurwitz, and
others, before E. H. Moore introduced generalized inverses in an algebraic setting; see, e.g., the
historic survey in Reid [1263].

This chapter is a brief and biased introduction to generalized inverses of linear operators between
Hilbert spaces, with special emphasis on the similarities to the finite–dimensional case. Thus the
spectral theory of such operators is omitted.

Following the preliminaries in Section 2, generalized inverses are introduced in Section 3. Appli-
cations to integral and differential operators are sampled in Exs. 18–37. The minimization properties
of generalized inverses are studied in Section 4. Integral and series representations of generalized
inverses, and iterative methods for their computation are given in Section 5.

This chapter requires familiarity with the basic concepts of linear functional analysis, in partic-
ular, the theory of linear operators in Hilbert space.

2. Hilbert spaces and operators: Preliminaries and notation

In this section we have collected, for convenience, some preliminary results, which can be found,
in the form stated here or in a more general form, in the standard texts on functional analysis; see,
e.g., Taylor [1436] and Yosida [1623].

(A) Our Hilbert spaces will be denoted by H,H1,H2, etc. In each space, the inner product of
two vectors x and y is denoted by 〈x, y〉 and the norm is denoted by ‖ ‖. The closure of a subset
L of H will be denoted by L and its orthogonal complement by L⊥. L⊥ is a closed subspace of H,
and

L⊥ = L
⊥
.

The sum, M +N , of two subsets M,N ⊂ H is

M +N = {x + y : x ∈M, y ∈ N} .
If M,N are subspaces of H and M ∩ N = {0}, then M + N is called the direct sum of M and

N , and denoted by M ⊕ N . If in addition M ⊂ N⊥ we denote their sum by M
⊥
⊕ N and call it

the orthogonal direct sum of M and N . Even if the subspaces M, N are closed, their sum M +N
need not be closed; see, e.g., Ex. 1. An orthogonal direct sum of two closed subspaces is closed.
Conversely, if L,M are closed subspaces of H and M ⊂ L, then

L = M
⊥
⊕ (L ∩M⊥) . (1)

If (1) holds for two subspaces M ⊂ L, we say that L is decomposable with respect to M . See
Exs. 5–6.

(B) The (Cartesian) product of H1,H2 will be denoted by

H1,2 = H1 ×H2 = {{x,y} : x ∈ H1,y ∈ H2}
225
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where {x,y} is an ordered pair. H1,2 is a Hilbert space with inner product

〈{x1,y1}, {x2,y2}〉 = 〈x1,y1〉+ 〈x2,y2〉 .
Let Ji : Hi → H1,2, i = 1, 2 be defined by

J1x = {x,0} for all x ∈ H1

and

J2y = {0,y} for all y ∈ H2 .

The transformations J1 and J2 are isometric isomorphisms, mapping H1 and H2 onto

H1,0 = J1H1 = H1 × {0}

and

H0,2 = J2H2 = {0} × H2 ,

respectively. Here {0} is an appropriate zero space.
(C) Let L(H1,H2) denote the class of linear operators from H1 to H2. In what follows we

will use operator to mean a linear operator. For any T ∈ L(H1,H2) we denote the domain of T by
D(T ), the domain of T by R(T ), the domain of T by N(T ), and the domain of T by C(T ), where

C(T ) = D(T ) ∩N(T )⊥ . (2)

The graph, G(T ), of a T ∈ L(H1,H2) is

G(T ) = {{x, Tx} : x ∈ D(T )} .
Clearly, G(T ) is a subspace of H1,2, and G(T ) ∩ H0,2 = {0,0}. Conversely, if G is a subspace of
H1,2 and G(T ) ∩ H0,2 = {0,0}, then G is the graph of a unique T ∈ L(H1,H2), defined for any
point x in its domain

D(T ) = J−1
1 PH1,0G(T )

by

Tx = y ,

where y is the unique vector in H2 such that {x,y} ∈ G, and PH1,0 is the orthogonal projector:
H1,2 → A1,0, see (L) below.

Similarly, for any T ∈ L(H2,H1) the of T , G−1(T ), is defined by

G−1(T ) = {{Ty,y} : y ∈ D(T )} .
A subspace G in H1,2 is an inverse graph of some T ∈ L(H2,H1) if and only if G ∩ H1,0 = {0,0},
in which case T is uniquely determined by G (von Neumann [1507]).

(D) An operator T ∈ L(H1,H2) is called closed ifG(T ) is a closed subspace ofH1,2. Equivalently,
T is closed if

xn ∈ D(T ), xn → x0, Txn → y0 =⇒ x0 ∈ D(T ) and Tx0 = y0

where → denotes strong convergence. A closed operator has a closed null space. The subclass of
closed operators in L(H1,H2) is denoted by C(H1,H2).

(E) An operator T ∈ L(H1,H2) is called bounded if its norm ‖T‖ is finite, where

‖T‖ = sup
06=x∈H1

‖Tx‖
‖x‖

.

The subclass of bounded operators in L(H1,H2) is denoted by B(H1,H2). If T ∈ B(H1,H2), then it
may be assumed, without loss of generality, thatD(T ) is closed or even thatD(T ) = H1. A bounded
T ∈ B(H1,H2) is closed if and only if D(T ) is closed. Thus we may write B(H1,H2) ⊂ C(H1,H2).
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Conversely, a closed T ∈ C(H1,H2) is bounded if D(T ) = H1. This statement is the closed graph
theorem.

(F) Let T1, T2 ∈ L(H1,H2) with D(T1) ⊂ D(T2). If T2x = T1x for all x ∈ D(T1), then T2 is
called an extension of T1 and T1 is called a restriction of T2. These relations are denoted by

T1 ⊂ T2

or by

T1 = (T2)[D(T1)] .

Let T ∈ L(H1,H2) and let the restriction of T to C(T ) be denoted by T0

T0 = T[C(T )] .

Then

G(T0) = {{x, Tx} : x ∈ C(T )}

satisfies

G(T0) ∩H1,0 = {0,0}

and hence is the inverse graph of an operator S ∈ L(H2,H1) with

D(S) = R(T0) .

Clearly,

STx = x for all x ∈ C(T ) ,

and

TSy = y for all y ∈ R(T0) .

Thus, if T0 is considered as an operator in L(C(T ), R(T0), then T0 is invertible in its domain. The
inverse T−1

0 is closed if and only if T0 is closed. For T ∈ L(H1,H2) , both C(T ) aand T0 nay be
trivial; see, e.g., Exs. 2 and 4.

(G) An operator T ∈ L(H1,H2) is called dense (or densely defined) if D(T ) = H1. Since any

T ∈ L(H1,H2) can be considered to be an element of T ∈ L(D(T ),H2), any operator can be
assumed to be dense without loss of generality.

For any T ∈ L(H1,H2), the condition D(T ) = H1 is equivalent to

G(T )⊥ ∩H1,0 = {0,0} ,
where

G(T )⊥ = {{y, z} : 〈y,x〉+ 〈z, Tx〉 = 0 for all x ∈ D(T )} ⊂ H1,2 .

Thus for any dense T ∈ L(H1,H2), G(T )⊥ is the inverse graph of a unique operator in C(H1,H2).
This operator is −T ∗, where T ∗, the adjoint of T , satisfies

〈T ∗y,x〉 = 〈y, Tx〉 for all x ∈ D(T ) .

(H) For any dense T ∈ L(H1,H2),

N(T ) = R(T ∗)⊥ , N(T ∗) = R(T )⊥ . (3)

In particular, T [T ∗] has a dense range if and only if T ∗ [T ] is one–to–one.
(I) Let T ∈ L(H1,H2) be dense.
If both T and T ∗ have inverses, then (T−1)∗ = (T ∗)−1.
T has a bounded inverse if and only if R(T ∗) = H1.
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T ∗ has a bounded inverse if R(T ) = H2. The converse holds if T is closed.

T ∗ has a bounded inverse and R(T ∗) = H1 if and only if T has a bounded inverse and R(T ) = H1

( Taylor [1436], Goldberg [543]).
(J) An operator T ∈ L(H1,H2) is called closable (or preclosed) if T has a closed extension.

Equivalently, T is closable if

G(T ) ∩H0,2 = {0,0} ,

in which case G(T ) is the graph of an operator T , called the closure of T . T is the minimal closed
extension of T .

Since G(T )⊥⊥ = G(T ) it follows that for a dense T , T ∗∗ is defined only if T is closable, in which
case

T ⊂ T ∗∗ = T

and

T = T ∗∗

if and only if T is closed.
(K) A dense operator T ∈ L(H,H) is called symmetric if

T ⊂ T ∗

and self–adjoint if

T = T ∗ ,

in which case it is called non–negative, and denoted by T ≥ O, if

〈Tx,x〉 ≥ 0 for all x ∈ D(T ) .

If T ∈ C(H1,H2) is dense, then T ∗T and TT ∗ are non–negative, and I + TT ∗ and I + T ∗T have
bounded inverses (von Neumann [1504]).

(L) An operator T ∈ B(H,H) is an orthogonal projector if

P = P ∗ = P 2 ,

in which case R(P ) is closed and

H = R(P )
⊥
⊕ N(P ) .

Conversely, if L is a closed subspace of H, then there is a unique orthogonal projector PL such that

L = R(PL) and L⊥ = N(PL) .

(M) An operator T ∈ C(H1,H2) is called normally solvable if R(T ) is closed, which, by (3), is
equivalent to the following condition: The equation

Tx = y

is consistent if and only if y is orthogonal to any solution u of

T ∗u = 0 .

This condition accounts for the name “normally solvable”.
For any T ∈ C(H1,H2), the following statements are equivalent:
(a) T us normally solvable.
(b) The restriction T0 = T[C(T )] has a bounded inverse.
(c) The non–negative number

γ(T ) = inf

{
‖Tx‖
‖x‖

: 0 6= x ∈ C(T )

}
(4)

is positive (Hestenes [725, Theorem 3.3]).
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2.1. Exercises and examples.

Ex.1. A nonclosed sum of closed subspaces. Let T ∈ B(H1,H2), and let

D = J1D(T ) = {{x,0} : x ∈ D(T )} .

Without loss of generality we assume that D(T ) is closed. Then D is closed. Also G(T ) is closed
since T is bounded. But

G(T ) +D

is nonclosed if R(T ) is nonclosed, since

{x,y} ∈ G(T ) +D ⇐⇒ y ∈ R(T ) (Halmos [646, p. 26]).

Ex. 2. Unbounded linear functionals. Let T be an unbounded linear functional on H. Then N(T ) is
dense in H, and consequently N(T )⊥ = {0}, C(T ) = {0}.

An example of such a functional on L2[0,∞] is

Tx =

∫ ∞

0

tx(t)dt .

To show that N(T ) is dense, let x0 ∈ L2[0,∞] with Tx0 = α. Then a sequance {xn} ⊂ N(T )
converging to x0 is

xn(t) =

{
x0(t) if t < 1 or t > n+ 1
x0(t)− α

nt
if 1 ≤ t ≤ n+ 1

Indeed,

‖xn − x0‖2 =

∫ n+1

1

α2

(nt)2
dt =

α2

n(n+ 1)
→ 0 .

Ex. 3. Let D be a dense subspace of H, and let F be a closed subspace such that F⊥ is finite
dimensional. Then

D ∩ F = F (Erdelyi and Ben–Israel [477, Lemma 5.1]).

Ex.4. An operator with trivial carrier. Let D be any proper dense subspace of H and choose x 6∈ D.
Let F = [x]⊥, where [x] is the line generated by x. Then D ∩ F = F , by Ex. 3. However, D 6⊂ F ,
so we can choose a subspace A 6= {0} in D such that

D = A⊕ (D ∩ F ) .

Define T ∈ L(H,H) by

D(T ) = D

and

T (y + z) = y if y ∈ A, z ∈ D ∩ F .

Then

N(T ) = D ∩ F ,

N(T ) = D ∩ F = F ,

N(T )⊥ = F⊥ = [x] ,

C(T ) = D(T ) ∩N(T )⊥ = {0} .
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Ex.5. Let L,M be subspaces of H and let M ⊂ L. Then

L = M
⊥
⊕ (L ∩M⊥) (1)

if and only if

PMx ∈M for all x ∈ L .
In particular, a space is decomposable with respect to any closed subspace (Arghiriade [40]).

Ex.6. Let L,M,N be subspaces of H such that

L = M
⊥
⊕ N .

Then

M = L ∩N⊥ , N = L ∩M⊥ .

Thus an orthogonal direct sum is decomposable with respect to each summand.

Ex.7. A bounded operator with nonclosed range. Let `2 denote the Hilbert space of square summable
sequences and let T ∈ B(`2, `2) be defined, for some 0 < k < 1, by

T (α0, α1, α2, . . . , αn, . . . ) = (α0, kα1, k
2α2, . . . , k

nαn, . . . ) .

Consider the sequence

xn =

(
1,

1

2k
,

1

3k2
, . . . ,

1

nkn−1
, 0, 0, . . .

)
,

and the vector

y = lim
n→∞

Txn =

(
1,

1

2
,

1

3
, . . . ,

1

n
, . . .

)
.

Then,

y ∈ R(T ) , y 6∈ R(T ) .

Ex. 8. Linear integral operators. Let L2 = L2[a, b], the Lebesgue square integrable functions on the
finite interval [a, b]. Let K(s, t) be an L2–kernel on a ≤ s, t,≤ b, meaning that the Lebesgue integral∫ b

a

∫ b

a

|K(s, t)|2dsdt

exists and is finite; see, e.g., Smithies [1375, Section 1.6].
Consider the two operators T1, T2 ∈ B(L2, L2) defined by

(T1x)(s) =

∫ b

a

K(s, t)x(t)dt , a ≤ s ≤ b ,

(T2x)(s) = x(s)−
∫ b

a

K(s, t)x(t)dt , a ≤ s ≤ b ,

called Fredholm integral operators of the first kind and the second kind, respectively. Then
(a) R(T2) is closed.
(b) R(T1) is nonclosed unless it is finite dimensional.
More generally, if T ∈ L(H1,H2) is completely continuous then R(T ) is nonclosed unless it is

finite dimensional (Kammerer and Nashed [815, Proposition 2.5]).

Ex. 9. Let T ∈ C(H1,H2). Then T is normally solvable if and only if T ∗ is. Also, T is normally
solvable if and only if RR∗ or T ∗T is.
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3. Generalized inverses of linear operators between Hilbert spaces

A natural definition of generalized inverses in L(H1,H2) is the following one due to Tseng
[1464].

Definition 1. Let T ∈ L(H1,H2). Then an operator T q ∈ L(H2,H1) is a Tseng generalized
inverse (abbreviated g.i.) of T if

R(T ) ⊂ D(T g) (5)

R(T g) ⊂ D(T ) (6)

T gTx = PR(T g)x for all x ∈ D(T ) (7)

TT gy = PR(T )y for all y ∈ D(T g) . (8)

This definition is symmetric in T and T g, thus T is a g.i. of T g.
An operator T ∈ L(H1,H2) may have a unique g.i., or infinitely many g.i.’s or it may have none.

We will show in Theorem 1 that T is a g.i. if and only if its domain is decomposable with respect
to its null space,

D(T ) = N(T )
⊥
⊕ (D(T ) ∩N(T )⊥)

= N(T )
⊥
⊕ C(T ) . (9)

By Ex. 5, this condition is satisfied if N(T ) is closed. Thus it holds for all closed operators, and
in particular for bounded operators. If T has g.i.’s, then it has a maximal g.i., some of whose
properties are collected in Theorem 2. For bounded operators with closed range, the maximal g.i.
coincides with the Moore–Penrose inverse, and will likewise be denoted by T †. See Theorem 3.

For operators T without g.i.’s, the maximal g.i. T † can be “approximated” in several ways, with
the objective of retaining as many of its useful properties as possible. One such approach, due to
Erdélyi [475] is described in Definition 3 and Theorem 4.

Some properties of g.i.’s, when they exist, are given in the following three lemmas, due to
Arghiriade [40], which are needed later.

Lemma 1. If T g ∈ L(H2,H1) is a g.i. of T ∈ L(H1,H2), then D(T ) is decomposable with respect
to R(T g).

Proof. Follows from Ex. 5 since, for any x ∈ D(T )

PR(T g) x = T gTx , by (7) .

�

Lemma 2. If T g ∈ L(H2,H1) is a g.i. of T ∈ L(H1,H2), then T is a one–to–one mapping of R(T g)
onto R(T ).

Proof. Let y ∈ R(T ). Then

y = PR(T ) y = TT gy , by (8) ,

proving that T (R(T g)) = R(T ).
Now we prove that T is one–to–one on R(T g). Let x1,x2 ∈ R(T g) satisfy

Tx1 = Tx2 .

Then

x1 = PR(T g) x1 = T gTx1 = T gTx2 = PR(T g) x2 = x2 .

�
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Lemma 3. If T g ∈ L(H2,H1) is a g.i. of T ∈ L(H1,H2), then:

N(T ) = D(T ) ∩R(T g)⊥ (10)

and

C(T ) = R(T g) . (11)

Proof. Let x ∈ D(T ). Then, by Lemma 1,

x = x1 + x2 , x1 ∈ R(T g) , x2 ∈ D(T ) ∩R(T g)⊥ , x1 ⊥ x2 . (12)

Now

x1 = PR(T g) x = T gT (x1 + x2) = T gTx1

and therefore

T gTx2 = 0 ,

which, by Lemma 2 with T and T g interchanged, implies that

Tx2 = 0 , (13)

hence

D(T ) ∩R(T g)⊥ ⊂ N(T ) .

Conversely, let x ∈ N(T ) be decomposed as in (12). Then

0 = Tx = T (x1 + x2)

= Tx1 , by (13) ,

which, by Lemma 2, implies that x1 = 0 and therefore

N(T ) ⊂ D(T ) ∩R(T g)⊥ ,

completing the proof of (10).
Now

D(T ) = R(T g)
⊥
⊕ (D(T ) ∩R(T g)⊥) , by Lemma 1 ,

= R(T g)
⊥
⊕ N(T ) ,

which, by Ex. 6, implies that

R(T g) = D(T ) ∩N(T )⊥ ,

proving (11). �

The existence of g.i.’s is settled in the following theorem announced, without proof, by Tseng
[1464]. Our proof follows that of Arghiriade [40].

Theorem 1. Let T ∈ L(H1,H2). Then T has a g.i. if and only if

D(T ) = N(T )
⊥
⊕ C(T ) , (9)

in which case, for any subspace L ⊂ R(T )⊥, there is a g.i. T g
L of T , with

D(T g
L) = R(T )

⊥
⊕ L (14)

and

N(T g
L) = L . (15)
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Proof. If T has a g.i., then (9) follows from Lemmas 1 and 3.
Conversely, suppose that (9) holds. Then

R(T ) = T (D(T )) = T (C(T )) = R(T0) , (16)

where T0 = T[C(T )] is the restriction of T to C(T ). The inverse T−1
0 exists, by Section 2(F), and

satisfies

R(T−1
0 ) = C(T )

and, by (16,)

D(T−1
0 ) = R(T ) .

For any subspace L ⊂ R(T )⊥, consider the extension T g
L of T−1

0 with domain

D(T g
L) = R(T )

⊥
⊕ L (14)

and null space

N(T g
L) = L . (15)

From its definition, it follows that T g
L satisfies

D(T g
L) ⊃ R(T )

and

R(T g
L)R(T−1

0 ) = C(T ) ⊂ D(T ) . (17)

For any x ∈ D(T )

T g
LTx = T g

LTPC(T ) x , by (9)

= T−1
0 T0PC(T ) x , by Ex. 5

= P
R(T g

L)
x , by (17) .

Finally, any y ∈ D(T g
L) can be written, by (14), as

y = y1 + y2 , y1 ∈ R(T ) , y2 ∈ L , y1 ⊥ y2 ,

and therefore

TT g
Ly = TT g

Ly1 , by (15)

= T0T
−1
0 y1

= y1

= PR(T ) y .

Thus T g
L is a g.i. of T . �

The g.i. T g
L is uniquely determined by its domain (14) and null space (15); see Ex. 10.

The maximal choice of the subspace L in (14) and (15) is L = R(T )⊥. For this choice we have
the following

Definition 2. Let T ∈ L(H1,H2) satisfy (9). Then the maximal g.i. of T , denoted by T †, is the
g.i. of T with domain

D(T †) = R(T )
⊥
⊕ R(T )⊥ (18)

and null space

N(T †) = R(T )⊥ . (19)
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By Ex. 10, the g.i. T † so defined is unique. It is maximal in the sense that any other g.i. of T
is a restriction of T †.

Moreover, T † is dense, by (18), and has a closed null space, by (19). Choosing L as a dense
subspace of R(T )⊥ shows that an operator T may have infinitely many dense g.i.’s T g

L. Also, T
may have infinitely many g.i.’s T g

L with closed null space, each obtained by choosing L as a closed
subspace of R(T )⊥. However, T † is the unique dense g.i. with closed null space; see Ex. 11.

For closed operators, the maximal g.i. can be alternatively defined, by means of the following
construction due to Hestenes [725], see also Landesman [908].

Let T ∈ C(H1,H2) be dense. Since N(T ) is closed, it follows, from Ex. 5, that

D(T ) = N(T )
⊥
⊕ C(T ) , (9)

and therefore

G(T ) = N
⊥
⊕ C , (20)

where, using the notation of Section 2(B), (C), and (F),

N = J1N(T ) = G(T ) ∩H1,0 (21)

C = {{x, Tx} : x ∈ C(T )} , (22)

Similarly, since T ∗ is closed, it follows from Section 2(G), that

G(T )⊥ = N∗ ⊥
⊕ C∗ (23)

with

N∗ = J2N(T ∗) = G(T )⊥ ∩H0,2 , (24)

C∗ = {{−T ∗y,y} : y ∈ C(T ∗)} . (25)

Now

H1,2 = G(T )
⊥
⊕ G(T )⊥ , since T is closed

= (N
⊥
⊕ C)

⊥
⊕ (N∗ ⊥

⊕ C∗) , by (20) and (23)

= (C
⊥
⊕ N∗)

⊥
⊕ (C∗ ⊥

⊕ N)

= G† ⊥
⊕ G†∗ , (26)

where

G† = C
⊥
⊕ N∗ , (27)

G†∗ = C∗ ⊥
⊕ N . (28)

Since

G† ∩H1,0 = {0,0} , by Section 2(F) ,

it follows that G† is the inverse graph of an operator T † ∈ C(H2,H1), with domain

J−1
2 PH0,2G

† = T (C(T ))
⊥
⊕ N(T ∗)

= R(T )
⊥
⊕ R(T )⊥ , by (16) and (3),
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and null space

J−1
2 M∗ = N(T ∗) = R(T )⊥

and such that

T †Tx = PC(T ) x , for any x ∈ N(T )
⊥
⊕ C(T ) ,

and

TT †y = PR(T ) y , for any y ∈ R(T )
⊥
⊕ R(T )⊥ .

Thus T † is the maximal g.i. of Definition 2.
Similarly, G†∗ is the graph of the operator −T ∗† ∈ C(H1,H2), which is the maximal g.i. of −T ∗.
This elegant construction makes obvious the properties of the maximal g.i., collected in the

following:

Theorem 2. (Hestenes [725]). Let T ∈ C(H1,H2) be dense. Then
(a) T † ∈ C(H2,H1) ,

(b) D(T †) = R(T )
⊥
⊕ N(T ∗) , N(T †) = N(T ∗) ,

(c) R(T †) = C(T ) ,
(d) T †Tx = P

R(T †)
x for any x ∈ D(T ) ,

(e) TT †y = PR(T ) y for any y ∈ D(T †) ,

(f) T †† = T ,
(g) T ∗† = T †∗ ,
(h) N(T ∗†) = N(T ) ,
(i) T ∗T and T †T ∗† are non–negative and

(T ∗T )† = T †T ∗† , N(T ∗T ) = N(T ) ,

(j) TT ∗ and T ∗†T † are non–negative and

(TT ∗)† = T ∗†T † , N(TT ∗) = N(T ∗) .

�

For bounded operators with closed range, various characterizations of the maximal g.i. are
collected in the following:

Theorem 3. (Petryshyn [1183]). If T ∈ B(H1,H2) and R(T ) is closed, then T † is characterized
as the unique solution X of the following equivalent systems:

(a) TXT = T , XTX = X , (TX)∗ = TX , (XT )∗ = XT ,
(b) TX = PR(T ) , N(X∗) = N(T ) ,
(c) TX = PR(T ) , XT = PR(T ∗) , XTX = X ,
(d) XTT ∗ = T ∗ , XX∗T ∗ = X ,
(e) XTx = x for all x ∈ R(T ∗) ,

Xy = 0 for all y ∈ N(T ∗) ,
(f) XT = PR(T ∗) , N(X) = N(T ∗) ,
(g) TX = PR(T ) , XT = PR(X) . �

The notation T † is justified by Theorem 3(a), which lists the four Penrose equations (1.1)–(1.4).
If T ∈ L(H1,H2) does not satisfy (9), then it has no g.i., by Theorem 1. In this case one can

still approximate T † by an operator that has some properties of T †, and reduces to it if T † exists.
Such an approach, due to Erdélyi [475], is described in the following

Definition 3. Let T ∈ L(H1,H2) and let Tr be the restriction of T defined by

D(Tr) = N(T )
⊥
⊕ C(T ) , N(Tr) = N(T ) . (29)
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The (Erdelyi) g.i. of T is defined as T †r , which exists since Tr satisfies (9).

The inverse graph of T †r is

G−1(Tr) = {{x, Tx + z} : x ∈ C(T ) , z ∈ (T (C(T )))⊥} , (30)

from which the following properties of T †r can be easily deduced.

Theorem 4. (Erdélyi [475]). Let T ∈ L(H1,H2) and let its restriction Tr be defined by (29).
Then

(a) T †r = T † if T † exists,

(b) D(T †r ) = T (C(T ))
⊥
⊕ T (C(T ))⊥ ,

and in general, R(T ) 6⊂ D(T †r ) ,

(c) R(T †r ) = C(T ) , R(T †r ) = N(T )⊥ ,
(d) T †r Tx = P

R(T †r )
x for all x ∈ D(Tr) ,

(e) TT †r y = PR(T ) y for all y ∈ D(T †r ) ,

(f) D((T †r )†r) = N(T )
⊥
⊕ C(T ) ,

(g) R((T †r )†r) = T (C(T )) ,

(h) N((T †r )†r) = N(T ) ,
(i) T ⊂ (T †r )†r if (9) holds ,
(j) T = (T †r )†r if and only if N(T ) is closed ,
(k) T †∗r ⊂ (T ∗)†r if T is dense and closable. �

See also Ex. 15.

Exercises and examples.

Ex.10. Let T ∈ L(H1,H2) have g.i.’s and let L be a subspace of R(T )⊥. Then the conditions

D(T g
L) = R(T )

⊥
⊕ L (14)

N(T g
L) = L (15)

determine a unique g.i., which is thus equal to T g
L as constructed in the proof of Theorem 1.

Proof. Let T g be a g.i. of T satisfying (14) and (15), and let y ∈ D(T g) be written as

y = y1 + y2 , y1 ∈ R(T ) , y2 ∈ L .

Then

T gy = T gy1 , by (15)

= T gTx1 , for some x1 ∈ D(T )

= PR(T g)x1 , by (7)

= PC(T )x1 , by (7) .

We claim that this determines T g uniquely. For, suppose there is an x2 ∈ D(T ) with y1 = Tx2.
Then, as above,

T gy = PC(T ) x2

and therefore

PC(T ) x1 − PC(T ) x2 = PC(T ) (x1 − x2)

= 0 since x1 − x2 ∈ N(T ) .

�

Ex.11. Let T ∈ L(H1,H2) have g.i.’s. Then T † is the unique dense g.i. with closed null space.



3. GENERALIZED INVERSES OF LINEAR OPERATORS BETWEEN HILBERT SPACES 237

Proof. Let T g be any dense g.i. with closed null space. Then

D(T g) = N(T g)
⊥
⊕ C(T g) , by Theorem 1

= N(T g
⊥
⊕ R(T ) , by (11) ,

which, together with the assumptions D(T g) = H2 and N(T g) = N(T g), implies that

N(T g) = R(T )⊥ .

Thus, T g has the same domain and null space as T †, and therefore T g = T †, by Ex. 10. �

Ex.12. Let T ∈ B(H1,H2) have a closed range R(T ) and let T1 ∈ B(H1, R(T )) be defined by

T1x = Tx for all x ∈ H1 .

Then
(a) T ∗1 is the restriction of T ∗ to R(T ) .
(b) The operator T1T

∗
1 ∈ B(R(T ), R(T )) is invertible.

(c) T † = PR(T ∗)T
∗
1 (T1T

∗
1 )−1PR(T ) (Kurepa [896]).

Ex.13. Let T ∈ C(H1,H2). Then R(T ) is closed if and only if T † is bounded (Landesman [908]).

Proof. Follows from Section 2(M). �

Ex.14. Let T ∈ B(H1,H2) have closed range. Then

T † = (T ∗T )†T ∗ = T ∗(TT ∗)† (Desoer and Whalen [396]).

Ex.15. For arbitrary T ∈ L(H1,H2) consider its extension T̃ with

D(T̃ ) = D(T ) +N(T ) , N(T̃ ) = N(T ) , T̃ = T on D(T ) , (31)

which coincides with T if N(T ) is closed. Since D(T̃ ) is decomposable with respect to N(T̃ ), it

might seem that T̃ can be used to obtain T̃ †, a substitute for (possibly nonexisting) T †.

Show that T̃ is not well defined by (31) if

D(T ) ∩N(T ) 6= N(T ) and N(T̃ ) 6= D(T̃ ) , (32)

which is the only case of interest since otherwise D(T ) is decomposable with respect to N(T ) or T̃
is identically O in its domain.

Proof. By (32) there exist x0 and y such that

x0 ∈ D(T ) ∩N(T ) , x0 6∈ N(T )

and

y ∈ D(T ) , y 6∈ N(T ) .

Then

T̃ (x0 + y) = T̃y , since x0 ∈ N(T̃ )

and on the other hand

T̃ (x0 + y) = T (x0 + y) , since x0,y ∈ D(T )

6= Ty , since x0 6∈ N(T ) .

�
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Ex.16. Let T ∈ B(H1,H2) have closed range. Then

‖T †‖ =
1

γ(T )
,

where γ(T ) is defined in (4) (Petryshyn [1183, Lemma 2]).

Ex.17. Let F ∈ B(H3,H2) and G ∈ B(H1,H3) with R(G) = H3 = R(F ∗), and define A ∈ B(H1,H2)
by A = FG, Then

A† = G∗(GG∗)−1(F ∗F )−1F ∗

= G†F † (Holmes [743, p. 223]).

Compare with Theorem 1.5 and Ex. 1.15.

Ex.18. Generalized inverses of linear integral operators. In this exercise and in Exs. 19–25 below we
consider the Fredholm integral equation of the second kind

x(s)− λ
∫ b

a

K(s, t)x(t)dt = y(s) , a ≤ s ≤ b , (33)

written for short as

(I − λK)x = y ,

where all functions are complex, [a, b] is a bounded interval, λ is a complex scalar and K(s, t) is a
L2–Kernel on [a, b]× [a, b]; see Ex. 8. Writing L2 for L2[a, b], we need the following facts from the
Fredholm thoery of integral equations; see, e.g., Smithies [1375]. For any λ,K as above

(a) (I − λK) ∈ B(L2, l2) ,

(b) (I − λK)∗ = I − λK∗ , where K∗(s, t) = K(t, s) .
(c) The null spaces N(I − λK) and N(I − λK∗) have equal finite dimensions,

dim N(I − λK) = dim N(I − λK∗) = n(λ) , say . (34)

(d) A scalar λ is called a regular value of K if n(λ) = 0, in which case the operator I − λK
has an inverse (I − λK)−1 ∈ B(L2, L2) written as

(I − λK)−1 = I + λR , (35)

where R = R(s, t;λ) is an L2–kernel called the resolvent of K.
(e) A scalar λ is called an eigenvalue ofK if n(λ) > 0, in which case any nonzero x ∈ N(I−λK)

is called an eigenfunction of K corresponding to λ. For any λ and, in particular, for any eigenvalue
λ, both range spaces R(I − λK) and R(I − λK∗) are closed and, by (3),

R(I − λK) = N(I − λK∗)⊥ , R(I − λK∗) = N(I − λK)⊥ . (36)

Thus, if λ is a regular value of K then (33) has, for any y ∈ L2, a unique solution given by

x = (I + λR)y ,

that is

x(s) = y(s) + λ

∫ b

a

R(s, t, λ)y(t)dt , a ≤ s ≤ b . (37)

If λ is an eigenvalue of K then (33) is consistent if and only if y is orthogonal to every u ∈
N(I − λK∗), in which case the general solution of (33) is

x = x0 +

n(λ)∑
i=1

cixi , ci arbitrary scalars , (38)

where x0 is a particular solution of (33) and {x1, . . . ,xn(λ)} is a basis of N(I − λK).
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Ex. 19. Pseudo resolvents. Let λ be an eigenvalue of K. Following Hurwitz [761], an L2–kernel
R = R(s, t, λ) is called a pseudo resolvent of K if for any y ∈ R(I − λK), the function

x(s) = y(s) + λ

∫ b

a

R(s, t, λ)y(t)dt (37)

is a solution of (33).
A pseudo resolvent was constructed by Hurwitz as follows.
Let λ0 be an eigenvalue of K, and let {x1, . . . ,xn} and {u1, . . . ,un} be orthonormal bases of

N(I − λ0K) and N(I − λ0K
∗) respectively. Then λ0 is a regular value of the kernel

K0(s, t) = K(s, t)− 1

λ0

n∑
i=1

ui(s)xi(t) , (39)

written for short as

K0 = K − 1

λ0

n∑
i=1

uix
∗
i

and the resolvent R0 of K0 is a pseudo resolvent of K, satisfying

(I + λ0R0)(I − λ0K)x = x , for all x ∈ R(I − λ0K
∗)

(I − λ0K)(I + λ0R0)y = y , for all y ∈ R(I − λ0K) (40)

(I + λ0R0)ui = xi , i = 1, . . . , n .

Proof. Follows from the matrix case, Ex. 2.40. �

Ex.20. A comparison with Theorem 2.2 shows that I+λR is a {1}–inverse of I−λK, if R is a pseudo
resolvent of K. As with {1}–inverses, the pseudo resolvent is nonunique. Indeed, for R0,ui,xi as
above, the kernel

R0 +
n∑

i,j,=1

cijxiu
∗
j (41)

is a pseudo resolvent of K for any choice of scalars cij.
The pseudo resolvent constructed by Fredholm [515], who called the resulting operator I + λR

a pseudo inverse of I − λK, is the first explicit application, known to us, of a generalized inverse.
The class of all pseudo resolvents of a given kernel K is characterized as follows.
Let K be an L2–kernel, let λ0 be an eigenvalue of K and let {x1, . . . ,xn} and {u1, . . . ,un}

be orthonormal bases of N(I − λ0K) and N(I − λ0K
∗) respectively. An L2–kernel R is a pseudo

resolvent of K if and only if

R = K + λ0KR−
1

λ0

n∑
i=1

βiu
∗
i , (42a)

R = K + λ0RK −
1

λ0

n∑
i=1

xiαi , (42b)

where αi, βi ∈ L2 satisfy

〈αi,xj〉 = δij , 〈βi,uj〉 = δij , i, j = 1, . . . , n . (43)

Here KT stands for the kernel KR(s, t) =
∫ b

a
K(s, u)R(u, t)du, etc.

If λ is a regular value of K then (42) reduces to

R = K + λKR , R = K + λRK , (44)

which uniquely determines the resolvent R(s, t, λ) (Hurwitz [761]).
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Ex.21. Let K, λ0, xi, ui, and R0 be as above. Then the maximal g.i. of I − λ0K is

(I − λ0K)† = I + λ0R0 −
n∑

i=1

xiu
∗
i , (45)

corresponding to the pseudo resolvent

R = R0 −
1

λ0

n∑
i=1

xiu
∗
i . (46)

Ex.22. Let K(s, t) = u(s)v(t), where ∫ b

a

u(s)v(t) = 0 .

Then every scalar λ is a regular value of K.

Ex.23. Consider the equation

x(s)− λ
∫ 1

−1

(1 + 3st)x(t)dt = y(s) (47)

with K(s, t) = 1 + 3st. The resolvent is

R(s, t;λ) =
1 + 3st

1− 2λ
.

K has a single eigenvalue λ = 1
2

and an orthonormal basis of N(I − 1
2
K) is{

x1(s) =
1√
2
, x2(s) =

√
3√
2

}
which, by symmetry, is also an orthonormal basis of N(I − 1

2
K∗). From (39) we get

K0(s, t) = K(s, t)− 1

λ0

∑
ui(s)xi(t)

= (1 + 3st)− 2

(
1√
2

1√
2

+

√
3√
2
s

√
3√
2
t

)
= 0 ,

and the resolvent of K0(s, t) is therefore

R0(s, t, ;λ) = 0 .

If λ 6= 1
2
, then for each y ∈ L2[−1, 1] equation (47) has a unique solution

x(s) = y(s) + λ

∫ 1

−1

1 + 3st

1− 2λ
y(t)dt .

If λ = 1
2
, then (47) is consistent if and only if∫ 1

−1

y(t)dt = 0 ,

∫ 1

−1

ty(t)dt = 0 ,

in which case the general solution is

x(s) = y(s) + c1 + c2s , c1, c2 arbitrary .
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Ex.24. Let

K(s, t) = 1 + s+ 3st , −1 ≤ s, t ≤ 1 .

Then λ = 1
2

is the only eigenvalue and

dim N(I − 1

2
K) = 1 .

An orthonormal basis of N(I − 1
2
K) is the single vector

x1(s) =

√
3√
2
s , −1 ≤ s ≤ 1 .

An orthonormal basis of N(I − 1
2
K∗) is

u1(s) =
1√
2
, −1 ≤ s ≤ 1 .

The Hurwitz kernel (39) is

K0(s, t) = (1 + s+ 3st)− 2

(
1√
2

√
3√
2
t

)
= 1 + s−

√
3t+ 3st , −1 ≤ s, t ≤ 1 .

Compute the resolvent R0 of K0, which is a pseudo resolvent of K. (Hint : Use the following
exercise).

Ex. 25. Degenerate kernels. A kernel K(s, t) is called degenerate if it is a finite sum of products of
L2 functions, as follows:

K(s, t) =
m∑

i=1

fi(s) gi(t) . (48)

Degenerate kernels are convenient because they reduce the integral equation (33) to a finite system
of linear equations. Also, any L2–kernel can be approximated, arbitrarily close, by a degenerate
kernel; see, e.g., Smithies [1375, p. 40], and Halmos [646, Problem 137].

Let K(s, t) be given by (48). Then
(a) The scalar λ is an eigenvalue of (48) if and only if 1/λ is an eigenvalue of the m×m matrix

B = [bij] , where bij =

∫ b

a

fj(s) gi(s)ds .

(b) Any eigenfunction of K [K∗] corresponding to an eigenvalue λ [λ] is a linear combination of
the m functions f1, . . . , fm [g1, . . . , gm].

(c) If λ is a regular value of (48), then the resolvent at λ is

R(s, t, ;λ) =

det



0
... f1(s) · · · fm(s)

· · · · · · · · · · · · · · ·
−g1(t)

...
...

... I − λB
−gm(t)

...


det(I − λB)

.

See also Kantorovich and Krylov [818, Chapter II].
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Generalized inverses of linear differential operators.
The following 12 exercises deal with generalized inverses of closed dense operators L ∈ C(S1,S2)

with D(L) = S1, where:
(i) S1,S2 are spaces of (scalar or vector) functions which are either the Hilbert space L2[a, b] or

the space of continuous functions C[a, b], where [a, b]is a given finite real interval. Since C[a, b] is a
dense subspace of L2[a, b], a closed dense linear operator mapping C[a, b] into S2 may be considered
as a dense operator in C(L2[a, b],S2).

(ii) L is defined for all x in its domain D(L) by

Lx = `x , (49)

where ` is a differential expression, for example, in the vector case

`x = A1(t)
d

dt
x + A0(t)x , (50)

where A0(t), A1(t) are n×n matrix coefficients, with suitable regularity conditions; see, e.g., Ex. 31
below.

(iii) The domain of L consists of those functions in S1 for which ` makes sense and `x ∈ S2, and
which satisfy certain conditions, such as initial or boundary conditions.

If a differential operator L is invertible and there is a kernel (function, or matrix in the vector
case)

G(s, t) , a ≤ s, t ≤ b ,

such that for all y ∈ R(L)

(L−1y)(s) =

∫ b

a

G(s, t)y(t)dt , a ≤ s ≤ b ,

then G(s, t) is called the Green’s function (or matrix ) of L. In this case, for any y ∈ R(L), the
unique solution of

Lx = y (51)

is given by

x(s) =

∫ b

a

G(s, t)y(t)dt , a ≤ s ≤ b . (52)

If L is not invertible, but there is a kernel G(s, t) such that, for any y ∈ R(L), a particular
solution of (51) is given by (52), then G(s, t) is called a generalized Green’s function (or matrix )
of L. A generalized Green’s function of L is therefore a kernel of an integral operator which is a
generalized inverse of L.

Generalized Green’s functions were introduced by Hilbert [734] in 1904, and consequently stud-
ied by Myller, Westfall and Bounitzky [212], Elliott ([457], [458]), and Reid [1260]; see, e.g., the
historical survey in [1263].

Ex.26. Derivatives. Let
S = the real space L2[0, π] of real valued functions,
S1 = the absolutely continuous functions x(t) , 0 ≤ t ≤ π , whose derivatives x′ are in S,
S2 = {x ∈ S1 : x′ ∈ S1} ,

and let L be the differential operator d/dt with

D(L) = {x ∈ S1 : x(0) = x(π) = 0} .

Then
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(a) L ∈ C(S,S) , D(L) = S , C(L) = D(L) ,

R(L) =

{
y ∈ S :

∫ π

0

y(t)dt = 0

}
= R(L) .

(b) The adjoint L∗ is the operator −d/dt with

D(L∗) = S1 , c(L∗) = S1 ∩R(L) , R(L∗) = S .

(c) L∗L = − d2

dt2
with D(L∗L) = {x ∈ S2 : x(0) = x(π) = 0} and R(L∗L) = S .

(d) LL∗ = − d2

dt2
with D(LL∗) = {x ∈ S2 : x′(0) = x′(π) = 0} and R(LL∗) = R(L) .

(e) L† is defined on D(L† = S by

(L†y)(t) =

∫ t

0

y(s)ds− t

π

∫ π

0

y(s)ds , 0 ≤ t ≤ π

(Hestenes [725, Example 1]).

Ex.27. For L of Ex. 26, determine which of the following equations hold and interpret your results:
(a) L†∗ = L∗† ,
(b) L† = (L∗L)†L∗ = L∗(LL∗)† ,
(c) L†† = L .

Ex.28. Gradients. Let
S = the real space L2([a, b]× [a, b]) of real valued functions x(t1, t2), 0 ≤ t1, t2 ≤ π .
S1 = the subclass of S with the properties

(i) x(t1, t2) is absolutely continuous in t1[t2] for almost all t2[t1], 0 ≤ t1, t2 ≤ π ;
(ii) the partial derivatives ∂x/∂t1 , ∂x/∂t2 which exist almost everywhere are in S ,

and let L be the gradient operator

`x =

 ∂x∂t1∂x
∂t2


with domain

D(L) =

{
x ∈ S1 :

{
x(0, t2) = x(π, t2) = 0 for almost all t2 ,
x(t1, 0) = x(t1, π) = 0 for almost all t1 ,

0 ≤ t1, t2 ≤ π

}
Then:

(a) L ∈ C(S,S × S) , D(L) = S .
(b) The adjoint L∗ is the negative of the divergence operator

`∗y = `∗
[
y1

y2

]
= −∂y1

∂t1
− ∂y2

∂t2

with

D(L∗) = {y ∈ S × S : y ∈ C1} .

(c) L∗L is the negative of the Laplacian operator

L∗L = −
[
∂2

∂t21
+
∂2

∂t22

]
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(d) The Green’s function of L∗L is

G(s1, s2, t1, t2) =
4

π2

∞∑
m,n=1

1

m2 + n2
sin(ms1) sin(ns2) sin(mt1) sin(nt2) ,

0 ≤ si, tj ≤ π .

(e) If

y =

[
y1

y2

]
∈ S × S ,

then

(L†y)(t1, t2) =
2∑

j=1

∫ π

0

∫ π

9

∂

∂sj

G(s1, s2, t1, t2) yj(s1, s2) ds1 ds2

(Landesman [908, Section 5]).

Ex.29. Ordinary linear differential equations with homogeneous boundary conditions. Let
S = the real space L2[a, b] of real valued functions,
Ck[a, b] = the real valued functions on [a, b] with k derivatives and

x(k) =
dkx

dtk
∈ C[a, b] ,

Sk = {x ∈ Ck−1[a, b] : xk−1 absolutely continuous , x(k) ∈ S}
and let L be the operator

` =
n∑

i=1

ai(t)

(
d

dt

)i

, ai ∈ Ci[a, b] , i = 0, 1, . . . , n , (53)

an(t) 6= 0 , a ≤ t ≤ b ,

with domain D(L) consisting of all x ∈ Sn which satisfy

Mx̂ = 0 , (54)

where M ∈ Rm×2n
m is a matrix with a specific null space N(M), and x̂ ∈ R2n is the boundary vector

x̂T = [x(a), x′(a), · · · , x(n−1)(a);x(b), x′(b), · · · , x(n−1)(b)] .

Finally let L̃ be the operator ` of (53) with D(L̃) = Sn. Then

(a) L ∈ C(S,S) , D(L) = S .
(b) dim N(L̃) = n = dim N(L̃∗) .

(c) N(L) ⊂ N(L̃) , N(L∗) ⊂ N(L̃∗) , hence dim N(L) ≤ n and dim N(L∗) ≤ n .
(d) R(L) is closed.
(e) The restriction L0 = L[C(L)] of L to its carrier is a one–to–one mapping of C(L) onto R(L);

L0 ∈ C(C(L), R(L)) .

(f) L−1
0 ∈ B(R(L), C(L)) .

(g) L†, the extension of L−1
0 to all of S with N(L†) = R(L)⊥ is bounded and satisfies

LL†y = PR(L)y , for all y ∈ S
L†Lx = PN(L)⊥x , for all y ∈ D(L) .

For proofs of (a) and (d) see Halperin [649] and Schwartz [1325]. The proof of (e) is contained in
Section 2(F), and (f) follows from the closed graph theorem (Locker [968]).
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Ex. 30. For L as in Ex. 29, find the generalized Green’s function which corresponds to L†, i.e., find
the kernel L†(s, t) such that

(L†y)(s) =

∫ b

a

L†(s, t) y(t) dt for all y ∈ D(L†) = S .

Solution. A generalized Green’s function of L̃ is (see Coddington and Levinson [360, Theorem
6.4])

G̃(s, t) =


n∑

j=1

xj(s) det(Xj(t))

an(t) det(X(t))
, a ≤ t ≤ s ≤ b

0 , a ≤ s ≤ t ≤ b
(55)

where
{x1, . . . , xk} is an orthonormal basis of N(L),

{x1, . . . , xk, xk+1, . . . , xn} is an orthonormal basis of N(L̃),

X(t) =
[
x

(i−1)
j (t)

]
, i, j = 1, . . . , n ,

Xj(t) is the matrix obtained from X(t) by replacing the j th column by [0, 0, . . . , 0, 1]T .

Since R(L) ⊂ R(L̃) it follows, for any y ∈ R(L), that the general solution of

Lx = y

is

x(s) =

∫ b

a

G̃(s, t) y(t) dt+
n∑

i=1

ci xi(s) , (56)

ci arbitrary .

Writing the particular solution L†y in the form (56)

L†y = x0 +
n∑

i=1

ci xi , (57)

x0(s) =

∫ b

a

G̃(s, t) y(t) dt ,

we determine its coefficients {c1, . . . , cn} as follows:
(a) The coefficients {c1, . . . , ck} are determined by L†y ∈ N(L)⊥, since, by (57),

〈L†y, xj〉 = 0 =⇒ cj = −〈x0, xj〉 , j = 1, . . . , k .

(b) The remaining coefficients {ck+1, . . . , cn} are determined by the boundary condition (54).
Indeed, writing (57) as

L†y = x0 +Xc , cT = [c1, . . . , cn] ,

it follows from (54) that

Mx̂0 +MX̂c = 0 , where X̂ =

[
X(a)
X(b)

]
. (58)

A solution of (58) is

c = −(MX̂)(1)Mx̂0 , (59)

where (MX̂)(1) ∈ Rn×m is any {1}–inverse of MX̂ ∈ Rm×n. Now {x1, . . . , xk} ⊂ D(L), and
therefore

MX̂ =
[
O B

]
, B ∈ Rm×(n−k)

n−k .
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Thus, we may use in (59),

(MX̂)(1) =

[
O
B(1)

]
, for any B(1) ∈ B{1} ,

obtaining

c = −
[
O
B(1)

]
Mx̂0 ,

which uniquely determines {ck+1, . . . , cn}.
Substituting these coefficients {c1, . . . , cn} in (56) finally gives L†(s, t) (Locker [968]).

Ex. 31. The vector case. Let Sn and Sk
n denote the spaces of n–dimensional vector functions whose

components belong to S and Sk, respectively, of Ex. 29. Let L be the differential operator

`x = A1(t)
dx

dt
+ A0(t)x , a ≤ t ≤ b (50)

where A0, A1 are n× n matrix functions satisfying1

(i) A0(t) is continuous on [a, b] .
(ii) A1(t) is continuously differentiable and nonsingular on [a, b],

with domain D(L) consisting of those vector functions x ∈ S1
n which satisfy

M x̂ = 0 , (54)

where M ∈ Rm×2n
m is a matrix with a specified null space N(M) and x̂ ∈ R2n is the boundary vector

x̂ =

[
x(a)
x(b)

]
. (60)

Let L̃ be the differential operator (50) with domain D(L̃) = S1
n. Then

(a) L ∈ C(Sn,Sn) , D(L) = Sn .
(b) The adjoint of L is the operator L∗ defined by

`∗y = − d

dt
(A∗

1(t)y) + A∗
0(t)y (61)

on its domain

D(L∗) = {y ∈ S1
n : y∗(b)x(b)− y∗(a)x(a) = 0 for all x ∈ D(L)}

=

{
y ∈ S1

n : P ∗
[
I O
O −I

]
ŷ = 0 for any P ∈ R(2n−m)×2n

2n−m withMP = O

}
(62)

(c) dim N(L̃) = n .
(d) Let

k = dim N(L) and k∗ = dim N(L∗) .

Then

max {0, n−m} ≤ k ≤ min {n, 2n−m}

and

k +m = k∗ + n .

(e) R(L) = N(L∗)⊥ , R(L∗) = N(L)⊥ ,
hence both R(L) and R(L∗) are closed.

(f) Let

X(t) = [x1(t), . . . ,xn(t)]

1Much weaker regularity conditions will do; see, e.g., Reid [1262] and [1264, Chapter III].
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be a fundamental matrix of L̃, i.e., let the vectors {x1, . . . ,xn} form a basis of N(L̃). Then

G̃(s, t) =
1

2
sign(s− t)X(s)X(t)−1 (63)

is a generalized Green’s matrix of L̃.

(g) Let (MX̂)(1) be any {1}–inverse of MX̂ where X̂ =

[
X(a)
X(b)

]
. Then

G(s, t) =
1

2
X(s)

(
sign(s− t)I − (MX̂)(1)M

[
I O
O −I

]
X̂

)
X(t)−1 (64)

is a generalized Green’s matrix of L (Reid [1263] and [1264, Chapter III]).

Proof of (g). For any y ∈ R(L), the general solution of

Lx = y (51)

is

x(s) =

∫ b

a

G̃(s, t)y(t)dt+
n∑

i=1

cixi(s) (56)

or

x = x0 +Xc , cT = [c1, . . . , cn]

and from (54) it follows that

c = −(MX̂)(1)M x̂0 (59)

and (64) follows by substituting (59) in (56). �

Ex.32. The differential expression

` x =
n∑

i=1

ai(t)
dix

dti
, x scalar function (53)

is a special case of

`x = A1(t)
dx

dt
+ A0(t)x , x vector function . (50)

Ex.33. The class of all generalized Green’s functions. Let L be as in Ex. 31 and let X0(t) and Y0(t)
be n × k and n × k∗ matrix functions whose columns are bases of N(L) and N(L∗), respectively.
Then a kernel H(s, t) is a generalized Green’s matrix of L if and only if

H(s, t) = G(s, t) +X0(s)A
∗(t) +B(s)Y ∗

0 (t) , (65)

where G(s, t) is any generalized Green’s matrix of L (in particular (64)), and A(t) and B(s) are
n× k and n× k∗ matrix functions which are Lebesgue measurable and essentially bounded. (Reid
[1262]).

Ex.34. Let X0(t) and Y0(t) be a sin Ex. 33. If Θ(t) and Ψ(t) are Lebesgue measurable and essentially
bounded matrix functions such that the matrices∫ b

a

Θ∗(t)X0(t) dt ,

∫ b

a

Y ∗
0 (t) Ψ(t) dt

are nonsingular, then L has a unique generalized Green’s function GΘ,Ψ such that∫ b

a
Θ∗(s)G(s, t) = O∫ b

a
G(s, t) Ψ(t) dt = O

a ≤ s, t ≤ b . (66)
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Thus the generalized inverse determined by GΘ,Ψ has null space spanned by the columns of Ψ and
range which is the orthogonal complement of the columns of Θ. Compare with Section 2.5. (Reid
[1262]).

Ex.35. Existence and properties of L†. If in Ex. 34 we take

Θ = X0 , Ψ = Y0 ,

then we get a generalized inverse of L which has the same range and null space as L∗. This
generalized inverse is the analog of the Moore–Penrose inverse of L and will likewise be denoted by
L†.

Show that L† satisfies the four Penrose equations (1.1)–(1.4) as far as can be expected.
(a) LL†L = L ,
(b) L†LL† = L† ,
(c) LL† = PR(L) ,

(LL†)∗ = PR(L) on D(L∗) ,
(d) L†L = PR(L∗) on D(L) ,

(L†L)∗ = PR(L∗) (Loud [973], [974]).

Ex. 36. Loud’s construction of L†. Just as in the matrix case (see Theorem 2.10(c) and Ex. 2.29) it
follows here that

L† = PR(L∗)GPR(L) , (67)

where G is any generalized Green’s matrix.
In computing PR(L∗) and PR(L) we use Ex. 31(e) to obtain

PR(L∗) = I − PN(L) , PR(L) = I − PN(L∗) . (68)

Here PN(L) and PN(L∗) are integral operators of the first kind with kernels

KN(L) = X0(s)

(∫ b

a

X∗
0 (u)X0(u)du

)−1

X∗
0 (t) (69)

and

KN(L∗) = Y0(s)

(∫ b

a

Y ∗
0 (u)Y0(u)du

)−1

Y ∗
0 (t) , (70)

respectively, where X0 and Y0 are as in Ex. 33.
Thus, for any generalized Green’s matrix G(s, t), L† has the kernel

L†(s, t) = G(s, t)−
∫ b

a

KN(L)(s, u)G(u, t) du−
∫ b

a

G(s, u)KN(L∗)(u, t) du (71)

+

∫ b

a

∫ b

a

KN(L)(s, u)G(u, v)KN(L∗)(v, t) du dv (Loud [974]).

Ex.37. Let L be the differential operator given by

`x = x′ −B(t)x , 0 ≤ t ≤ 1

with boundary conditions

x(0) = x(1) = 0 .

Then the adjoint L∗ is given by

`∗ y = −y′ −B(t)∗y

with no boundary conditions.
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Let X(t) be a fundamental matrix for

`x = 0 .

Then X(t)∗−1 is a fundamental matrix for

`∗ y = 0 .

Now N(L) = {0} and therefore KN(L) = O. Also, N(L∗) is spanned by the columns of X(t)∗−1, so
by (70)

KN(L∗) = X(s)∗−1

(∫ b

a

X(u)X(u)∗−1du

)
X(t)−1 . (72)

A generalized Green’s matrix for L is

G(s, t) =

{
X(s)X(t)−1 , 0 ≤ s < t ≤ 1
O , 0 ≤ t < s ≤ 1

(73)

Finally, by (71),

L†(s, t) = G(s, t)−
∫ 1

0

G(s, u)KN(L∗)(u, t) du ,

with G and KN(L∗) given by (73) and (72), respectively (Loud [974, pp. 201–202]).

4. Minimal properties of generalized inverses

In this section, which is based on Erdélyi and Ben–Israel [477], we develop certain distinguishing
minimal properties of generalized inverses of operators between Hilbert spaces. The matrix case
appears in Chapter 3.

Definition 4. Let T ∈ L(H1,H2) and consider the linear equation

Tx = y . (74)

If the infimum

‖Tx′ − y‖ = inf
x∈D(T )

‖Tx− y‖ (75)

is attained by a vector x′ ∈ D(T ), then x′ is called an extremal solution of (74). Among the extremal
solutions there may exist a unique vector x0 of least norm

‖x0‖ < ‖x′‖ ,

for all extremal solutions x′ 6= x0. Then x0 is called the least extremal solution.
Other names for extremal solutions are virtual solutions (Tseng [1467]), and approximate solu-

tions.

Example 38 shows that extremal solutions need not exist. their existence is characterized in the
following theorem.

Theorem 5. Let T ∈ L(H1,H2) . Then

Tx = y (74)

has an extremal solution if and only if

PR(T )y ∈ R(T ) . (76)
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Proof. For every x ∈ D(T )

‖Tx− y‖2 = ‖PR(T ) (Tx− y)‖2 + ‖PR(T )⊥(Tx− y)‖2

= ‖PR(T ) (Tx− y)‖2 + ‖PR(T )⊥y‖2 .

Thus

‖Tx− y‖ ≥ ‖PR(T )⊥y‖ , for all x ∈ D(T )

with equality if and only if

Tx = PR(T ) y . (77)

Clearly,

inf
x∈D(T )

‖Tx− y‖ = PR(T ) y , (78)

which is attained if and only if (77) is satisfied for some x ∈ D(T ). �

See also Ex. 45.
The existence of extremal solutions does not guarantee the existence of a least extremal solution;

see, e.g., Ex. 40. Before settling this issue we require

Lemma 4. Let x′ and x′′ be extremal solutions of (74). Then
(a) PN(T )⊥x

′ = PN(T )⊥x
′′

(b) PN(T ) x
′ ∈ N(T ) if and only if PN(T ) x

′′ ∈ N(T ) .

Proof. (a) From (77),

Tx′ = Tx′′ = PR(T )y

and hence

T (x′ − x′′) = 0 , (79)

proving (a).
(b) From (79),

x′ − x′′ = PN(T ) (x′ − x′′)

and then

PN(T ) x
′ = PN(T ) x

′′ + (x′ − x′′) ,

proving (b). �

The existence of the least extremal solution is characterized in the following:

Theorem 6. (Erdélyi and Ben–Israel [477]). Let x be an extremal solution of (74). There exists
a least extremal solution if and only if

PN(T ) x ∈ N(T ) (80)

in which case, the least extremal solution is

x0 = PN(T )⊥ x . (81)
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Proof. Let x′ be an extremal solution of (74). Then

‖x′‖2 = ‖PN(T ) x
′‖2 + ‖PN(T )⊥ x′‖2

= ‖PN(T ) x
′‖2 + ‖PN(T )⊥ x‖2 , by Lemma 4 ,

proving that

‖x′‖ ≥ ‖PN(T )⊥ x‖
with equality if and only if

PN(T ) x
′ = 0 . (82)

If. Let condition (80) be satisfied and define

x0 = x− PN(T ) x .

Then x0 is an extremal solution since

Tx0 = Tx .

Also

PN(T ) x0 = 0 ,

which, by (82), proves that x0 is the least extremal solution.
Only if. Let x0 be the least extremal solution of (74). Then, by (82),

x0 = PN(T ) x0 + PN(T )⊥ x0 = PN(T )⊥ x ,

and hence

x0 = x− PN(T ) x .

But

Tx0 = Tx ,

since both x0 and x are extremal solutions, and therefore

TPN(T ) = 0 ,

proving (80). �

As in the matrix case (see Corollary 3.3), here too a unique generalized inverse is characterized
by the property that it gives the least extremal solution whenever it exists. We define this inverse
as follows:

Definition 5. Let T ∈ L(H1,H2), let

C(T ) = D(T ) ∩N(T )⊥ , (2)

B(T ) = D(T ) ∩N(T ) , (83)

and let A(T ) be a subspace satisfying

D(T ) = A(T )⊕
(
B(T )

⊥
⊕ C(T )

)
. (84)

(Examples 43 and 44 below show that, in the general case, this complicated decomposition cannot
be avoided.) Let

G0 = {{x, Tx} : x ∈ C(T )} , G1 = G(T )⊥ ∩H0,2 = J2R(T )⊥ .
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The extremal g.i. of T , denoted by T †e , is defined by its inverse graph

G0 +G1 = {{x, Tx + z} : x ∈ C(T ), z ∈ R(T )⊥} .

The following properties of T †e aare easy consequences of the above construction.

Theorem 7. (Erdélyi and Ben–Israel [477]). Let T ∈ L(H1,H2). Then

(a) D(T †e ) = T (C(T ))
⊥
⊕ R(T )⊥ , and in general, R(T ) 6⊂ D(T †e ) .

(b) R(T †e ) = C(T ) .
(c) N(T †e ) = R(T )⊥ .
(d) TT †e y = PR(T ) y , for all y ∈ D(T †e ) .

(e) T †eTx = P
R(T †e )

x , for all x ∈ N(T )
⊥
⊕ C(T ) . �

See also Exs. 41–42 below.
The extremal g.i. T †e is characterized in terms of the least extremal solution, as follows:

Theorem 8. (Erdélyi and Ben–Israel [477]). The least extremal solution x0 of (74) exists if and
only if

y ∈ D(T †e ) , (85)

in which case

x0 = T †e y . (86)

Proof. Assume (85). By Theorem 7(a)

PR(T ) y = y0 ∈ T (C(T )) ⊂ R(T ) ,

and, by Theorem 5, extremal solutions do exist. Let x0 be the unique vector in C(T ) such that

PR(T ) y = y0 = Tx0 .

Then, by Theorem 3(a), (c), and (e),

T †e y = T †e y0 = T †eTx0 = x0 ,

and by Theorem 3(d),

‖Tx0 − y‖ = ‖TT †e y − y‖ = ‖PR(T ) y − y‖ = ‖PR(T )⊥ y‖ ,

which, by (78), shows that x0 is an extremal solution. Since

x0 ∈ R(T †e ) ⊂ N(T )⊥ ,

it follows, from Lemma 4, that

x0 = PN(T )⊥ x

for any extremal solution x of (74). By Theorem 6, x0 is the least extremal solution.
Conversely, let x0 be the least extremal solution whose existence we assume. By Theorem 2,

x0 ∈ C(T ), and by Theorem 3(e),

T †eTx0 = x0 .

Since x0 is an extremal solution, it follows from (77) that

Tx0 = PR(T ) y ∈ T (C(T ))
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and therefore

x0 = T †eTx = T †ePR(T ) y

= T †e y .

�

If N(T ) is closed then T †e coincides with the maximal g.i. T †. Thus for closed operators, and in
particular for bounded operators, T †e should be replaced by T † in the statement of Theorem 8

4.1. Exercises and examples.

Ex.38. A linear equation without extremal solution. Let T and y be as in Ex. 7. Then

Tx = y

has no extremal solutions.

Ex.39. it was noted in Ex. 8, that, in general, the Fredholm integral operator of the first kind has a
nonclosed range. Consider the kernel

G(s, t) =

{
s(1− t) , 0 ≤ s ≤ t ≤ 1
t(1− s) , 0 ≤ t ≤ s ≤ 1

which is a generalized Green’s function of the operator

− d2

dt2
, 0 ≤ t ≤ 1 .

Let T ∈ B(L2[0, 1], L2[0, 1]) be defined by

(Tx)(s) =

∫ 1

0

G(s, t)x(t) dt .

Show that there exists a y ∈ L2[0, 1] for which

Tx = y

has no extremal solution.

Ex.40. An equation without a least extremal solution. Consider the unbounded functional on L2[0,∞]

Tx =

∫ ∞

0

tx(t)dt

discussed in Ex. 2. Then the equation

Tx = 1

is consistent, and each of the functions

xn(t) =

{
1

nt
, 1 ≤ t ≤ n+ 1

0 , otherwise

is a solution, n = 1, 2, . . . . Since

‖xn‖2 =

∫ n+1

1

1

(nt)2
dt =

1

n(n+ 1)
→ 0 ,

there is no extremal solution of least norm.
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Ex. 41. Properties of (T †e )†. By Theorem 7(a) and (c), it follows that D(T †e ) is decomposable with
respect to N(T †e ). Thus T †e has a maximal (Tseng) g.i., denoted by T ††e . Some of its properties are
listed below.

(a) G(T ††e ) = {{x + z, Tx} : x ∈ C(T ), z ∈ C(T )⊥} .

(b) D(T ††e ) = C(T )
⊥
⊕ C(T )⊥ .

(c) R(T ††e ) = T (C(T )) .

(d) N(T ††e ) = C(T )⊥ .

Ex.42. Let T ∈ L(H1,H2) and let

D0(T ) = N(T )
⊥
⊕ C(T ) .

Then

(a) D(T ††e ) = C(T )
⊥
⊕ N(T )

⊥
⊕ D0(T )⊥ , a refinement of Ex. 41(b).

(b) D0(T ) ⊂ D(T ) ∩D(T ††e ) and T[D0(T )] = (T ††e )[D0(T )] .

(c) T ††e is an extension of T if and only if D(T ) is decomposable with respect to N(T ), in which

case T ††e is an extension by zero to N(T )
⊥
⊕ D(T )⊥ .

Ex.43. An example of A(T ) 6= {0}, A(T ) ⊂ D(T ††e ). Let T be the operator defined in Ex. 4. Then,
by Ex. 4,

B(T ) = D(T ) ∩N(T )

= D ∩ (D ∩ F )

= D ∩ F
= N(T ) ,

and

C(T ) = {0} ,

showing that

A(T ) 6= {0} , by (84) .

Thus

A(T ) = A of Ex. 4,

and

D(T †e ) = A⊥ = N(T †e ) .

Finally, from C(T )⊥ = H,

D(T ††e ) = H ⊃ A

with

N(T ††e ) = H .

Ex. 44. An example of A(T ) 6= {0}, A(T ) ∩D(T ††e ) = {0}. Let H be a Hilbert space and let M,N
be subspaces of H such that

M 6= M , N 6= N ⊂M⊥ .
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Choose

y ∈M \M and z ∈M⊥ \ (M⊥ ⊥
⊕ (N⊥ ∩M⊥) ;

let

x = y + z

and

D = M ⊕N ⊕ [x]

where [x] is the line spanned by x. Define T ∈ L(H,H) on D(T ) = D by

T (u + v + αx) = v + αx , u ∈M , v ∈ N , αx ∈ [x] .

Then

C(T ) = N , N(T ) = M , A(T ) = [x]

and

x 6∈ D(T ††e ) .

Ex.45. Let T ∈ B(H1,H2). Then

Tx = y (74)

has an extremal solution if and only if there is a positive scalar β such that

|〈y, z〉|2 ≤ β〈z, AA∗z〉 , for every z ∈ N(AA∗)⊥

(Tseng [1467]; see also Holmes [743, Section 35]).

Ex.46. Let T ∈ B(H1,H2), S ∈ B(H1,H3) be normally solvable, and let

TS = T[N(S)]

denote the restriction of T to N(S). If TS is also normally solvable , then T †S is called the N(S)–
restricted pseudoinverse of T . It is the unique solution X of the following five equations

SX = O ,

XTX = X ,

(TX)∗ = TX ,

TXT = T on N(S) ,

PN(S)(XT )∗ = XT on N(S) (Minamide and Nakamura [1055]).

Ex. 47. Let T, S, and T †S be as in Ex. 46. Then for any y0 ∈ H2 and z0 ∈ R(S), the least extremal
solution of

Tx = y0

subject to

Sx = z0

is given by

x0 = T †S (y0 − TS†z0) + S†z0 (Minamide and Nakamura [1055]).
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Ex.48. Let H1,H2,H3 be Hilbert spaces, let T ∈ B(H1,H2) with R(T ) = H2 and let S ∈ B(H1,H3).
For any y ∈ H2, there is a unique x0 ∈ H1 satisfying

Tx = y (74)

and which minimizes the functional

‖Sx‖2 + ‖x‖2

over all solutions of (74). This x0 is given by

x0 = (I + S∗S)−1T †y0

where y0 is the unique vector in H2 satisfying

y = T (I + S∗S)−1T †y0 (Porter and Williams [1199]).

Ex.49. Let H1,H2,H3, T, and S be as above. Then for any y ∈ H2,x1 ∈ H1, and y1 ∈ H2 there is a
unique x0 ∈ H1 which is a solution of

Tx = y (74)

and which minimizes

‖Sx− y1‖2 + ‖x− x1‖2

from among all solutions of (74). This x0 is given by

x0 = (I + S∗S)−1(T †y0 + x0 + S∗y1)

where y0 is the unique vector in H2 satisfying

y = T (I + S∗S)−1(T †y0 + x1 + S∗y1) (Porter and Williams [1199]).

5. Series and integral representations and iterative computation of generalized
inverses

Direct computational methods, in which the exact solution requires a finite number of steps (such
as the elimination methods of Sections 7.2–7.4) cannot be used, in general, for the computation of
generalized inverses of operators. The exceptions are operators with nice algebraic properties, such
as the integral and differential operators of Exs. 18–37 with their finite–dimensional null spaces. In
the general case, the only computable representations of generalized inverses involve infinite series,
or integrals, approximated by suitable iterative methods. Such representations and methods are
sampled in this section, based on Showalter and Ben–Israel [1354], where the proofs, omitted here,
can be found.

To motivate the idea behind our development consider the problem of minimizing

f(x) = 〈Ax− y, Ax− y〉 , (87)

where A ∈ B(H1,H2) and H1,H2 are Hilbert spaces.
Treating x as a function x(t), t ≥ 0, with x(0) = 0, we differentiate (87):

d

dt
f(x) = 2<〈Ax− y, Aẋ〉 , ẋ =

d

dt
x

= 2<〈A∗(Ax− y), ẋ〉 (88)

and setting

ẋ = −A∗(Ax− y) , (89)
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it follows from (88) that

d

dt
f(x) = −2‖A∗(Ax− y)‖2 < 0 . (90)

This version of the steepest descent method, given in Rosenbloom [1308], results in f(x(t)) being
a monotone decreasing function of t, asymptotically approaching its infimum as t→∞. We expect
x(t) to approach asymptotically A†y, so by solving (89)

x(t) =

∫ t

0

exp{−A∗A(t− s)}A∗y ds (91)

and observing that y is arbitrary we get

A† = lim
t→∞

exp{−A∗A(t− s)}A∗ ds (92)

which is the essence of Theorem 9.
Here as elsewhere in this section, the convergence is in the strong operator topology. Thus the

limiting expression

A† = lim
t→∞

B(t) or B(t)→ A† or t→∞ (93)

means that for all y ∈ D(A†)

A†y = lim
t→∞

B(t)y

in the sense that

lim
t→∞

‖(A† −B(t))y‖ = 0 . (94)

A numerical integration of (89) with suitably chosen step size similarly results in

A† =
∞∑

k=0

(I − αA∗A)kαA∗ , (95)

where

0 < α <
2

‖A‖2
, (96)

which is the essence of Theorem 10.
In statements like (94) it is necessary do distinguish between points y ∈ H2 relative to the given

A ∈ B(H1,H2). Indeed, the three cases

PR(A) y ∈ R(AA∗) , PR(A) y ∈ (R(A) \R(AA∗)) , PR(A) y ∈ (R(A) \R(A))

have different rates of convergence in (94). Here x ∈ (X \ Y ) means x ∈ X, x 6∈ Y . We abbreviate
these as follows:

(y ∈ I) means PR(A) y ∈ R(AA∗) ,

(y ∈ II) means PR(A) y ∈ (R(A) \R(AA∗)) , (97)

(y ∈ III) means PR(A) y ∈ (R(A) \R(A)) .

We note that A†y is not defined for (y ∈ III), a case which does not exist if R(A) is closed.
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Theorem 9. (Showalter and Ben–Israel [1354]). Let A ∈ B(H1,H2) and define, for t ≥ 0

L1(t) =

∫ 1

0

exp{−A∗A(t− s)} ds ,

L2(t) =

∫ 1

0

exp{−AA∗(t− s)} ds , (98)

B(t) = L1(t)A
∗ = A∗L2(t) .

Then:

(a) ‖(A† −B(t))y‖2 ≤ ‖A†y‖2‖(AA∗)†y‖2

‖(AA∗)†y‖2 + 2‖A†y‖2t
if (y ∈ I) and t ≥ 0 .

(b) ‖(A† −B(t))y‖2 is a decreasing function of t ≥ 0 ,
with limit zero as t→∞, if (y ∈ II).

(c) ‖(PR(A) − AB(t))y‖2 ≤ ‖y‖2‖A†y‖2

‖A†y‖2 + 2‖y‖2t
if (y ∈ I) or (y ∈ II), and t ≥ 0 .

(d) ‖(PR(A) − AB(t))y‖2 is a decreasing function of t ≥ 0 ,

with limit zero as t→∞, if (y ∈ III). �

Note that even though A†y is not defined for (y ∈ III), still

AB(t)→ PR(A) as t→∞ .

The discrete version of Theorem 9 is the following theorem.

Theorem 10. (Showalter and Ben–Israel [1354]). Let A ∈ B(H1,H2), let c be a real number,
0 < c < 2, and let

α =
c

‖A‖2
.

For ant y ∈ H2 define

x = T †y if (y ∈ I) or (y ∈ II)

and define the sequence

y0 = 0 , x0 = 0 ,

(y − yN+1) = (I − αAA∗) (y − yN) if (y ∈ I) or (y ∈ II) or (y ∈ III)

(x− xN+1) = (I − αA∗A) (x− xN) if (y ∈ I) or (y ∈ II)

N = 1, 2, . . .

Then the sequence

BN =
N∑

k=0

(I − αA∗A)kαA∗ , N = 0, 1, . . . (99)

converges to A† as follows:

(a) ‖(A† −BN)y‖2 ≤ ‖A†y‖2‖(AA∗)†y‖2

‖(AA∗)†y‖2 +N [(2− c)c/‖A‖2]‖A†y‖2
if (y ∈ I) and N = 1, 2, . . .

(b) ‖(A† −BN)y‖2 = ‖x− xN‖2 converges monotonically to zero if (y ∈ II).

(c) ‖(PR(A)−ABN
y‖2 ≤ ‖y‖2‖A†y‖2

‖A†y‖2 +N [(2− c)c/‖A‖2]‖y‖2
if (y ∈ I) or (y ∈ II) and N = 1, 2, . . .

(d) ‖(PR(A)−ABN
y‖2 = ‖y − yN‖2 converges monotonically to zero if (y ∈ III). �
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The convergence BN → A†, in the uniform operator topology, was established by Petryshyn
[1183], restricting A to have closed range.

As in the matrix case, studied in Section 7.5, higher–order iterative methods are more efficient
means of summing the series (95) than the first–order method (99). Two such methods, of order
p ≥ 2, are given in the following:

Theorem 11. (Showalter and Ben–Israel [1354]). Let A,α and {BN : N = 0, 1, . . . } be as in
Theorem 10. Let p be an integer

p ≥ 2

and define the sequence {CN,p : N = 0, 1 . . . } and {DN,p : N = 0, 1 . . . } as follows:

C0,p = αA∗ , CN+1,p = CN,p

p−1∑
k=0

(I − ACN,p)
k , (100)

D0,p = αA∗ , DN+1,p = DN,p

p∑
k=0

(
p

k

)
(−ADN,p)

k−1 . (101)

Then, for all N = 0, 1, . . . ,

B(pN+1−1) = CN+1,p = DN+1,p . (102)

�

Consequently {CN,p} and {DN,p} are p th–order iterative methods for computing A|dag, with the
convergence rates established in Theorem 10; e.g.,

‖(A† − CN,p)y‖2 ≤
‖A†y‖2‖(AA∗)†y‖2

‖(AA∗)†y‖2 + (pN − 1)[(2− c)c/‖A‖2]‖A†y‖2
if (y ∈ I) and N = 1, 2, . . .

The series (100) is somewhat simpler to use if the term (I−ACN,p)
k can be evaluated by only k−1

operator multiplications, e.g. for matrices. The form (101) is preferable otherwise, e.g. for integral
operators,

For other iterative methods and comprehensive bibliographies on the subject see Kammerer and
Nashed ([814]–[816]) and Zlobec [1653].

5.1. Exercises and examples.

Ex.50. Let A ∈ B(H1,H2) have closed range, let b ∈ H2 and let2 B ∈ R(A∗, A∗). Then the sequence

xk+1 = xk −B(Axk − b) , k = 0, 1, . . . (103)

converges to A†b for all x0 ∈ R(A∗) if

ρ(PR(A∗) −BA) < 1

where ρ(T ) denotes the spectral radius of T ; see, e.g. Taylor [1436, p. 262] (Zlobec [1653]).
The choice B = αA∗ in (103) reduces it to the iterative method (99). Other choices of B aare

given in the following exercise.

Ex.51. Splitting methods. Let A be as in Ex. 50, and write

A = M +N , (104)

where M ∈ B(H1,H2) has closed range and N(A) = N(M). Choosing

B = wM † , w 6= 0

in (103) gives

xk+1 = [(1− w)I − wM †N ]xk + wM †b , x0 ∈ R(A∗) , (105)

2For S, T ∈ B(H1,H2) with closed ranges, R(S, T ) = {Z : Z = SWR for some W ∈ B(H2,H1)}.
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in particular, for w = 1,

xk+1 = −wM †N xk +M †b , x0 ∈ R(A∗) . (106)

(Zlobec [1653], Berman and Neumann [148], Berman and Plemmons [149]).

Suggested further reading

Section 1 . For alternative or more general treatments of generalized inverses of operators see F. V.
Atkinson ([45], [46]), Beutler ([157], [158]), Davis and Robinson [381], Hamburger [650], Hansen
and Robinson [653], Hestenes [726], Holmes [743], Leach [920], Nashed ([1115]–[1119]), Nashed
and Votruba ([1122]–[1124]), Pietsch [1186], Porter and Williams ([1199], [1200]), Przeworska–
Rolewicz and Rolewicz [1209], Sheffield [1346], Votruba [1511], Wyler [1618] and Zarantonello
[1626].
Section 3 . For integral equations see K. E. Atkinson [47], Courant and Hilbert [366], Kammerer
and Nashed ([814]–[815]), Korganoff and Pavel-Parvu [873], Lonseth [969], and Rall [1236].

For applications to Wiener–Hopf operators see Lent [924].
For applications to differential operators see also Bradley ([231], [232]), Courant and Hilbert

[366], Greub and Rheinboldt [577], Kallina [806], Locker [967], Tucker [1468], and Wyler [1619].
For application in bifurcation theory see Stakgold [1387].
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minus, and star partial orderings of nonnegative
definite matrices and their squares, Linear Algebra
and its Applications 151 (1991), 135–141.

61. J. K. Baksalary, S. Puntanen, and H. Yanai,
Canonical correlations associated with symmetric
reflexive generalized inverses of the dispersion ma-
trix, Linear Algebra and its Applications 176
(1992), 61–74.

62. A. V. Balakrishnan, An operator theoretic formu-
lation of a class of control problems and a steepest
descent method of solution, J. Soc. Indust. Appl.
Math. Ser. A: Control 1 (1963), 109–127.

63. K. F. Baldwin and A. E. Hoerl, Bounds of min-
imum mean squared error in ridge regression,
Comm. Statist. A—Theory Methods 7 (1978),
no. 13, 1209–1218.

64. J. A. Ball, M. Rakowski, and B. F. Wyman, Cou-
pling operators, Wedderburn-Forney spaces, and
generalized inverses, Linear Algebra and its Ap-
plications 203/204 (1994), 111–138.

65. K. S. Banerjee, Singularity in Hotelling’s weigh-
ing designs and generalized inverses, Ann. Math.
Statist. 37 (1966), 1021–1032, (erratum, ibid
40(1969), 710).



BIBLIOGRAPHY 263

66. K. S. Banerjee and W. T. Federer, On the structure
and analysis of singular fractional replicates, Ann.
Math. Statist. 39 (1968), 657–663.

67. R. B. Bapat, Generalized inverses with proportional
minors, Linear Algebra and its Applications 211
(1994), 27–33.

68. , Moore–Penrose inverse of the incidence
matrix of a tree, Linear and Multilinear Algebra
42 (1997), no. 2, 159–167.

69. , Structure of a nonnegative regular matrix
and its generalized inverses, Linear Algebra and its
Applications 268 (1998), 31–39.

70. , Linear Algebra and Linear Models, second
ed., Hindustan Book Agency, New Delhi, 1999.

71. , Linear estimation in models based on
a graph, Linear Algebra and its Applications
302/303 (1999), 223–230.

72. , Resistance distance in graphs, Mathemat-
ics Student 68 (1999), 87–98.

73. , Moore-Penrose inverse of set inclusion
matrices, Linear Algebra and its Applications 318
(2000), no. 1-3, 35–44.

74. R. B. Bapat and A. Ben-Israel, Singular values and
maximum rank minors of generalized inverses, Lin-
ear and Multilinear Algebra 40 (1995), no. 2, 153–
161.

75. R. B. Bapat and R. E. Hartwig, A master of the row
space and the column space: the mathematical work
of Sujit Kumar Mitra, In Bapat et al. [80], (special
issue of Linear Algebra and its Applications 211
(1994)), pp. 5–14.

76. R. B. Bapat, S. K. Jain, and S. Pati, Weighted
Moore-Penrose inverse of a Boolean matrix, Linear
Algebra and its Applications 255 (1997), 267–279.

77. R. B. Bapat, S. K. Jain, and K. M. Prasad, Gener-
alized power symmetric stochastic matrices, Proc.
Amer. Math. Soc. 127 (1999), no. 7, 1987–1994.

78. R. B. Bapat, S. K. Jain, and L. E. Snyder, Non-
negative idempotent matrices and the minus par-
tial order, Linear Algebra and its Applications 261
(1997), 143–154.

79. R. B. Bapat and D. M. Kulkarni, Minors of some
matrices associated with a tree, Algebra and Its Ap-
plications. Contemporary Mathematics 259 (D. V.
Huynh, S. K. Jain, S. R. Lopez-Permouth Ed.),
American Math Society, Providence, RI, 2000,
pp. 45–66.

80. R. B. Bapat, S. K. Mitra, and R. Hartwig (eds.),
Generalized inverses. papers from the workshop on
g-inverses held in calcutta, december 11–16, 1993,
New York, North-Holland Publishing Co., 1994,
(special issue of Linear Algebra and its Applica-
tions 211 (1994)).

81. R. B. Bapat and Sukanta Pati, Algebraic connectiv-
ity and the characteristic set of a graph, Linear and
Multilinear Algebra 45 (1998), no. 2-3, 247–273.

82. R. B. Bapat and K. M. Prasad, Cochran’s theorem
and related results on matrix rank over a commuta-
tive ring, Statistical Inference and Design of Exper-
iments (U. J. Dixit and M. R. Satam Ed.), Narosa
Publishing House, 1999, pp. 125–133.

83. R. B. Bapat and T. E. S. Raghavan, Nonnegative
Matrices and Applications, Cambridge University
Press, Cambridge, 1997.

84. R. B. Bapat, K. P. S. Bhaskara Rao, and K. Man-
junatha Prasad, Generalized inverses over integral
domains, Linear Algebra and its Applications 140
(1990), 181–196.

85. R. B. Bapat and D. W. Robinson, The Moore-
Penrose inverse over a commutative ring, Linear
Algebra and its Applications 177 (1992), 89–103.

86. G. P. Barker and S. L. Campbell, Internal stability
of two-dimensional systems, Linear and Multilinear
Algebra 14 (1983), no. 4, 365–369.

87. S. Barnett, Matrices in Control Theory, Van Nos-
trand Reinhold, London, 1971.

88. G. Basile, Alcune osservazioni sulla pseudoinversa
di una matrice rettangolare., Atti Accad. Sci. Ist.
Bologna Cl. Sci. Fis. Rend. (12) 6 (1968/1969),
no. fasc., 1–2, 236–240.

89. T. S. Baskett and I. J. Katz, Theorems on products
of EPr matrices, Linear Algebra and its Applica-
tions 2 (1969), 87–103.

90. H. Bateman, A formula for the solving function of a
certain integral equation of the second kind, Trans-
actions of the Cambridge Philosophical Society 20
(1908), 179–187.

91. , On the application of integral equations
to the determination of upper and lower limits of
a double integral, Transactions of the Cambridge
Philosophical Society 21 (1908), 123–128.

92. , The reality of the roots of certain transcen-
dental equations occurring in the theory of integral
equations, Transactions of the Cambridge Philo-
sophical Society 20 (1908), 371–381.

93. , On the numerical solution of linear inte-
gral equations, Proc. Roy. Soc. London Ser. A 100
(1922), 441–449.

94. D. Batigne, Integral generalized inverses of integral
matrices, Linear Algebra and its Applications 22
(1978), 125–134.

95. D. R. Batigne, F. J. Hall, and I. J. Katz, Further re-
sults on integral generalized inverses of integral ma-
trices, Linear and Multilinear Algebra 6 (1978/79),
no. 3, 233–241.

96. F. L. Bauer, A further generalization of the Kan-
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merschule über Probleme der Modellwahl und Pa-
rameterschätzung in der Regressions-Analyse, Zin-
nowitz, 1974), Math. Operationsforsch. Statist. 6
(1975), no. 2, 301–324.

432. , Gauss-Markov estimation for multivari-
ate linear models with missing observations, Ann.
Statist. 4 (1976), no. 4, 779–787.

433. , On the unified theory of least squares,
Probab. Math. Statist. 5 (1985), no. 2, 177–186.

434. H. Drygas and J. Srzednicka, A new result on Hsu’s
model of regression analysis, Bull. Acad. Polon. Sci.
Sér. Sci. Math. Astronom. Phys. 24 (1976), no. 12,
1133–1136.

435. R. J. Duffin, Network models, In Wilf and Harary
[1594], pp. 65–91.

436. R. J. Duffin and T. D. Morley, Inequalities induced
by network connections. II. Hybrid connections, J.
Math. Anal. Appl. 67 (1979), no. 1, 215–231.

437. , Inequalities induced by network connec-
tions, In Campbell [267], pp. 27–49.

438. R. J. Duffin and A. C. Schaeffer, A class of non-
harmonic Fourier series, Trans. Amer. Math. Soc.
72 (1952), 341–366.

439. R. J. Duffin and G. E. Trapp, Hybrid addition of
matrices-network theory concept, Applicable Anal.
2 (1972/73), 241–254.

440. J. W. Duke, A note on EP linear transformations,
Linear Algebra and its Applications 3 (1970), 379–
382.

441. N. Dunford and J. T. Schwartz, Linear Operators.
Part I, Interscience, New York, 1957.

442. T. T. Dunne and M. Stone, Downdating the Moore-
Penrose generalized inverse for cross-validation of
centred least squares prediction, J. Roy. Statist.
Soc. Ser. B 55 (1993), no. 2, 369–375.
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(1994), no. 2, 347–357.

684. , The weighted ∗-core-nilpotent decompo-
sition, Linear Algebra and its Applications 211
(1994), 101–111.

685. R. E. Hartwig and F. J. Hall, Pseudo–similarity for
matrices over a field, Proc. Amer. Math. Soc. 71
(1978), no. 1, 6–10.

686. , Applications of the Drazin inverse to
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915. K. J. Latawiec, S. Bańka, and J. Tokarzewski, Con-
trol zeros and nonminimum phase lti mimo sys-
tems, Annual Reviews in Control 24 (2000), no. 1,
105–112.

916. P. -J. Laurent, Approximation et Optimisation. col-
lection enseignement des sciences, no. 13, Her-
mann, Paris, 1972.

917. , Quadratic convex analysis and splines,
Methods of Functional Analysis in Approximation
Theory (Bombay, 1985), Birkhäuser, Basel, 1986,
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matrices, Sankhyā Ser. A 30 (1968), 323–330.

1058. , On a generalized inverse of a matrix and
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Sankhyā Ser. A 34 (1972), 477.

1246. , Corrigendum: “Unified theory of linear es-
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1253. C. R. Rao and H. Yanai, General definition and
decomposition of projectors and some applications
to statistical problems, J. Statist. Plann. Inference
3 (1979), 1–17.

1254. , Generalized inverse of linear transforma-
tions: a geometric approach, Linear Algebra and
its Applications 66 (1985), 87–98.

1255. , Generalized inverses of partitioned matri-
ces useful in statistical applications, Linear Algebra
and its Applications 70 (1985), 105–113.

1256. K. P. S. Bhaskara Rao, On generalized inverses of
matrices over principal ideal rings, Linear and Mul-
tilinear Algebra 10 (1981), no. 2, 145–154.

1257. , On generalized inverses of matrices over
integral domains, Linear Algebra and its Applica-
tions 49 (1983), 179–189.

1258. A. A. Rayner and R. M. Pringle, A note on gen-
eralized inverses in the linear hypothesis not of full
rank, Ann. Math. Statist. 38 (1967), 271–273.

1259. , Some aspects of the solution of singular
normal equations with the use of linear restrictions,
SIAM J. Appl. Math. 31 (1976), no. 3, 449–460,
(erratum, ibid 47(1987), 1130).

1260. W. T. Reid, Generalized Green’s matrices for com-
patible systems of differential equations, Amer. J.
Math. 53 (1931), 443–459.

1261. , Principal solutions of non–oscillatory lin-
ear differential systems, J. Math. Anal. Appl. 9
(1964), 397–423.

1262. , Generalized Green’s matrices for two–
point boundary problems, SIAM J. Appl. Math. 15
(1967), 856–870.

1263. , Generalized inverses of differential and in-
tegral operators, In Boullion and Odell [207], pp. 1–
25.

1264. , Ordinary Differential Equations, Wiley-
Interscience, New York, 1970.

1265. , Generalized polar coordinate transforma-
tions for differential systems., Rocky Mountain J.
Math. 1 (1971), no. 2, 383–406.

1266. , A result on the singularities of matrix
functions, Quart. Appl. Math. 35 (1977/78), no. 2,
293–296.

1267. B. C. Rennie, Letter to the editor: “Rank factoriza-
tion of a matrix and its applications” [Math. Sci.
13 (1988), no. 1, 4–14; MR 90a:15009a] by P. Bhi-
masankaram, Math. Sci. 13 (1988), no. 2, 152, (see
[168]).

1268. W. C. Rheinboldt, A unified convergence theory for
a class of iterative processes, SIAM J. Numer. Anal.
5 (1968), 42–63.

1269. O. M. Ribits′ka, A fractional-analytic method of
finding Moore-Penrose and Drasin pseudo-inverse
matrices, Mat. Metodi Fiz.-Mekh. Polya 39 (1996),
no. 2, 140–143.

1270. J. Rice, Experiments on gram–schmidt orthogonal-
ization, Math. Comput. 20 (1966), 325–328.

1271. M. Q. Rieck, Totally isotropic subspaces, comple-
mentary subspaces, and generalized inverses, Lin-
ear Algebra and its Applications 251 (1997), 239–
248, (extension of a result of [1172]).

1272. , Maximal orthogonality and pseudo-
orthogonality with applications to generalized in-
verses, Linear Algebra and its Applications 315
(2000), no. 1-3, 155–173.

1273. K. S. Riedel, A Sherman-Morrison-Woodbury iden-
tity for rank augmenting matrices with applica-
tion to centering, SIAM J. Matrix Anal. Appl. 13
(1992), no. 2, 659–662, (see [492]).

1274. R. F. Rinehart, The equivalence of definitions of a
matric function, Amer. Math. Monthly 62 (1955),
395–414.

1275. W. Rising, Applications of generalized inverses to
Markov chains, Adv. in Appl. Probab. 23 (1991),
293–302.



BIBLIOGRAPHY 297

1276. P. D. Robers and A. Ben-Israel, An interval pro-
gramming algorithm for discrete linear L1 ap-
proximation problems, J. Approximation Theory 2
(1969), 323–336.

1277. , A suboptimization method for interval lin-
ear programming: A new method for linear pro-
gramming, Linear Algebra and its Applications 3
(1970), 383–405.

1278. P. Robert, On the group-inverse of a linear trans-
formation, J. Math. Anal. Appl. 22 (1968), 658–
669.

1279. D. W. Robinson, A proof of the composite func-
tion theorem for matric functions, Amer. Math.
Monthly 64 (1957), 34–35.

1280. , On the genralized inverse of an arbitrary
linear transformation, Amer. Math. Monthly 69
(1962), 412–416.

1281. , Gauss and generalized inverses, Historia
Mathematica 7 (1980), 118–125.

1282. , On the covariance of the Moore-Penrose
inverse, Linear Algebra and its Applications 61
(1984), 91–99.

1283. , Covariance of Moore-Penrose inverses
with respect to an invertible matrix, Linear Alge-
bra and its Applications 71 (1985), 275–281.

1284. , Nullities of submatrices of the Moore-
Penrose inverse, Linear Algebra and its Applica-
tions 94 (1987), 127–132.

1285. , The determinantal rank idempotents of
a matrix, Linear Algebra and its Applications
237/238 (1996), 83–96.

1286. , The image of the adjoint mapping, Linear
Algebra and its Applications 277 (1998), no. 1-3,
143–148.

1287. , Separation of subspaces by volume, Amer.
Math. Monthly 105 (1998), no. 1, 22–27.

1288. D. W. Robinson and R. Puystjens, EP morphisms,
Linear Algebra and its Applications 64 (1985),
157–174.

1289. , Generalized inverses of morphisms with
kernels, Linear Algebra and its Applications 96
(1987), 65–85.

1290. D. W. Robinson, R. Puystjens, and J. Van Geel,
Categories of matrices with only obvious Moore-
Penrose inverses, Linear Algebra and its Applica-
tions 97 (1987), 93–102.

1291. S. M. Robinson, A short proof of Cramer’s rule,
Math. Mag. 43 (1977), 94–95, (Reprinted in Se-
lected Papers on Algebra (S. Montgomery et al, ed-
itors), Math. Assoc. of Amer., 1977, pp. 313–314).

1292. S. Roch and B. Silbermann, Asymptotic Moore-
Penrose invertibility of singular integral operators,
Integral Equations Operator Theory 26 (1996),
no. 1, 81–101.

1293. , Continuity of generalized inverses in Ba-
nach algebras, Studia Math. 136 (1999), no. 3, 197–
227.

1294. Steffen Roch and Bernd Silbermann, Index calcu-
lus for approximation methods and singular value

decomposition, J. Math. Anal. Appl. 225 (1998),
no. 2, 401–426.

1295. R. T. Rockafellar, Convex Analysis, Princeton Uni-
versity Press, Princeton, 1970.

1296. C. A. Rohde, Contributions to the theory, computa-
tion and application of generalized inverses, Ph.d.,
University of North Carolina, Raleigh, N.C., May
1964.

1297. , Generalized inverses of partitioned matri-
ces, J. Soc. Indust. Appl. Math. 13 (1965), 1033–
1035.

1298. , Some results on generalized inverses,
SIAM Rev. 8 (1966), 201–205.

1299. , Special applications of the theory of gen-
eralized matrix inversion to statistics, In Boullion
and Odell [207], pp. 239–266.

1300. C. A. Rohde and J. R. Harvey, Unified least squares
analysis, J. Amer. Statist. Assoc. 60 (1965), 523–
527.

1301. N. J. Rose, A note on computing the Drazin in-
verse, Linear Algebra and its Applications 15
(1976), no. 2, 95–98.

1302. , The Laurent expansion of a generalized
resolvent with some applications, SIAM J. Math.
Anal. 9 (1978), no. 4, 751–758.

1303. J. B. Rosen, The gradient projection method
for nonlinear programming. Part I: Linear Con-
straints, J. Soc. Indust. Appl. Math. 8 (1960), 181–
217.

1304. , The gradient projection method for nonlin-
ear programming. Part II: Nonlinear Constraints,
J. Soc. Indust. Appl. Math. 9 (1961), 514–532.

1305. , Minimum and basic solutions to singu-
lar linear systems, J. Soc. Indust. Appl. Math. 12
(1964), 156–162.

1306. , Chebyshev solutions of large linear sys-
tems, J. Comput. Syst. Sci. 1 (1967), 29–43.

1307. M. Rosenberg, Range decomposition and gener-
alized inverse of nonnegative Hermitian matrices,
SIAM Rev. 11 (1969), 568–571.

1308. P. C. Rosenbloom, The method of steepest de-
scent, Numerical Analysis. Proceedings of the Sixth
Symposium in Applied Mathematics, McGraw–Hill
Book Co., New York, 1956, pp. 127–176.

1309. U. G. Rothblum, A representation of the Drazin
inverse and characterizations of the index, SIAM
J. Appl. Math. 31 (1976), no. 4, 646–648.

1310. , Resolvent expansions of matrices and ap-
plications, Linear Algebra and its Applications 38
(1981), 33–49.

1311. A. L. Rukhin, Pattern correlation matrices and
their properties, Linear Algebra and its Applica-
tions 327 (2001), no. 1-3, 105–114.

1312. B. Rust, W. R. Burrus, and C. Schneeberger, A
simple algorithm for computing the generalized in-
verse of a matrix, Comm. ACM 9 (1966), 381–385,
387.

1313. G. Salinetti, The generalized inverse in parametric
programming, Calcolo 11 (1974), 351–363 (1975).



298 BIBLIOGRAPHY

1314. W. Sautter, A posteriori-Fehlerasbschätzungen für
die Pseudoinverse und die Lösung minimaler
Länge, Computing 14 (1975), no. 1-2, 37–44.

1315. J. -P. Schellhorn, Generalized inverses and gener-
alized convexity, Statistical data analysis and in-
ference (Neuchâtel, 1989), North-Holland, Amster-
dam, 1989, pp. 445–455.

1316. E. Schmidt, Zur Theorie der linearen und
nichlinearen Integralgleichungen, I. Entwick-
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1376. T. Söderstörm and G. W. Stewart, On the numer-
ical proerties of an iterative method for comput-
ing the Moore–Penrose generalized inverse, SIAM
J. Numer. Anal. 11 (1974), 61–74.

1377. E. D. Sontag, On generalized inverses of polynomial
and other matrices, IEEE Trans. Automat. Control
25 (1980), no. 3, 514–517.

1378. A. G. Spera, Radical of a Hestenes ring, Atti
Accad. Sci. Lett. Arti Palermo Parte I (4) 35
(1975/76), 283–296 (1978).

1379. J. Springer, Die exakte Berechnung der Moore
Penrose-Inversen einer Matrix durch Residuenar-
ithmetik, Z. Angew. Math. Mech. 63 (1983), no. 3,
203–210.

1380. , Exact solution of general integer systems
of linear equations, ACM Trans. Math. Software 12
(1986), no. 1, 51–61.

1381. , Verallgemeinerte Inversen ganzzahliger
Matrizen, Z. Angew. Math. Mech. 67 (1987),
no. 10, 503–506.

1382. M. D. Springer, The algebra of random vari-
ables, John Wiley & Sons, New York-Chichester-
Brisbane, 1979, Wiley Series in Probability and
Mathematical Statistics.

1383. V. P. Sreedharan, Least squares algorithms for find-
ing solutions of overdetermined linear equations
which minimize error in an abstract norm, Numer.
Math. 17 (1971), 387–401.

1384. R. P. Srivastav, An L2-theory of dual integral equa-
tions, J. of M. A. C. T. 9 (1976), 1–21.

1385. M. W. Stadelmaier, N. J. Rose, G. D. Poole, and
C. D. Meyer, Jr., Nonnegative matrices with power
invariant zero patterns, Linear Algebra and its Ap-
plications 42 (1982), 23–29.



300 BIBLIOGRAPHY

1386. P. Stahlecker and G. Trenkler, Linear and ellip-
soidal restrictions in linear regression, Statistics 22
(1991), no. 2, 163–176.

1387. I. Stakgold, Branching of solutions of nonlinear
equations, SIAM Rev. 13 (1971), 289–332, (errata:
SIAM Rev.14(1972), 492).

1388. W. T. Stallings and T. L. Boullion, Computation
of pseudoinverse matrices using residue arithmetic,
SIAM Rev. 14 (1972), 152–163.
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12 (1972), 843–857, 1084.

1668. , The computation of pseudoinverse matri-
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