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1
, Nenad Milojević
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Abstract – State-selective and total cross-sections for single-electron capture from H− by H+

covering the incident energy range from 10 to 3000 keV are computed by means of the four-
body boundary corrected first Born (CB1-4B) approximation. A crucial connection between the
Coulomb-distorted asymptotic state in the entrance channel and the pertinent perturbation, which
causes the transition in the H+−H− collisions, is consistently used in our computations of the
“prior” version of cross-sections. The obtained results from the CB1-4B method clearly outperform
the earlier findings by the close-coupling methods for the same problem. Comparisons with the
available measurements are carried out and excellent agreement with the CB1 method is recorded
down to impact energies as low as 10 keV.
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Introduction. – Negative ions play a major role in a
number of areas of physics and chemistry. It is well known
that over 80% of the naturally occurring elements are
able to form stable atomic negative ions [1]. In addition,
negative ions of many molecules are known to exist [2].
Massey [3] and Smirnov [4] have published monographs
on the general subject of negative ions. The stability
of a negative ion depends critically on the extent to
which the extra electron shares the attractive field of its
parent nucleus with the other electrons. There is a strong
fundamental interest in negative ions. This is due to the
fact that electron correlation effects play a very important
role in determining the overall structure and dynamics of
these ions, as reviewed in [1,5,6].
The positive and negative hydrogen ions are the main

components of thermonuclear and astrophysical plasma.
The basic neutralization reaction between H+ and H− is
very important for thermonuclear research as well as for
investigation of atmospheric and astrophysical processes.
In the solar atmosphere, negative ions represent one of
the primary sources of continuous opacity in the visible
spectrum.
Mutual neutralization in the H+−H− collisions is the

prototype reaction for electron transfer between two oppo-
sitely charged ions. It is the simplest ion-ion reaction
possible. However, the simplicity of this reaction is, in

fact, deceptive. Namely, the attendant two protons and
two active electrons make this system a pure four-body
problem. In practice, applications of a four-body collision
theory involve laborious analytical and numerical compu-
tations even within any type of first-order approximations.
The structure of a negative ion is different from that

of an atom or a positive ion in several important aspects.
This difference can be traced back to the nature of the
interaction which binds the outermost electron. In atoms
and positive ions the valence electron moves asymptot-
ically in the long-range Coulomb field of the associated
positively charged core. The outermost electron in a nega-
tive ion experiences a much weaker, induced interaction
potential of short range arising from the polarization effect
of the atomic core. The induced dipole potential is shal-
low and typically supports only a single bound state. The
weakness of this potential is reflected in the fact that bind-
ing energies, or equivalently the electron affinities of the
parent atoms, are typically an order of magnitude smaller
than the ionization energies of atoms [6].
At low collision energies, the split-shell (1s1s′) config-

uration description of the H− ion has often been used.
According to this picture, one of the two electrons in
H− lies in an almost hydrogenic 1s orbital, whereas the
second loosely bound 1s′ electron occupies a diffuse orbital
whose radius is about 4a0. Under such circumstances,
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the treatment of the H++H− system can be simpli-
fied by using a model potential which describes the
effluence of the “inner” onto the “outer” electron. This
model reduces the original system to a problem with a
simpler one-electron Hamiltonian. The captured electron
is the outer, weakly bound electron, which moves in a
combined field of the Coulomb potential due to one of
the centres (H+), and a short-range interaction associ-
ated with the other centre (H). The electron from H
lying in a compact orbital is expected to yield only a
weak contribution to the neutralization cross-section [7].
With this assumption, the two-centre one-electron Hamil-
tonian h for the process H+a +H

−
b →Ha+Hb is given by

h=−∆/2− 1/ra+Vb(rb), where the potential Vb(rb) for
the e−+Hb interaction has the form of a nonlocal separa-
ble operator. According to this model, the tightly bound,
noncaptured electron is considered as belonging to a frozen
core.
One-electron Hamiltonians have already been used

for descriptions of the H++H− collisions by, e.g.,
Ermolaev [8] in the atomic basis set formalism, and Sidis
et al. [7,9] in the molecular basis expansion model. A
detailed study of the one-electron molecular description
of the H++H− system can be found in refs. [10,11].
Theoretical cross-sections for neutralization in collisions

between H+ and H− ions in the energy range from 0.62
to 80.0 keV were reported by Ermolaev [8]. Close-coupled
computations were carried out [8], within the semiclassical
impact-parameter approximations, in which the wave
function was expanded in terms of a two-centre basis of
traveling atomic orbitals with up to 51 states. Using a 23-
state basis on each heavy particle within another coupled-
channel computation, Shingal and Bransden [12] reported
cross-sections for the same process at energies in a range
from 0.15 to 50 keV.
The cross-sections for charge transfer in the H++H−

collisions have been computed using the two-centre atomic
orbital close-coupling (TC-AOCC) method [13,14]. More-
over, collision dynamics of the H++H− system have been
studied [15] by means of the TC-AOCC method when the
invoked interactions of charged particles were screened.
Liu and Wang [15] used the short-range Debye-Hückel
(Yukawa-type) model potential to describe the interac-
tion between the loose electron and the neutral core. They
found that the interaction screening introduces significant
changes in the direct and exchange couplings, affecting the
magnitude and energy behaviour of state-selective cross-
sections [15]. These effects cause a change of the charge
exchange spectrum, which may be applied for diagnostics
of temperature and density of laboratory and astrophysi-
cal plasmas. Using one-electron Hamiltonians and express-
ing the wave function of the outer, weakly bound electron
in terms of the Coulomb Green’s function, Chibisov [16,17]
has extensively investigated electron capture in slow colli-
sions between negative and positive ions.
In all the above-cited studies on mutual neutraliza-

tion, the captured electron is the loosely bound, outer

electron. Simultaneously, these treatments assume that
the atomic core remains mainly undisturbed throughout
this process. However, at higher collision energies, such
a description ceases to be valid implying that capture of
the core electron has to be taken into account [8]. There
are two high-energy three-body approximations which
have been employed for investigating mutual neutraliza-
tion. One such model is the three-body Coulomb-Born
(CB-3B) approximation which has been applied [18] in
the “prior” and “post” forms to compute total cross-
sections for the ground–to–ground-state electron capture
H++H−(1s2)→H(1s)+H(1s) in the energy region from
25 to 100 keV. The other theory, is the three-body contin-
uum distorted wave (CDW-3B) approximation, which has
been used to determine the electron-capture cross-sections
Q(nl, n′l′) when fast protons impinge on the H− target
system [19]. Here, the quantum numbers nl and n′l′ denote
the electronic states of the captured and passive electrons,
respectively. Further, study [19] reported the data for the
states with n as well as n′ equal to 1 and 2, alongside
l= 0, 1 and l′ = 0. These results for cross-sections from [19]
were found to be highly sensitive to a change of the target
wave functions. The target system was described by a vari-
ational wave function of the Hartree-Fock type using a
split-shell formalism and a configuration-interaction wave
function [19].
Notwithstanding the importance of the above-quoted

studies, they are nevertheless all restricted to the cate-
gory of three-body approximations, in which only the
active electron is described in an explicit manner. As
such, thus far, no theoretical computation based upon
more advanced four-body models for neutralization in the
H++H− collisions has been carried out. On the other
hand, for bound-free transitions involving H+ and H−,
the four-body Modified Coulomb-Born (MCB) approxi-
mation [20–23] for single-electron detachment H++H−→
H++H+ e is in an excellent agreement with all the avail-
able experimental data at incident velocities v covering
a large range (0.235–12 a.u.). This is a good motivation
for performing a systematic study of the allied process
of single-electron capture in the H++H− collisions using
the CB1-4B method, which also belongs to a wide cate-
gory of four-body distorted wave theories. Such a task
is accomplished in the present work, which provides a
comprehensive set of partial, state-selective as well as total
cross-sections that have not previously been available in
the literature. A further goal is to compare the existing
experimental data with our theoretical total cross-sections
obtained by summing over all the state-to-state transitions
of the captured electron.
Atomic units will be used throughout unless otherwise

stated.

Theory. – We examine single-electron capture by
protons from the negative H− ions:

H+a +H
−
b (1s

2)−→Ha(nlm)+Hb(1s). (1)
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Here, indices “a” and “b” are used to make a formal
distinction between the two otherwise identical protons,
whereas nlm are the usual hydrogen atom quantum
numbers. Let �s1 and �s2 (�x1 and �x2) be the position
vectors of the first and the second electron (e1 and e2)
relative to the projectile and target proton, respectively.
We adopt the nonrelativistic spin-independent formalism
in which the two electrons in (1) can be considered
as distinguishable from each other. In such a case, we
shall consider that e1 is captured in the arbitrary state
Ha(nlm), while e2 remains in the target rest Hb(1s). We

shall also need �R as the vector of the internuclear axis
via �R= �x1−�s1 = �x2−�s2. In the entrance channel, it is
convenient to introduce �ri as the position vector of the
projectile relative to the centre of mass of the target H−.
Symmetrically, in the exit channel, let �rf is the position
vector of the centre of mass of Hb(1s) relative to Ha(nlm).
The target H− is taken to be in its ground singlet state
(1s)2 1S of even parity. It is commonly thought that
invariably all singly charged non-molecular negative ions
in the absence of external magnetic fields possess only one
stable ground-state configuration. The ground state of H−

is given by the electronic configuration (1s)2 1S. Indeed a
proof was given by Hill [24] in 1976 that H− can have
only one bound, stable state. However, much earlier in
1950, Hylleraas [25] proved the existence of the second
stable state of H− corresponding to the doubly excited
state (2s2p) 3P .
The “prior” form of the transition amplitude for

process (1), in the four-body first Born approximation
with correct boundary conditions (CB1-4B) can be
written as

Tif =
〈
Φcf |Vi|Φci

〉
, (2)

where Φci and Φ
c
f are the initial and final states in the

entrance and exit channels, respectively. The initial state
with the correct asymptotic behaviour at ri→∞ is given
by

Φci =ϕi(�x1, �x2)e
i�ki·�riN+(ν)1F1(iν, 1, ikiri− i�ki ·�ri), (3)

whereN+(ν) = eπν/2Γ(1− iν) and ν = 1/v is the Sommer-
feld parameter. The symbol 1F1(a, b, z) stands for the
Gauss confluent hypergeometric function, whereas v is
the incident velocity. Function ϕi(�x1, �x2) represents the
two-electron bound-state wave function of the H− target,
whereas �ki is the initial wave vector defined via �ki = µ�v.
The reduced mass µ of the two initial aggregates is µ=
M(M +2)/(2M +2), withM being the proton mass. The
Coulomb wave function Φci from eq. (3) has the asymptotic
form

Φci (ri→∞)≡Φ+i = ϕi(�x1, �x2) exp(i�ki ·�ri)
× exp[−iν ln(vR−�v · �R)]. (4)

It is seen from (4) that the asymptotic scattering state Φ+i
represents the product of the corresponding unperturbed
state ϕi(�x1, �x2) exp(i�ki ·�ri) and the logarithmic phase

factor exp[−iν ln(vR−�v · �R)] due to the attractive long-
range Coulomb interaction between the incident proton
and the H− ion. In eq. (4), we employed the usual mass
approximation M � 1 leading to �ri � �R.
The asymptotic form of the final state Φcf as rf →∞

reads as

Φcf (rf →∞)≡Φ−f =ϕnlm(�s1)ϕT (�x2) exp(−i�kf ·�rf ). (5)

The functions ϕnlm(�s1) and ϕT (�x2) in eq. (5) represent
the bound-state wave functions of the atomic hydrogen in
the exit channel. Furthermore, �kf is the final wave vector.
The perturbation potential Vi in the entrance channel

with its asymptotic value Vi(ri→∞) is defined by

Vi =
1

R
+
1

ri
− 1
s1
− 1
s2
� 2
R
− 1
s1
− 1
s2
. (6)

The potential Vi exhibits a short-range behaviour when
R→∞. In the CB1-4B approximation, the proper connec-
tion between the long-range Coulomb distortion effect and
the accompanying perturbation potential is established
according to the principles of scattering theory [26]. It
must be emphasized that imposing the proper Coulomb
boundary conditions in the entrance and exit channels is
of crucial importance for ion-atom(ion) collisions [22,27],
since otherwise unphysical results could easily be incurred.
This was most drastically evidenced in single-electron
detachment H++H−→H++H+ e [23] for which the
eikonal Coulomb-Born (ECB) approximation [28] overes-
timates the experimental data by 2-3 orders of magnitude,
as opposed to the successful performance of the MCB
method [20]. The ECB and MCB approximation share the
same initial and final wave functions. However, the pertur-
bation potential of the ECB model is inconsistent with the
wave function of the entrance channel thus leading to the
incorrect boundary condition in this approximation.
We shall use the eikonal hypothesis, since small scat-

tering angles dominate in heavy-particle collisions. This
implies that �ki ·�ri+�kf ·�rf =−�α · �R−�v · �x1. Here, �α is the
momentum transfer �α defined by: �α= �η− (v/2−∆E/v)�̂v,
with, ∆E =Ei−Ef , Ef =−1/(2n2)− 1/2, where Ei is
the binding energy of the H− target. The transverse
component of the change in the relative linear momentum
of heavy particles is denoted by: �η= (η cosφη, η sinφη, 0),
�η ·�v= 0. Hence, the “prior” form of the transition ampli-
tude for process (1), in the CB1-4B method can be
expressed as the following nine-dimensional integral:

Tif (�η ) =

∫ ∫ ∫
d�Rd�x1d�x2ϕ

∗
nlm(�s1)ϕ

∗
T (�x2)

×ϕi(�x1, �x2)
[
2

R
− 1
s1
− 1
s2

]

× exp(−i�α · �R− i�v · �x1)(vR+�v · �R)iν . (7)

Here, the set {�R, �x1, �x2} of the Jacobi independent vari-
ables is utilized, since the full kinetic energy operator is
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diagonal in this set of variables. The total cross-section in
the CB1-4B method is given by

Qif (πa
2
0) =

1

2π2v2

∞∫
0

dηη|Tif |2 . (8)

Following the derivation presented in ref. [29], the matrix
elements Tif from eq. (7) can be reduced to a two-
dimensional integral over real variables from 0 to 1.
Thus, for computations of total cross-sections, only three-
dimensional quadratures are required to be performed
numerically. Theoretical total cross-sections from eq. (8)
refer to capture of one electron. In a nonrelativistic theory,
the target electrons are distinguishable. Therefore, cross-
sections from eq. (8) are multiplied by 2, since each of the
two electrons from the same K-shell of the H− ion can be
captured with equal probability.

Results and discussions. – In the present work, we
shall use the four-parameter wave function of Löwdin [30]
for the ground state of the H−(1S) ion: ϕi(�x1, �x2) =
N(a1e

−b1x1 + a2e−b2x1)(a1e−b1x2 + a2e−b2x2), where a1 =
0.30025, a2 = 1.0001, b1 = 0.4228, b2 = 0.9794, and N is
the normalization constant. All the results of the present
numerical computations are obtained by means of the
Gauss-Legendre quadrature for the remaining triple inte-
gral. An appropriate change of variable is introduced in
the integration over η to take full advantage of the fact
that the main contribution stems from a narrow forward
cone [31]. At every considered impact energy, a total of 160
integration points was used for each of the three quadra-
tures in order to achieve convergence to the preassigned
two decimal places.
Cross-sections for mutual neutralization in the H++H−

collisions (1) for a number of final states characterized by
quantum numbers (n, l), as well as by those for the sum
over all the final states of the captured electron are listed
in table 1 in the energy range from 10 to 3000 keV. In
particular, the results Qtot from table 1 are obtained by
summing over the contributions from all the individual
shells and sub-shells of the captured electron up to n= 4
using the following expression:

Qtot �Q1+Q2+Q3+2.561Q4 , (9)

where Qn =
∑n−1
l=0 Qnl, Qnl =

∑+l
m=−lQnlm . Numerical

factor 2.561 in (9) comes from the Oppenheimer n−3

scaling law which takes approximately into account all the
levels n� 5. By reference to the distribution of the cross-
sections for various angular momenta l computed at a fixed
principal quantum number n, table 1 reveals that Q2s >
Q2p at impact energies E � 100 keV, Q3s >Q3p and Q4s >
Q4p at E � 150 keV, Q3p >Q3d at E � 20 keV, as well
as Q4d >Q4f at all the considered energies. The results
from table 1 are also depicted graphically in fig. 1. Shown
are the distributions of the partial cross-sections Qn for
capture into the individual final states with the given

Table 1: Total cross-sections (in units of cm2) in the CB1-
4B method for electron capture by protons from H−(1s2) as
a function of the laboratory impact energy E (keV). The
rows labeled Qtot represent the cross-sections summed over the
bound states of the captured electron H(nlm) by using eq. (9).
Notation X[−N ] implies X × 10−N .

nl/E 10 20 50 75
1s 3.78[−16] 1.74[−16] 3.07[−17] 1.04[−17]
2s 1.38[−16] 3.33[−17] 5.03[−18] 1.72[−18]
2p 4.71[−16] 1.41[−16] 1.07[−17] 2.34[−18]
Q2 6.09[−16] 1.74[−16] 1.58[−17] 4.06[−18]
3s 4.30[−17] 1.12[−17] 1.59[−18] 5.42[−19]
3p 1.11[−16] 3.90[−17] 3.61[−18] 8.18[−19]
3d 1.28[−16] 2.57[−17] 8.92[−19] 1.35[−19]
Q3 2.83[−16] 7.59[−17] 6.09[−18] 1.49[−18]
4s 1.86[−17] 4.99[−18] 6.90[−19] 2.34[−19]
4p 4.60[−17] 1.63[−17] 1.58[−18] 3.64[−19]
4d 4.72[−17] 1.25[−17] 5.07[−19] 7.87[−20]
4f 2.58[−17] 2.93[−18] 4.17[−20] 4.28[−21]
Q4 1.37[−16] 3.67[−17] 2.82[−18] 6.80[−19]
Qtot 1.62[−15] 5.18[−16] 5.98[−17] 1.77[−17]
nl/E 100 150 200 500
1s 4.22[−18] 9.92[−19] 3.13[−19] 4.41[−21]
2s 7.01[−19] 1.61[−19] 4.97[−20] 6.30[−22]
2p 6.90[−19] 1.01[−19] 2.27[−20] 1.08[−22]
Q2 1.39[−18] 2.62[−19] 7.24[−20] 7.38[−22]
3s 2.20[−19] 5.04[−20] 1.54[−20] 1.92[−22]
3p 2.45[−19] 3.63[−20] 8.17[−21] 3.86[−23]
3d 3.04[−20] 3.03[−21] 5.15[−22] 9.74[−25]
Q3 4.95[−19] 8.97[−20] 2.41[−20] 2.31[−22]
4s 9.47[−20] 2.16[−20] 6.61[−21] 8.15[−23]
4p 1.09[−19] 1.63[−20] 3.67[−21] 1.73[−23]
4d 1.80[−20] 1.81[−21] 3.09[−22] 5.87[−25]
4f 7.38[−22] 5.03[−23] 6.49[−24] 4.99[−27]
Q4 2.23[−19] 3.98[−20] 1.06[−20] 9.94[−23]
Qtot 6.68[−18] 1.45[−18] 4.37[−19] 5.63[−21]
nl/E 750 1000 1500 3000
1s 5.37[−22] 1.15[−22] 1.23[−23] 2.46[−25]
2s 7.39[−23] 1.54[−23] 1.61[−24] 3.16[−26]
2p 8.28[−24] 1.28[−24] 8.74[−26] 8.29[−28]
Q2 8.22[−23] 1.67[−23] 1.70[−24] 3.24[−26]
3s 2.23[−23] 4.63[−24] 4.83[−25] 9.39[−27]
3p 2.94[−24] 4.52[−25] 3.09[−26] 2.92[−28]
3d 4.91[−26] 5.62[−27] 2.53[−28] 1.18[−30]
Q3 2.53[−23] 5.09[−24] 5.14[−25] 9.69[−27]
4s 9.47[−24] 1.96[−24] 2.04[−25] 3.98[−27]
4p 1.32[−24] 2.02[−25] 1.38[−26] 1.30[−28]
4d 2.96[−26] 3.38[−27] 1.52[−28] 7.06[−31]
4f 1.67[−28] 1.42[−29] 4.23[−31] 9.69[−34]
Q4 1.08[−23] 2.17[−24] 2.18[−25] 4.11[−27]
Qtot 6.72[−22] 1.42[−22] 1.51[−23] 2.99[−25]

principal quantum number n. It is seen in this figure that
electron capture into the ground state (n= 1) gives the
largest contribution at impact energies above 20 keV. At
present, there are no experimental data for state-selective
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Fig. 1: Total cross-sections (in cm2) as a function of the labo-
ratory incident energy E (keV) for reaction H+a +H

−
b (1s

2)→
Ha(nlm)+Hb(1s). The full line represents the total cross-
sections Qtot �Q1+Q2+Q3+2.561Q4 obtained by means of
the CB1-4B method using the Oppenheimer n−3 scaling law
for an approximate account of all the levels n� 5 that are not
explicitly computed. The dashed lines show the partial cross-
Qn for the fixed principal quantum number n of the captured
electron, as indicated by the arrows in the figure.

cross-sections to assess the accuracy of predictions of the
CB1-4B method for partial cross-sections Qn. It is highly
desirable that measurements of these state-selective cross-
sections Qn are made in the nearest future.
On the other hand, experimental data exist for total

cross-sections Qtot [32–36] that are summed over all the
final states nlm of the captured electron in the exit
channel of process (1). The most recent of these data from
measurements are depicted in fig. 2 and compared with
the corresponding theoretical results. The target H− ion in
this collisional event can become a neutral H atom either
by electron detachment with a cross-section QD, or by
mutual neutralization with a cross-section QM (to avoid
clutter, in the above expressions and figures subscript
M is omitted from cross-sections). If the symbol QT is
chosen to denote the absolute cross-section for the total
production of the hydrogen atoms, then it follows that
QT =QD+QM, since the lost electron can be ionized or
captured. Schön et al. [35] measured QT and QM and
deduced the detachment cross-sections by QD =QT−QM.
Peart et al. [34] in 1976 measured QT at centre-of-mass
energies between 1.49 and 35.2 keV. In order to investigate
electron detachment, they subtracted cross-sections QM
from their data for QT. However, in 1976, no cross-sections
QM were measured in the relevant energy range, such
that Peart et al. had to extrapolate the earlier low-energy
experimental data (below 10 keV) [32,33] for QM to higher
collision energies. In 1987, Schön et al. [35] showed that
this extrapolation resulted in a significant overestimation.

Fig. 2: Total cross-sections (in cm2) as a function of the
laboratory incident energy E (keV) for mutual neutralization
in the H++H− collisions by electron capture from the target.
The full curve shows the results for the total cross-sections
Qtot �Q1+Q2+Q3+2.561Q4 that are computed using the
CB1-4B approximation. The dashed curve: the CB1-3B model
(present computations), the dot-dashed curve: the CDW-3B
model [19], the double-dot–dashed curve: the coupled-channel
model of Shingal and Bransden [12], the dotted curve: the TC-
AOCC method [14]. Experimental data: Schön et al. [35] (�);
Melchert et al. [36] (◦).

For this reason, such extrapolated data of Peart et al. [34]
have not been plotted in fig. 2.
The results for Qtot from the CB1-4B approximation

graphed in fig. 2 are obtained by means of eq. (9).
As can be seen from this figure, the CB1-4B theory is
very successful in describing the experimental data of
Schön et al. [35] and Melchert et al. [36]. The results
from experiments reported in [36] practically coincide
with measurements from [35]. The exception occurs only
at energy Elab = 40 keV, where the measured cross-
section from ref. [35] is 1.06± 0.16 [−16] cm2, whereas
ref. [36] gives the corresponding value of 1.85± 0.185 [−16]
cm2. Additional experimental cross-sections at higher
impact energies would be welcome to provide further
important tests for the present theory. In order to compare
our results with some quantum-mechanical three-body
models, we have employed the general computer code of
Belkić [31] for the CB1-3B approximation by choosing
the hydrogen-like wave function for the target ion with
the effective charge ZeffT = 0.6875. The obtained results
with the captured states n� 4, summed over all the ml-
sublevels, are shown in fig. 2 by the dashed line. At higher
impact energies, both the CB1-3B and CB1-4B methods
give similar results. However, at lower energies, the CB1-
4B method exhibits a significantly better agreement with
the measurements. The results of the CDW-3B model from
ref. [19] obtained at energies above 100 keV with the same
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effective charge (0.6875) are depicted in fig. 2 by the dot-
dashed line. The results of the CDW-3B method lie below
the cross-sections of the CB1 model due to the inclusion
of continuum intermediate states of the captured electron.
As to the other theories, it is clear from fig. 2 that the
results obtained by the coupled-channel method using a
23-state basis on each heavy particle [12] considerably
underestimate the experimental data. A systematically
increased deviation of these cross-sections of the close-
coupling model from the measured findings is seen to
occur as the impact energy is augmented. Extension of
the basis size may increase the computed cross-sections.
Thus, Liu and Wang [14] carried out the computations
by using the TC-AOCC method with a 50- and 77-state
basis set functions at E > 52.06 keV and E � 52.06 keV,
respectively. Their results shown as the dotted line in fig. 2
are above those of Shingal and Bransden [12] and lie below
the experimental data at higher energies.

Conclusion. – We have investigated the problem of
mutual neutralization in the H++H− collisions via single-
electron capture from the target ion H− at energies
between 10 and 3000 keV by means of the CB1-4B
approximation. The CB1-4B method is a fully quantum-
mechanical four-body formalism, since it explicitly consid-
ers each individual particle and all the interactions among
them in the collision under investigation. The CB1-4B
theory strictly preserves the correct boundary conditions
in both collisional channels according to the principles of
scattering theory and the asymptotic convergence prob-
lem. Our computations provide detailed information on
the partial cross-sections to each individual nl shell of
the captured electron in the final state. These data are
summed to obtain the corresponding total cross-sections
for comparison with the available experimental data.
Excellent agreement is found between the total cross-
sections from the CB1-4B method and the associated find-
ings from the measurements.
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A, 86 (2012) 022704.
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