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Electron correlations in single-electron capture from helium by fast protons and α particles
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(Received 4 September 2009; published 10 February 2010)

Single-electron capture from heliumlike atomic systems by bare projectiles is investigated by means of the
four-body boundary-corrected first Born approximation (CB1-4B). The effect of the dynamic electron correlation
is explicitly taken into account through the complete perturbation potential. The quantum-mechanical post and
prior transition amplitudes for single charge exchange encompassing symmetric and/or asymmetric collisions are
derived in terms of two-dimensional real integrals in the case of the prior form and five-dimensional quadratures
for the post form. An illustrative computation is performed for single-electron capture from helium by protons
and α particles at intermediate and high impact energies. The role of dynamic correlations is examined as a
function of increased projectile energy. The validity and utility of the proposed CB1-4B method is critically
assessed in comparison with the existing experimental data for total cross sections, and excellent agreement is
obtained.
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I. INTRODUCTION

For atomic processes in which two (or more) active elec-
trons are involved in high-energy ion-atom collisions, one must
address the question of the influence of electronic correlations
on the magnitude of the process. The study of interelectronic
correlation has played a central role in atomic collision physics
for a long time (see, e.g., [1]). The helium atom has, to a
large extent, been a benchmark system of such studies. It
should be noted that the concept of correlation arises in many
different contexts. Correlation may be defined mathematically
as a deviation from the product of a single particle term,
for example, �(�r1, �r2, . . . , �rn) − �1(�r1)�2(�r2), . . . , �n(�rn).
Thus, correlation may be understood as a deviation from
an independent-particle model and is a useful concept in
the study of many-body problems. However, the situation
becomes significantly more difficult if many-electron systems
are considered. In that case, the many-body time-dependent
Schrödinger equation (TDSE) is not solvable in a closed
form for more than two mutually interacting particles even
if the underlying forces are precisely known. Accordingly,
mean-field models, usually based on time-dependent Hartree
Fock (TDHF) or time-dependent density functional theory
have been developed and implemented (see, e.g., [2–4]).
From a practical point of view, this implies that the many-
electron dynamics are described in terms of single-particle
equations with a single-particle Hamiltonian which contains
a mean-field potential that account for the electron-electron
interaction. For the investigation of electron capture pro-
cesses, the TDSE can be solved by using the two-center
(TC) extension of the basis generator method (BGM) [5,6].
Essentially, the BGM is a nonperturbative coupled-channel
method that includes basis states which structurally adapt to
the dynamics of the collision problem [7]. A good agreement
between experimental and TC-BGM results [6] based on
the independent electron model (IEM) and the one-active-
electron model for the p-He collisions may indicate that
electron correlation effects give relatively small corrections
to the investigated processes. Moreover, Zapukhlyak et al. [6]
suggested that the appearance of a peak structure in the double
ratio of transfer excitation to single transfer versus double

excitation to single excitation at 0.5 mrad is not connected
with electron-electron correlations. The TC-BGM based on
the IEM used by Zapukhlyak and Kirchner [8] has also
been applied very recently to electron-transfer processes in
p-He and α-He collisions at intermediate impact energies.
Their results [8] demonstrate that the IEM, which neglects
electron-correlation effects, provides an adequate framework
for describing a number of one- and two-electron processes
in these systems. A breakthrough in allowing for dynamic
correlation was achieved in the works of Reading and Ford
[9,10]. The role of electron correlation during a high-energy
ion-atom collision was also investigated in Refs. [11–13] by
means of the frozen-correlation approximation (FCA), which
exactly includes correlation in the initial and final states but
freezes correlation during the collision. Despite the fact that
FCA neglects dynamic correlation, the cross sections for
double excitation and double ionization of He by protons and
antiprotons provided by the FCA are in good agreement with
experimental data. In spite of this success, a complete neglect
of dynamic correlation may lead to an unphysical behavior
of the transition probability at large impact parameters [14].
On the other hand, a proper four-body treatment of the
ZP -(ZT , e1, e2)i collision should be a more natural starting
point, because it offers various possibilities to adequately
incorporate both dynamic and static correlations. Dynamic or
scattering correlation is that which occurs during the collision.
The dynamic correlations as one of the causes of the transition
from the initial to the final state of the whole four-body system
would be included by selecting the appropriate forms of the
four-body perturbation potentials. Static correlation originates
from the Coulomb interaction between the two electrons in the
heliumlike atomic system before the collision takes place. An
adequate description of the static correlations for heliumlike
atomic systems must explicitly include the two electronic
coordinates �r1,2 and directly or indirectly the interelectronic
distance r12 = |�r1 − �r2|. When this is accomplished, the
resulting correlated theory diverges in a clear manner from
the standard Hartree-Fock method.

The status of the first-order theories for electron capture
was considerably changed when Belkić et al. [15] in 1979
focused much attention on the correct boundary conditions,
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recognizing the first Born approximation (CB1) to be a
first-order term of a divergent-free perturbation expansion.
The boundary condition problem requires that both initial-
and final-state wave functions exhibit the correct asymptotic
behaviors at the infinite internuclear separation R. This is
equivalent to the asymptotic convergence problem [16], which
consists of showing the existence of Møller wave matrices
�(±) [17]. The fundamental work of Belkić et al. [15]
initialized a number of computations (see for example [18–26])
which were carried out by means of a three-body CB1 with
correct boundary conditions (CB1-3B). These computations
resolved the longstanding dilemma about the alleged “general”
inadequacy of the first-order theories for charge exchange.
By preserving the correct boundary conditions, the first-order
theories emerge as quite accurate for the prediction of total
cross sections. However, in collisions involving two or more
electrons, three-body methods (such as CB1-3B) treat the
noncaptured electrons as being passive in the sense that their
interactions with the active electron do not contribute to the
capture process. In the case of single-electron transfer from
two or more electron atoms by a bare projectile, the active
electron is often described by the Roothaan-Hartree-Fock
orbital [20–26]. Thus, pure four-body problems, such as charge
exchange in p-He or α-He collisions, are reduced to three-body
problems for which the CB1-3B model completely neglects
dynamic (i.e., collisional) correlations.

In principle, a generalization of a three-body collision
theory to a four-body or many-body collision system can
be done in essentially a straightforward manner. However, in
practice, applications of a four-body collision theory involve
laborious calculations even in a first-order model. The present
work is aimed at investigating single-electron capture from
heliumlike atomic systems by bare projectiles as well as the
role of dynamic electronic correlations in such collisions using
the four-body version of the boundary-corrected first Born
(CB1-4B) approximation. Different quantum-mechanical
four-body methods for various inelastic high-energy ion-atom
collisions (single and double charge exchange, simultaneous
transfer and ionization, simultaneous transfer and excitation,
electron detachment, etc.) have recently been extensively
discussed in the review paper of Belkić et al. [27] and the book
of Belkić [28]. High-energy single-electron capture from one-
and multielectron atoms by hydrogenlike projectiles has been
examined by Mančev [29,30], who introduced the CB1-4B
approximation. However, in these articles [29,30] only the
version that does not contain 1/r12 was used. Such a model
cannot yield any information about the significance of the role
of the dynamic interelectron interaction.

Although interest in four-body methods has been consid-
erably revived [27,28], no computations have thus far been
reported on ZP − (ZT , e1, e2)i charge exchange by the means
of CB1-4B approximation. We shall focus on the role of the
interelectron (e1-e2) potential V12 = 1/r12 from a dynamic
point of view. To achieve this goal within the CB1-4B method,
one ought to employ the post formalism with the appropriate
full perturbation Vf in the exit channel. A contribution from
V12 = 1/r12 to single capture in the p-He and α-He collisions
has not been previously assessed with the help of the first-order
model. The second aim of this work is to assess the usefulness
of the CB1-4B method at intermediate and high impact

energies. This plan will be achieved by comparisons between
theoretical and experimental data. The third goal is to assess
the post-prior discrepancy.

Atomic units will be used throughout unless otherwise
stated.

II. THEORY

We examine single-electron capture in the following typical
single charge exchange in fast collisions of completely stripped
projectiles with heliumlike targets:

ZP + (ZT , e1, e2)i −→ (ZP , e1)f1 + (ZT , e2)f2 , (1)

where ZK is the charge of the Kth nucleus and j (=i, f1, f2)
is the collective label for the set of usual quantum numbers.
The parentheses (· · ·) symbolize the bound states. Let �s1 and
�s2 (�x1 and �x2) be position vectors of the first and second
electrons (e1 and e2, respectively) relative to the nuclear charge
of the projectile ZP (target ZT ). Further, let us denote by �R
the position vector of ZT with respect to ZP . The vector of
the distance between the two active electrons (e1 and e2) is
denoted by �r12 = �x1 − �x2 = �s1 − �s2. In the entrance channel,
it is convenient to introduce �ri as the relative vector of ZP with
respect to the center of mass of (ZT , e1, e2)i . Symmetrically,
in the exit channel, let �rf be the position vector of the center
of mass of (ZP , e1)f1 relative to (ZT , e2)f2 .

It is convenient to express the kinetic-energy operator H0

via the set of the independent Jacobian coordinates {�x1, �x2, �ri}
or {�rf , �s1, �x2}: H0 = −∇2

ri
/(2µi) − ∇2

x1
/(2b) − ∇2

x2
/(2b) −

�∇x1 · �∇x2/MT = −∇2
rf

/(2µf ) − ∇2
s1
/(2a) − ∇2

x2
/(2b), where

µi = MP (MT + 2)/(MP + MT + 2), µf = (MT + 1)(MP +
1)/(MP + MT + 2), a = MP /(MP + 1), b = MT /(MT + 1),
and MP and MT are the masses of the projectile and target,
respectively. The term �∇x1 · �∇x2/MT can be neglected for
heavy particles because MT � 1. The full Hamiltonian of the
system under study, in the center-of-mass frame for the whole
system, is given by H = H0 + V , where V represents the
total interaction potential operator V = ZP ZT /R − ZP /s1 −
ZP /s2 − ZT /x1 − ZT /x2 + 1/r12. As usual for rearranging
collisions, the complete Hamiltonian can further be split
into the following form: H = Hi + Vi . Here, Hi and Vi

are the channel Hamiltonian and the perturbation potential
in the entrance channel: Hi = H0 + VT ≡ H0 − ZT /x1 −
ZT /x2 + 1/r12, Vi = ZP ZT /R − ZP /s1 − ZP /s2. The un-
perturbed channel state �i is defined by (Hi − Ei)�i = 0,
with �i = ϕi(�x1, �x2)ei�ki ·�ri . Function ϕi(�x1, �x2) represents the
two-electron bound-state wave function of the atomic system
(ZT ; e1, e2)i , whereas �ki is the initial wave vector and Ei is the
binding energy of the two-electron target. The initial state �i is
distorted even at infinity, due to the presence of the asymptotic
Coulomb repulsive potential, V ∞

i = ZP (ZT − 2)/R, between
the projectile and the screened target nucleus. Bearing in
mind the long-range nature of the Coulomb interaction, the
Hamiltonian H can be decomposed according to H = Hc

i +
V c

i , with

Hc
i = − 1

2µi

∇2
ri

+ ZP (ZT − 2)

ri

− 1

2b
∇2

x1

− 1

2b
∇2

x2
− ZT

x1
− ZT

x2
+ 1

r12
, (2)
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V c
i = ZP ZT

R
− ZP (ZT − 2)

ri

− ZP

s1
− ZP

s2

� 2ZP

R
− ZP

s1
− ZP

s2
, (3)

where we neglect the terms of the order of 1/MT , which
implies ri � R. Potential V c

i exhibits a short-range behavior
when R → ∞. It should be noted that the perturbation V c

i

depends only on the interaction between electrons and a projec-
tile. The term ZP /R in Eq. (3), despite its form, is not related
to the internuclear potential, but originates solely from the
electron-projectile interaction. The asymptotic tail of the po-
tential −ZP /s1 is −ZP /R, since s1 → R as R → ∞. This can
be seen by using the Taylor expansion for ZP /s1 = ZP /| �R −
�x1| around R. A small value of the x1 coordinate in the entrance
channel justifies such a development. The same statement also
holds true for the potential −ZP /s2. With the Hamiltonian
Hc

i the eigenproblem in the entrance channel reads as (Hc
i −

Ei)�c
i = 0. The solution of the eigenproblem for �c

i is given

by �c
i = ϕi(�x1, �x2)ei�ki ·�riN+(νi)1F1(−iνi, 1, ikiri − i�ki · �ri),

where N+(νi) = e−πνi/2�(1 + iνi) and νi = ZP (ZT − 2)/v.

The symbol 1F1(a, b, z) stands for the confluent hypergeomet-
ric function, whereas v is the incident velocity. The Coulomb
wave function �c

i has the asymptotic form

�c
i (ri → ∞) ≡ �+

i = ϕi(�x1, �x2)

× exp[i�ki · �ri + iνi ln(vR − �v · �R)]. (4)

In the exit channel we can write H = Hf + Vf , where
the channel Hamiltonian Hf and perturbation Vf are
respectively defined by Hf = H0 + VPT ≡ H0 − ZP /s1 −
ZT /x2 and Vf = ZP ZT /R − ZT /x1 − ZP /s2 + 1/r12. Solv-
ing the eigenvalue equation, (Hf − Ef )�f = 0, we obtain
the unperturbed state �f in the exit channel as �f =
ϕP (�s1)ϕT (�x2)e−i�kf ·�rf , where ϕP (�s1) and ϕT (�x2) are single-
electron hydrogenlike wave functions in the exit channel.
Furthermore, �kf is the final wave vector and Ef = −Z2

P /2 −
Z2

T /2. The distortion of the unperturbed state �f is caused
by the potential V ∞

f = (ZT − 1)(ZP − 1)/R, which repre-
sents the asymptotic form of the perturbation Vf . In this
case, the constituent two terms of the separable Hamiltonian
H = Hc

f + V c
f are defined as

Hc
f = − 1

2µf

∇2
rf

+ (ZT − 1)(ZP − 1)

rf

− 1

2a
∇2

s1

− 1

2b
∇2

x2
− ZP

s1
− ZT

x2
, (5)

V c
f = ZP ZT

R
− (ZT − 1)(ZP − 1)

rf

− ZP

s2
− ZT

x1
+ 1

r12
.

(6)

Using rf � R, we obtain the following approximate expres-
sion:

V c
f � ZP

(
1

R
− 1

s2

)
+ (ZT − 1)

(
1

R
− 1

x1

)
+

(
1

r12
− 1

x1

)
.

(7)

With this, the solution of the eigenvalue equation Hc
f �c

f =
Ef �c

f is given by �c
f = ϕP (�s1)ϕT (�x2)e−i�kf ·�rf N−(νf )1F1

(iνf , 1,−ikf rf + i�kf · �rf ), where N−(νf ) = e−πνf /2�(1 −
iνf ) and νf = (ZT − 1)(ZP − 1)/v. The asymptotic form of
�c

f as rf → ∞ reads as

�c
f (rf → ∞) ≡ �−

f = ϕP (�s1)ϕT (�x2)

× exp[−i�kf · �rf − iνf ln(vR + �v · �R)]. (8)

The prior and post forms of the transition amplitudes in the
CB1 approximation with the asymptotically correct boundary
conditions (CB1-4B) for process (1) can be written as

T −
if = 〈�−

f |V c
i |�+

i 〉 , T +
if = 〈�−

f |V c
f |�+

i 〉. (9)

In the present CB1-4B model, the proper connection
between the long-range Coulomb distortion effects and the
accompanying perturbation potentials are established accord-
ing to the principles of scattering theory [17]. It must be
emphasized that imposing the proper Coulomb boundary
conditions in the entrance and exit channels is of crucial
importance for ion-atom collisions [28]. Experience has shown
that if this requirement is disregarded, serious problems may
arise, such as divergence of the scattering operator S, as
well as of the other related quantities. Thus, such models
are generally inadequate for describing experimental findings
[28]. In the CB1-4B approximation, the scattering state vectors
are given by the product of the unperturbed channel states and
the logarithmic distortion phase factors due to the Coulomb
long-range remainders of the perturbation potentials. Invoking
the eikonal approximation, the product of these logarithmic
Coulomb factors can be reduced to the single term

exp[iνi ln(vR − �v · �R) + iνf ln(vR + �v · �R)]

=
{

(ρv)2iνi (vR + �v · �R)iξ

(ρv)2iνf (vR − �v · �R)−iξ ,
(10)

where ξ = (ZP − ZT + 1)/v and �ρ is the projection of vector
�R onto the x-y plane ( �ρ = �R − �Z, �ρ · �Z = 0). The multiplying

term (ρv)2iνi or (ρv)2iνf does not contribute to the total cross
section and can be dropped from the transition amplitudes.
Therefore, the single Coulomb phase such as (vR + �v · �R)iξ

or (vR − �v · �R)−iξ needs to be retained in the calculation.
In addition to this simplification, we shall also use the
eikonal hypothesis, since the small-angle limit applies to heavy
particles, so that

�ki · �ri + �kf · �rf = �α · �s1 + �β · �x1 = −�v · �x1 − �α · �R,

where the momentum transfers �α and �β are defined by

�β = −�η − βz �̂v, �α = �η − αz �̂v, �α + �β = −�v,

αz = v/2 − E/v, βz = v/2 + E/v,

with E = Ei − Ef . The transverse component of the change
in the relative linear momentum of a heavy particle is denoted
by �η = (η cos φη, η sin φη, 0), (�η · �v = 0). We have used the
general factorized form for the bound state of the heliumlike
atom (or ion) (ZT , e1, e2)1s2 ,

ϕi(�x1, �x2) =
∑
k,l

ϕαk(�x1)ϕαl(�x2), (11)

where ϕαj (�r ) = Nαj
exp(−αj r), Nαj

= aj

√
N , (j = k, l),

and N is the normalization constant. The values of the
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summation indices k and l, as well as the variationally
determined parameters αj and aj , depend upon a concrete
choice of the wave function. Hence, we are led to the following
forms for T ±

if = ∑
k,l NklT ±

k,l , where

T −
k,l = ZP

[
2J

(k,l)
R − J (k,l)

s1
− J (k,l)

s2

]
, (12)

T +
k,l = {

ZP

[
J

(k,l)
R − J (k,l)

s2

] + (ZT − 1)
[
J

(k,l)
R − J (k,l)

x1

]
+ [

J (k,l)
r12

− J (k,l)
x1

]}
, (13)

with

J (k,l)
ω =

∫
d �Re−i �α· �R(vR + �v · �R)iξW (k,l)

ω ( �R),

(ω = R, x1, s1, s2, r12), (14)

W
(k,l)
R = 1

R
BkAl , W (k,l)

s1
= CkAl , W (k,l)

s2
= BkDl , (15)

W (k,l)
x1

= LkAl , W (k,l)
r12

= 1

2π2

∫
d �τ
τ 2

Bk,τAl,τ , (16)

Al =
∫

d �x2e
−(ZT +αl )x2 = 8π

(ZT + αl)3
,

Al,τ =
∫

d �x2e
i �τ ·�x2−(ZT +αl )x2 = 8π (ZT + αl)

[τ 2 + (ZT + αl)2]2
, (17)

Bk =
∫

d �x1e
−i�v·�x1−αkx1e−ZP s1 = 8ZP αk

π
ei �α· �R

×
∫

d �q e−i �q· �R

(|�q − �α|2 + Z2
P )2(|�q + �β|2 + α2

k )2
, (18)

Ck =
∫

d �x1e
−i�v·�x1−αkx1

e−ZP s1

s1
= 4αk

π
ei �α· �R

×
∫

d �q e−i �q· �R
(|�q − �α|2 + Z2

P

)(|�q + �β|2 + α2
k

)2 , (19)

Dl =
∫

d �x2e
−(ZT +αl )x2

1

s2

= 4(ZT + αl)

π

∫
d �q ei �q· �R

q2[q2 + (ZT + αl)2]2
, (20)

Lk =
∫

d �x1
e−i�v·�x1−αkx1

x1
e−ZP s1 = 4ZP

π
ei �α· �R

×
∫

d �q e−i �q· �R
(|�q − �α|2 + Z2

P

)2(|�q + �β|2 + α2
k

) , (21)

Bk,τ =
∫

d �x1e
−i(�τ+�v)·�x1−αkx1e−ZP s1 = 8ZP αk

π
ei �α· �R

×
∫

d �q e−i �q· �R
(|�q − �α|2 + Z2

P

)2(|�q + �β1|2 + α2
k

)2 , (22)

where �β1 = �β − �τ and Nk,l = (ZP ZT )3/2Nαk
Nαl

/π . Employ-
ing the Feynman parametrization integral,

1

AnBm
= (n + m − 1)!

(n − 1)!(m − 1)!

∫ 1

0
dt

tn−1(1 − t)m−1

[At + B(1 − t)]n+m
,

(23)

and with the help of the results
∫

d �q ei �q· �R

(|�q − �p |2 + λ2)3
= π2

4λ3
(1 + λR)ei �p· �R−λR, (24)

∫
d �q ei �q· �R

(|�q − �p |2 + λ2)4
= π2

24λ5
(3 + 3λR + λ2R2)ei �p· �R−λR,

(25)

we can perform the integration over �q in Eqs. (18)–(22) with
the following results for the quantities J (k,l)

ω :

J (k,l)
s2

= 4π2ZP αk(ZT + αl)
∫ 1

0

∫ 1

0

dt1dt2t2(1 − t1)(1 − t2)

3
1

5
2

× [
3I

( �Q2)
1, + 3I

( �Q2)
2, + 2(31 + 2)I ( �Q2)

3,

+1
2
2I

( �Q2)
4,

]
, (26)

J
(k,l)
R = 16π2ZP

αk

(ZT + αl)3

∫ 1

0

dt2t2(1 − t2)

5
2

× [
3I

( �Q2)
0,2

+ 32I
( �Q2)
1,2

+ 2
2I

( �Q2)
2,2

]
, (27)

J (k,l)
s1

= 16π2 αk

(ZT + αl)3

∫ 1

0

dt2(1 − t2)

3
2

[
I

( �Q2)
1,2

+ 2I
( �Q2)
2,2

]
,

(28)

J (k,l)
r12

= 8ZP (ZT + αl)
∫ 1

0
dt2t2(1 − t2)

×
∫

d �τ
τ 2[τ 2 + (ZT + αl)2]2

× 1

5
τ

[
3I

( �Qτ )
1,τ

+ 3τI
( �Qτ )
2,τ

+ 2
τ I

( �Qτ )
3,τ

]
, (29)

J (k,l)
x1

= 16π2ZP

(ZT + αl)3

∫ 1

0

dt2t2

3
2

[
I

( �Q2)
1,2

+ 2I
( �Q2)
2,2

]
, (30)

where

I
( �p )
n,λ =

∫
d �RRn−1e−i �p· �R−λR(vR + �v · �R)iξ ,

(31)
(λ = 2,τ ,), ( �p = �Q2, �Qτ ).

The quantities used in Eqs. (26)–(30) are defined as

1 = (ZT + αl)
√

1 − t1,

2
2 = v2t2(1 − t2) + Z2

P t2 + α2
k (1 − t2), (32)

2
τ = |�v + �τ |2t2(1 − t2) + Z2

P t2 + α2
k (1 − t2),

�Q2 = �αt2 − �β(1 − t2), (33)
�Qτ = �αt2 − ( �β − �τ )(1 − t2),  = 1 + 2. (34)

Integrals I
( �p )
n,λ , (n = 0, 1, 2, 3, 4) can be calculated analyti-

cally, and the results are given in the Appendix. In this manner,
we arrive at the final results for the prior and post transition
amplitudes:

T −
k,l =

∑
k,l

Nk,l

∫ 1

0
dt2(1 − t2)

[
2ZP t2HR − Hs1

− ZP t2(ZT + αl)4

2

∫ 1

0
dt1(1 − t1)Hs2

]
, (35)
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T +
k,l =

∑
k,l

Nk,l

∫ 1

0
dt2t2

{
ZP (1 − t2)

×
[
HR − (ZT + αl)4

2

∫ 1

0
dt1(1 − t1)Hs2

]

+ (ZT − 1)

[
(1 − t2)HR − 2

αk

Hx1

]

+
[

(ZT + αl)4

π2
(1 − t2)H12 − 2

αk

Hx1

]}
, (36)

H12 =
∫ ∞

0

dτ

[τ 2 + (ZT + αl)2]2

∫ π

0
dθτ sin θτ

∫ 2π

0
dφτh12

(37)

h12 = D
( �Qτ )
τ

F ( �Qτ )
τ

5
τ

{
3
[
1 − iξC

( �Qτ )
τ

] − 3τF ( �Qτ )
τ

− 2τD
( �Qτ )
τ

[
A

( �Qτ )
β,τ

+ ıξB
( �Qτ )
β,τ

]}
, (38)

Hs2 = D
( �Q2)
 F ( �Q2)



3
1

5
2

(γ − iξδ),

(39)

Nk,l = 64Z
5/2
P Z

3/2
T π2�(1 + iξ )

αkNαk
Nαl

(ZT + αl)3
,

Hx1 = D
( �Q2)
2

F ( �Q2)
2

3
2

[
1 − iξC

( �Q2)
2

− 2F ( �Q2)
2

]
, (40)

HR = F ( �Q2)
2

5
2

{
3 + 62D

( �Q2)
2

[
1 − iξC

( �Q2)
2

]

− 22
2D

( �Q2)
2

F ( �Q2)
2

}
, (41)

Hs1 = 2D
( �Q2)
2

F ( �Q2)
2

3
2

[
1 − iξC

( �Q2)
2

− 2F ( �Q2)
2

]
, (42)

γ = 3
[
1 − A

( �Q2)
α,

] − 2
D

( �Q2)



2(31 + 2)A( �Q2)

β,

+ 2
D

( �Q2)


2
1

2
2A

( �Q2)
γ, , (43)

δ = 3
[
C

( �Q2)
 + B

( �Q2)
α,

] + 2
D

( �Q2)



2(31 + 2)B( �Q2)

β,

+ 2
D

( �Q2)


2
1

2
2B

( �Q2)
γ, . (44)

This completes the calculation of the matrix elements T −
if in

terms of the two-dimensional integrals over real variables t1
and t2, both ranging from 0 to 1. On the other hand, T +

if

is obtained in terms of the five-dimensional integrals, since
the term 1/r12 in Vf from Eq. (7) requires an additional
three-dimensional integral over τ ∈ [0,∞], θτ ∈ [0, π ], φτ ∈
[0, 2π ].

III. THE RESULTS OF NUMERICAL COMPUTATIONS

The post and prior total cross sections in the CB1-4B
method are given by

Q±
if

(
πa2

0

) = 1

2π2v2

∫ ∞

0
dηη|T ±

if |2. (45)

The integration over η is performed by means of the Gauss-
Legendre routine, after performing the change of variable [24]
η = √

2(1 + z)/(1 − z), z ∈ [−1,+1] with the purpose of
concentrating the integration points near the forward cone,
where the total cross section peaks. The Gauss-Legendre
quadrature is also used for the remaining numerical integration
over t1, t2, τ, θτ , φτ after the appropriate change of vari-
ables: t1,2 = (u1,2 + 1)/2, τ = (1 + x)/(1 − x), cos θτ = ζ ,
φτ = π (y + 1), where u1,2, x, ζ, y ∈ [−1,+1]. The presented
algorithm is general, in the sense that it can be applied to both
heteronuclear and homonuclear single charge exchange of the
type (1).

Numerical computations of the total cross sections are
presently carried out for the following charge-exchange
reactions:

p + He −→ H + He+, (46)

α + He −→ He+ + He+. (47)

The explicit computations of the total cross sections are
performed only for the final ground states f1 = 1s and f2 =
1s. The obtained results are multiplied additionally by a factor
of 1.202 in order to include a contribution from the excited
states according to the n−3 Oppenheimer scaling law.

First, we shall consider the asymmetric reaction (46). The
results of the computations of the post and prior total cross
sections at impact energies 20–20 000 keV are summarized in
Table I as well as Figs. 1 and 2. The columns in Table I headed
by the symbols Q−

if and Q+
if represent the prior and post cross

sections, respectively. The total cross sections obtained by
means of the uncorrelated one-parameter Hylleraas wave func-
tion [31], ϕi(�x1, �x2) = (α3/π )e−α(x1+x2) with α = ZT − 5/16
are labeled “Hyll.” in Table I, whereas the results obtained by
using the configuration interaction (CI) wave function (1s1s ′)
of Ref. [32] with the radial static correlations ϕi(�x1, �x2) =
(N/π )(e−α1x1−α2x2 + e−α2x1−α1x2 ) are labeled “Silv.,” where
N−2 = 2[(α1α2)−3 + (α1/2 + α2/2)−6]. The total cross sec-
tions obtained with these wave functions are close to each
other, as can be seen from Table I. The prior form does
not contain the term 1/r12, which explicitly accounts for the
dynamical correlations. As a result, the prior amplitude, and
therefore the prior cross sections, are more sensitive to the
accuracy of the initial state than the corresponding results
from the post form. This is verified in Table I by comparing the
values of the Q+

if and Q−
if computed with the Hylleraas and the

Silverman et al. [32] wave functions. The relative difference
of the post cross sections between these wave functions does
not exceed 10%, whereas in the prior form it can be up to 36%.

The prior and post CB1-4B cross sections obtained with
the complete perturbations according to Eqs. (9), (3), and
(7) are plotted in Fig. 1. Despite the obvious discrepancy
between Vi and Vf from Eqs. (3) and (7), computations show
that the post-prior discrepancy is relatively small, as can be
seen from Fig. 1 and Table I. This is a good property of the
method, since the same physical assumptions are involved in
the prior and post forms. The post results are larger than the
prior ones. In Fig. 1, we also compare our theoretical results
for prior (solid curve) and post (dashed curve) cross sections
for p-He collision together with a number of experimental
data. The cross sections of the CB1-4B approximation are
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IVAN MANČEV AND NENAD MILOJEVIĆ PHYSICAL REVIEW A 81, 022710 (2010)

TABLE I. Total cross sections (in cm2) as a function of the impact energy E (keV) for electron capture p + He −→ H + He+. The
displayed theoretical results are obtained by means of the CB1-4B method using the one-parameter Hylleraas wave function (labeled “Hyll.”)
and the two-parameter Silverman et al. orbital [32] (labeled “Silv.”) for the initial bound state of helium. The quantities Q±

if represent the
cross sections in the post (+) and prior (−) forms, respectively, obtained with the complete perturbation potentials, whereas Q+

1 refers to the
cross sections computed without the term Vcorr = 1/r12 − 1/x1 in Eq. (7). The numbers in the square brackets denote the powers of 10.

Q−
if Q+

if Q+
1 Q−

if Q+
if Q+

1

E (keV) Hyll. Hyll. Hyll. Silv. Silv. Silv.

20 4.22[−16] 6.22[−16] 4.75[−16] 5.06[−16] 5.67[−16] 4.52[−16]
30 2.44[−16] 3.70[−16] 2.62[−16] 2.95[−16] 3.37[−16] 2.45[−16]
40 1.56[−16] 2.40[−16] 1.61[−16] 1.85[−16] 2.21[−16] 1.49[−16]
50 1.07[−16] 1.65[−16] 1.05[−16] 1.22[−16] 1.53[−16] 9.74[−17]
70 5.61[−17] 8.57[−17] 5.08[−17] 5.98[−17] 8.07[−17] 4.69[−17]
80 4.23[−17] 6.41[−17] 3.69[−17] 4.37[−17] 6.06[−17] 3.41[−17]

100 2.53[−17] 3.79[−17] 2.07[−17] 2.48[−17] 3.60[−17] 1.91[−17]
150 8.73[−18] 1.26[−17] 6.25[−18] 7.80[−18] 1.20[−17] 5.80[−18]
200 3.65[−18] 5.11[−18] 2.37[−18] 3.11[−18] 4.84[−18] 2.22[−18]
300 8.93[−19] 1.21[−18] 5.08[−19] 7.41[−19] 1.13[−18] 4.85[−19]
400 2.90[−19] 3.87[−19] 1.52[−19] 2.43[−19] 3.61[−19] 1.48[−19]
500 1.13[−19] 1.50[−19] 5.58[−20] 9.67[−20] 1.39[−19] 5.52[−20]
700 2.46[−20] 3.27[−20] 1.12[−20] 2.21[−20] 3.04[−20] 1.14[−20]
800 1.30[−20] 1.74[−20] 5.78[−21] 1.20[−20] 1.62[−20] 5.95[−21]

1000 4.34[−21] 5.86[−21] 1.84[−21] 4.15[−21] 5.47[−21] 1.93[−21]
1500 5.35[−22] 7.44[−22] 2.12[−22] 5.51[−22] 7.00[−22] 2.27[−22]
2000 1.14[−22] 1.63[−22] 4.32[−23] 1.23[−22] 1.54[−22] 4.71[−23]
3000 1.22[−23] 1.80[−23] 4.34[−24] 1.40[−23] 1.72[−23] 4.80[−24]
4000 2.42[−24] 3.64[−24] 8.28[−25] 2.87[−24] 3.52[−24] 9.19[−25]
5000 6.80[−25] 1.04[−24] 2.27[−25] 8.28[−25] 1.01[−24] 2.52[−25]
7000 9.91[−26] 1.53[−25] 3.18[−26] 1.24[−25] 1.50[−25] 3.53[−26]
8000 4.59[−26] 7.13[−26] 1.45[−26] 5.80[−26] 7.02[−26] 1.61[−26]

10 000 1.26[−26] 1.97[−26] 3.92[−27] 1.62[−26] 1.95[−26] 4.35[−27]
15 000 1.20[−27] 1.88[−27] 3.61[−28] 1.56[−27] 1.87[−27] 3.99[−28]
20 000 2.23[−28] 3.50[−28] 6.64[−29] 2.93[−28] 3.51[−28] 7.30[−29]

seen to be in very good agreement with all the measurements
at very wide (three orders of magnitude) impact energies. In
addition to computations by means of one- and two-parameter
wave functions, we have also carried out computations with
the three-parameter orbitals of Green et al. [42] and the
four-parameter wave function of Löwdin [43]. The total cross
sections obtained by Green et al. [42] and Löwdin [43]
wave functions are very close to those obtained by using the
Hylleraas and Silverman et al. [32] wave functions. Therefore,
to avoid clutter, all numerical results are not included here and
we have presented only a few numerical values for illustration.
The post total cross sections obtained by Green et al. [42] and
Löwdin [43] wave functions for the p-He collisions at 0.1 MeV
are, respectively, 3.69 × 10−17 and 3.68 × 10−17, whereas
at 1 MeV they are 5.65 × 10−21 and 5.61 × 10−21, and at
10 MeV they are 2.03 × 10−26 and 2.00 × 10−26. As can be
seen by comparing with corresponding results from Table I, the
dependence of the total cross sections for the p-He collisions
upon these four bound-state wave functions is weak. Similar
results are obtained for the prior cross sections.

The relatively small post-prior discrepancy was previously
found within four-body continuum distorted wave (CDW-4B)
method for double [44] as well as single charge exchange
[45] in p-He collisions. As shown by Belkić et al. [46], in
the case of simultaneous transfer and ionizaton, due to the

potential Vcorr in the corresponding perturbation, the post
form is more adequate than its prior counterpart. However,
the calculations of Ciappina et al. [47,48] within continuum-
distorted-wave–eikonal-initial-state (CDW-EIS) model for ion
impact ionization of helium have shown that the prior version
gives better agreement with experimental data than the post
version calculations.

Further, we have evaluated the contribution of the corre-
lation term Vcorr = 1/r12 − 1/x1 which is contained only in
the post cross sections. Namely, if we ignore this term in
Eq. (7), we obtain the numerical results labeled as Q+

1 in
Table I. The potential 1/r12 in Vcorr = 1/r12 − 1/x1 represents
the direct Coulomb interaction between e1 and e2, whereas
1/x1 is the asymptotic tail of the 1/r12, since r12 → x1

at infinitely large x1 and finite x2. Hence, the term Vcorr

is precisely the difference between the finite and limiting
values of the same potential. As such, Vcorr is a short-range
interaction in accordance with the correct boundary conditions
[16,17]. Using the relation r12 = |�x1 − �x2|, we can develop
1/x1 = 1/|�r12 − �x2| in a power series around �x2 according to
1/x1 = 1/|�r12 − �x2| = 1/r12 − �r12 · �x2/r3

12 + · · ·, so that

Vcorr = 1

r12
− 1

x1
= �r12 · �x2

r3
12

+ · · · .
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FIG. 1. Total cross sections (in cm2) as a function of the
laboratory incident energy for reaction p + 4He −→ H + 4He+.
The solid and dashed curves represent the prior and post total
cross sections in the CB1-4B method, respectively. Both theoretical
curves are obtained with the complete perturbation potentials. The
initial ground state of atom He (1s2) is described by means of the
two-parameter Silverman et al. orbital [32]. Experimental data: 
Shah et al. [33], � Schryber [34] ◦ Shah and Gilbody [35], �
Horsdal-Pedersen et al. [36], ♦ Berkner et al. [37], � Williams [38],
� Martin et al. [39], • Welsh et al. [40].

This is justified by the small value of the x2 coordinate (of
the order of Bohr radius a0), since electron e2 always remains
bound in the target. From here we can see that the potential Vcorr

contains information on the dielectronic correlation e1 − e2.
Therefore, Vcorr can be interpreted as a correlation term.
When the potential Vcorr is placed in the T matrix (9), it
plays the role of a perturbation which causes capture of
electron e1.

In order to critically assess the contribution from this term
in the framework of the present CB1-4B model, a comparison
with measurements is required, and this is carried out on
Fig. 2. One can see from Fig. 2 that very good agreement is
obtained, provided that the full perturbation Vf is included in
the post formulation. When we neglect the relevant term for the
dynamic electron correlation Vcorr = 1/r12 − 1/x1, we obtain
the results (the dashed curve in Fig. 2) that underestimate the
experimental findings especially at higher impact energies.
For example, the relative contribution of this term, expressed
via γ = |Q+

if − Q+
1 |/Q+

if for the Silverman et al. [32] wave
function is 46.9%, 64.7%, and 79.2% at impact energies 100,
1000, and 20 000 keV, respectively. Similar results of γ are
obtained when one-parameter orbitals [31] are utilized for
the initial state of helium, that is, 45.4%, 68.6%, and 81.0%
at the same energies. The presented numerical results about
the contribution of the term Vcorr can be understood as an
estimation of the role of the dynamic correlation. However,
strictly speaking, by removing Vcorr from the perturbation
Vf , we obtain a transition amplitude in which the proper

FIG. 2. Total cross sections (in cm2) as a function of the
laboratory incident energy for reaction p + 4He −→ H + 4He+.
The solid and dashed curves from the CB1-4B method correspond
to the cases where the potential Vcorr = 1/r12 − 1/x1 is included and
excluded from the complete perturbation Vf , respectively. The wave
function of Silverman et al. [32] is used for the initial bound state.
Experimental data: the same as in Fig. 1.

connection between the remaining part of the perturbation
(Vf − Vcorr) and the corresponding scattering states is not
accomplished. However, it should be re-emphasized that Vcorr

is a short-range interaction.
The results of the computations of the CB1-4B total

cross sections for reaction (47) at impact energies ranging
from 100 to 10 000 keV are presented in Table II (with
the same notations as in Table I), as well as in Figs. 3
and 4. As can be seen from Fig. 3, the present CB1-4B
approximation is found to be in excellent agreement (above
50 keV/amu) with the available experimental data. The
relative difference between the post (solid curve) and prior
form (dash-dotted curve) is up to 22%. In the same figure,
the present CB1-4B results are compared with the corre-
sponding CDW-4B findings from [53]. As can be expected,
at lower energies, the CB1-4B cross sections are much
smaller than the corresponding results of the CDW-4B model.
A comparison is also made with the continuum-distorted-
wave–independent-event model (CDW-IEM) of Dunseath
and Crothers [54], derived using the correlated Pluvinage
wave function [55] ϕi(�x1, �x2) = (Z3

T /π ) exp[−ZT (x1 +
x2)] exp(−ikr12)1F1(1 − iγ, 2, 2ikr12), where γ = −1/(2k)
and c(k) is the normalization constant, with k being a nonlinear
variational parameter. This wave function contains two entirely
uncorrelated hydrogenlike wave functions with the unscreened
charge ZT that are multiplied with a corrective r12-dependent
term of the form exp(−ikr12)1F1(1 − iγ, 2, 2ikr12). The for-
mulation of Dunseath and Crothers [54] ignores the dynamic
correlations altogether, and this may be one of the reasons
for its less favorable agreement with the measurements, as
is clear from Fig. 3. Moreover, this might also indicate that
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TABLE II. Same as in Table I, except for reaction α + He −→ He++He+.

Q−
if Q+

if Q+
1 Q−

if Q+
if Q+

1

E (keV) Hyll. Hyll. Hyll. Silv. Silv. Silv.

100 5.69[−16] 5.60[−16] 4.20[−16] 5.18[−16] 5.33[−16] 4.04[−16]
150 3.94[−16] 3.95[−16] 2.96[−16] 3.56[−16] 3.75[−16] 2.83[−16]
200 2.84[−16] 2.93[−16] 2.14[−16] 2.54[−16] 2.78[−16] 2.04[−16]
300 1.61[−16] 1.73[−16] 1.21[−16] 1.42[−16] 1.64[−16] 1.14[−16]
400 9.89[−17] 1.09[−16] 7.35[−17] 8.64[−17] 1.03[−16] 6.93[−17]
500 6.42[−17] 7.21[−17] 4.71[−17] 5.56[−17] 6.82[−17] 4.44[−17]
600 4.34[−17] 4.93[−17] 3.14[−17] 3.74[−17] 4.66[−17] 2.96[−17]
700 3.03[−17] 3.47[−17] 2.16[−17] 2.60[−17] 3.28[−17] 2.04[−17]
800 2.17[−17] 2.50[−17] 1.53[−17] 1.86[−17] 2.37[−17] 1.45[−17]
900 1.59[−17] 1.84[−17] 1.11[−17] 1.36[−17] 1.74[−17] 1.05[−17]

1000 1.18[−17] 1.38[−17] 8.16[−18] 1.01[−17] 1.30[−17] 7.77[−18]
1500 3.33[−18] 3.97[−18] 2.21[−18] 2.91[−18] 3.75[−18] 2.14[−18]
2000 1.19[−18] 1.44[−18] 7.68[−19] 1.06[−18] 1.36[−18] 7.57[−19]
3000 2.33[−19] 2.88[−19] 1.45[−19] 2.17[−19] 2.73[−19] 1.47[−19]
4000 6.49[−20] 8.19[−20] 3.96[−20] 6.30[−20] 7.82[−20] 4.11[−20]
5000 2.27[−20] 2.92[−20] 1.36[−20] 2.28[−20] 2.79[−20] 1.44[−20]
6000 9.28[−21] 1.21[−20] 5.48[−21] 9.56[−21] 1.17[−20] 5.89[−21]
7000 4.27[−21] 5.66[−21] 2.49[−21] 4.50[−21] 5.46[−21] 2.70[−21]
8000 2.15[−21] 2.88[−21] 1.23[−21] 2.30[−21] 2.79[−21] 1.35[−21]
9000 1.16[−21] 1.57[−21] 6.59[−22] 1.26[−21] 1.53[−21] 7.27[−22]

10 000 6.64[−22] 9.11[−22] 3.73[−22] 7.34[−22] 8.84[−22] 4.14[−22]

FIG. 3. Total cross sections (in cm2) as a function of the
laboratory incident energy E (keV ) for reaction 4He2+ + 4He −→
4He+ + 4He+. The solid and dash-dotted curves represent the post
and prior total cross sections of the CB1-4B method with the complete
perturbation potential, respectively. The dashed curve refers to the
theoretical results of Mančev [53] in the CDW-4B theory. For all
the three curves, the initial ground state of He (1s2) is described
by means of the Silverman et al. [32] orbital. The dotted curve
refers to the theoretical results of Dunseath and Crothers [54] in
CDW-IEM. Experimental data:  Hvelplund et al. [49], � de Castro
Faria et al. [50], ◦ Shah and Gilbody [35], � Shah et al. [33],
♦ Mergel et al. [41], • DuBois [51], � Pivovar et al. [52].

dynamic electronic correlations in the perturbation potentials
that cause the transition are more important than the static
ones in the target bound-state wave function. This is also
supported by a small discrepancy (not exceeding 6%) between
the cross section computed by means of the uncorrelated
Hylleras and the radially correlated Silverman et al. [32]
wave functions, as shown in Table II. Very similar results are
obtained by using three-parameter orbitals of Green et al. [42]
and four-parameter wave function of Löwdin [43].

The role of the Vcorr term in α-He collisions remains
important, as shown in Fig. 4. As can be seen in this figure, the
difference between the two curves becomes more significant
at higher impact energies. The relative contribution γ of the
Vcorr term is up to 53% when the Silverman et al. [32] wave
function is utilized, and γ � 59% is obtained by using the
Hylleraas orbital. This might mean that the dynamic electron
correlations play a very important role, especially at higher
impact energies. A similar conclusion has been previously
reached in Refs. [45,53] by using the CDW-4B model for the
same collisional systems.

Despite the present numerical computations being restricted
to the four wave functions, it should be noted that the presented
CB1-4B method can also be extended and adapted for using
multiparameter highly correlated wave functions, such those of
Byron and Joachain [56], Joachain and Vanderpoorten [57], or
Tweed [58], which include a number of CI terms ranging from
12 to 108. These orbitals [56–58] are capable of including most
radial and angular correlations, despite the fact that they do not
explicitly contain the interelectronic coordinate �r12. Such wave
functions [56–58] are convenient for analytical calculations
due to their separable form ϕi(�r1, �r2) = ∑

k,l ϕk(�r1)ϕl(�r2),
where ϕk,l(�r1,2) are unnormalized Slater-type orbitals.
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FIG. 4. Total cross sections (in cm2) as a function of the
laboratory incident energy E (keV) for reaction 4He2+ + 4He −→
4He+ + 4He+. The solid and dashed curves from the CB1-4B method
correspond to the cases where the potential Vcorr = 1/r12 − 1/x1

is included and excluded from the complete perturbation Vf ,
respectively. The wave function of Silverman et al. [32] is used for
the initial bound state. Experimental data: the same as in Fig. 3.

Besides very good agreement between theoretical total
cross sections obtained by means of the CB1-4B method and a
number of experimental data for p-He and α-He collisions, we
have also tested our method against very recently published
experimental results of Sant’Anna et al. [59], as well as Woitke
et al. [60], for Li3+-He collisions, and good agreement is
found. Hence, the presented theoretical results for the total
cross sections can be considered as reliable at intermediate
and high impact energies. However, in the case of differential
cross sections, the CB1-4B model exhibits an unphysical and
experimentally unobserved dip due to mutual cancellation
among the various terms in the perturbation potentials. A
similar problem in the case of differential cross sections
appeared when the one-channel distorted wave models were
utilized [61].

IV. CONCLUSIONS

We have investigated the problem of single charge exchange
in collisions between bare ions and a two-electron atomic
system. The analysis is carried out by means of the CB1-4B
model. The obtained total cross sections for the investigated
p-He and α-He one-electron capture are presently found to
be in very good agreement with the available experimental
data. This is not surprising, since the four-body version of
the CB1-4B model is obtained as a direct extension of its
well-established three-body counterpart. In addition to some
works [6,8] which argue that in the independent particle
approach can explain the processes studied in this work, the
present CB1-4B model can be considered as a reliable theory
for single capture at intermediate and high impact energies

and might bring some information on electronic correlation
effects. The obtained results indicate that the term Vcorr =
1/r12 − 1/x1 in the perturbation potential of the post version,
which is connected with the dynamic electron correlations, is
important.
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APPENDIX

In this appendix we give the final result of the integral I
( �p )
n,λ ,

(n = 0, 1, 2, 3, 4) defined in Eq. (31) of the main text. The
standard Nordsieck technique [62], together with the partial
differential procedure, yields the following expressions:

I0 = 4π�(1 + iξ )F ( �p )
λ , (A1)

I1 = 8π�(1 + iξ )D( �p )
λ F ( �p )

λ

[
1 − iξC

( �p )
λ

]
, (A2)

I2 = −8π�(1 + iξ )
D

( �p )
λ F ( �p )

λ

λ

[
A

( �p )
α,λ + iξB

( �p )
α,λ

]
, (A3)

I3 = −16π�(1 + iξ )

[
D

( �p )
λ

]2F ( �p )
λ

λ

[
A

( �p )
β,λ + iξB

( �p )
β,λ

]
, (A4)

I4 = 16π�(1 + iξ )

[
D

( �p )
λ

]2F ( �p )
λ

λ2

[
A

( �p )
γ,λ − iξB

( �p )
γ,λ

]
, (A5)

where the symbol � stands for the conventional γ function.
The other quantities appearing in Eqs. (A1)–(A5) are

F ( �p)
λ =

[
B

( �p )
λ

]iξ

p2 + λ2
, B

( �p)
λ = 2(vλ − i �p · �v)

p2 + λ2
, (A6)

C
( �p )
λ = v

λB
( �p )
λ

− 1, A
( �p )
λ = λ2

p2 + λ2
, D

( �p )
λ = A

( �p)
λ

λ
,

(A7)

A
( �p )
α,λ = 1 − 4A

( �p )
λ , B

( �p )
α,λ = 1 + 2A

( �p )
λ C

( �p )
α,λ , (A8)

C
( �p )
α,λ = C

( �p )
λ

[
4 + (1 − iξ )C( �p )

λ

]
, (A9)

A
( �p )
β,λ = 6

[
1 − 2A

( �p )
λ

]
, B

( �p )
β,λ = 2A

( �p )
λ C

( �p )
β,λ + 3D

( �p )
β,λ

(A10)

C
( �p )
β,λ = C

( �p )
λ

{
18 + 9(1 − iξ )C( �p )

λ

+ (1 − iξ )(2 − iξ )
[
C

( �p )
λ

]2}
, (A11)

D
( �p )
β,λ = 2 − (1 + iξ )C( �p )

λ ,

A
( �p )
γ,λ = 6

{
16

[
A

( �p )
λ

]2 − 12A
( �p )
λ + 1

}
, (A12)

B
( �p )
γ,λ = 4

[
A

( �p)
λ

]2
C

( �p )
γ,λ − 12A

( �p )
λ D

( �p )
γ,λ − 3(3 + iξ ),

(A13)

C
( �p )
γ,λ = C

( �p )
λ

{
96 + 72(1 − iξ )C( �p )

λ + 16(1 − iξ )(2 − iξ )

× [
C

( �p )
λ

]2 + (1 − iξ )(2 − iξ )(3 − iξ )
[
C

( �p )
λ

]3}
,

(A14)

D
( �p )
γ,λ = (1 + iξ )C( �p )

λ

[
6 + (1 − iξ )C( �p )

λ

] − 6. (A15)
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IVAN MANČEV AND NENAD MILOJEVIĆ PHYSICAL REVIEW A 81, 022710 (2010)

[1] J. McGuire, Electron Correlation Dynamics in Atomic Collisions
(Cambrige University Press, Cambrige, 1997).

[2] R. Nagano, K. Yabana, T. Tazawa, and Y. Abe, Phys. Rev. A 62,
062721 (2000).

[3] X. M. Tong, T. Watanabe, D. Kato, and S. Ohtani, Phys. Rev. A
66, 032709 (2002).
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[61] M. S. Schöffler, J. Titze, L. Ph. H. Schmidt, T. Jehnke,
N. Neumann, O. Jagutzki, H. Schmidt-Böcking, R. Dörner, and
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