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Single charge exchange in collisions between fast bare projectiles and heliumlike atomic systems is investigated
by means of the four-body boundary-corrected first Born approximation. An extensive analytical study of the
general transition amplitude for electron capture into the arbitrary nf lf mf final states of the projectile is carried
out. The quantum-mechanical transition amplitude for both symmetric and asymmetric collisions is derived in
terms of a two-dimensional numerical quadrature over real variables. An illustrative computation is performed
involving state-selective and total single-capture cross sections for p-He and Li3+-He collisions at intermediate
and high impact energies. Detailed comparisons with the available measurements are reported with the purpose
of further assessing the validity and utility of the four-body corrected first Born method in various applications
ranging from fusion research to radiotherapy.
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I. INTRODUCTION

It is well known that ion-atom collisions involve long-range
Coulomb potentials that persist even when the scattering
particles are at infinite separations from each other. This
causes distortion of the unperturbed channel states and
modifications of the corresponding perturbation potentials.
The long-range nature of the Coulomb interaction yields
considerable mathematical difficulties in treating collision
processes and requires special attention for unambiguous and
proper applications. In a key review paper [1], a long-standing
issue was resolved concerning the role of the Coulomb
boundary conditions. To this end, the usual scattering theory
from nuclear collision physics with short-range interactions
had to be substantially reformulated for atomic physics
applications involving Coulombic potentials that remain in
the asymptotic region of the initial and/or final states. One of
the main results of this reformulation [1] was the introduction
of a first-order theory, which has subsequently been referred to
as the corrected first Born (CB1) approximation. This method
satisfies the correct Coulomb boundary conditions in both the
entrance and exit channels. The CB1 theory is a first-order
term of a divergence-free perturbation expansion of the exact
eikonal transition amplitude. The first Born approximation
with the correct boundary conditions has been introduced
within the three-body formalism [1] (hereafter denoted as
the CB1-3B approximation). Over the years, the CB1-3B
model has successfully been applied to many electron-capture
processes [2–15]. Such computations yielded systematically
good agreement with virtually all the existing experimental
data on the subject. This represents an essential improvement
of the otherwise poor performance of other first-order models
for single charge exchange. For example, the Jackson-Schiff
(JS1) [16] or the Oppenheimer, Brinkman, and Kramers
(OBK1) first-order approximations [17,18] are known to be
inadequate for electron capture. Invariably, the inadequacy
of the OBK1 and JS1 models was attributed to the fact that
they were merely the first-order approximations to the Born
perturbation expansion. Moreover, such a claim was used to
put into question all the other first-order models for charge
exchange. This misconception prompted investigations within

several second-order theories, but the real cause of the failure
of the OBK1 and JS1 approximations was left unidentified.
However, with the emergence of the CB1-3B method [1,2],
the allegation of inadequacy of all the first-order theories
for charge exchange was invalidated. Thorough applications
of the CB1-3B model [2–15] have shown that a first-order
theory could indeed be adequate for electron capture, but only
provided that it obeys the Coulomb boundary conditions and
that it is associated with a nondivergent series development.
Neither of these latter two key requirements of atomic collision
physics is met in the JS1 or the OBK1 model, and this fact,
rather than that they are first-order approximations, was the
reason for their failure in comparisons with experiments.
Note that in the single case of identical nuclear charges
of the projectile and target, ZP = ZT = 1, dealing with
electron capture from atomic hydrogen by protons, the JS1
approximation fortuitously coincides with the CB1 method.
For all other values of ZP and ZT, the results of the JS1 model
deviate from those from the CB1 approximation. This was
systematically demonstrated in detailed computations from
Ref. [10] for charge exchange ZP + H(1s) → (ZP,e)f + H+
with ZP = 1–6. The most striking difference of two orders of
magnitude between the total cross sections from the JS1 and
CB1 approximations for single-electron capture from the K
shell of argon by protons at impact energies 1–12 MeV was
reported in Ref. [9], where the latter theory was found to be
in excellent agreement with the corresponding experimental
data.

In the case of single-electron transfer from a target
atom with two or more electrons by a bare projectile, the
active electron has often been described using a Roothaan-
Hartree-Fock (RHF) orbital in the self-consistent field (SCF)
approximation [9–13,15]. Thus, pure four-body problems,
such as charge exchange ZP − (ZT; e1,e2)i , are reduced to
effectively three-body problems. In such three-body models,
the individual states of the remainder of the target are ignored
altogether, in accordance with the single-particle frozen-core
approximation. Computation of state-selective cross sections
for electron capture from helium by protons has been the
subject of investigation in a number of reports. For this
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theme of research, different three-body models have been
used, such as the CB1-3B [14], the continuum distorted wave
(CDW) [19], the continuum intermediate state (CIS) [20],
the target continuum distorted wave (TCDW) [21] models,
the eikonal (EA) [22], the symmetric eikonal (SE) [23], the
impulse eikonal (IA) [24] approximations, the two-center
atomic-orbital-expansion approach within the close-coupling
(CC) treatment [25], etc. Although interest in four-body
models has been considerably revived in recent years [26–30],
to our knowledge no computations have thus far been reported
on state-selective electron capture from helium by protons
using four-body approximations. The present study is meant
to bridge this gap.

In general, the correct Coulomb boundary conditions are
demanded by the well-known asymptotic convergence prob-
lem [1,31,32]. This consists of the simultaneous requirement
for the correct asymptotic behaviors of all the scattering wave
functions and their proper connection with the corresponding
perturbation interactions. Of late, much effort has been focused
on four-body theories for nonrelativistic fast-ion–atom colli-
sions with two actively participating electrons. A number of
quantum-mechanical four-body methods have been proposed
to study one- and two-electron transitions in scattering of
completely stripped projectiles on heliumlike atomic systems
or in collisions between two hydrogenlike atoms or ions, as
recently reviewed in Refs. [26–28].

The formulation and implementation of the four-body
boundary-corrected first Born approximation (CB1-4B) ap-
proximation was carried out in Refs. [33,34] for double-
electron capture. Subsequently, the CB1-4B method was
adapted and applied to single-electron capture [35–37]. The
CB1-4B theory goes beyond the usual independent-particle
frozen-core approximations and consistently obeys the asymp-
totic convergence criteria of Dollard [31,32] for Coulomb
potentials.

Thus far, the CB1-4B method has been applied only to
ground-to-ground state capture. This was the case for double-
electron capture [33,34] as well as for single-charge exchange
[35–37]. The previous results of the CB1-4B method relate to
total cross sections for single-electron capture from helium by
protons and α particles, involving only the final hydrogenlike
states H(1s) and He+(1s), respectively [37]. This is extended in
the present study to encompass electron capture into arbitrary
final states of the projectile.

The main goal of the present work is to generalize the
CB1-4B theory to single-electron capture by a bare projectile
from a heliumlike atomic system into the final arbitrary shells
{nf , lf ,mf } of the transferred electron. Electron transfer into
excited states is expected to play an important role, at least
at lower and intermediate impact energies. Moreover, our
rationale for extending the CB1-4B approximation to include
the contributions of various subshells is threefold. First, a
generalization of the CB1-4B method to any {nf , lf ,mf }
level should test the validity of the main working assump-
tions of this method which has previously been restricted
to ground-to-ground state capture alone [37]. Second, in
practical applications concerning certain new energy sources,
the role played by impurities in neutral-beam heating of
tokamak fusion plasmas is currently being examined by using

charge-exchange spectroscopy. For this measuring device,
information about subshell populations of states formed by
charge exchange is necessary. Third, while acknowledging
the significance of the recent efforts by Madison and co-
workers [29,30,38,39] to carry out CPU-time-consuming nine-
dimensional numerical quadratures for the related problems
using the defining expressions for the transition amplitudes
of a selected method, it is likewise important to report
the present alternative semianalytical reductions of similar
transition amplitudes, yielding computationally efficient two-
dimensional quadratures.

Atomic units will be used throughout unless otherwise
stated.

II. THEORY

A. The defining prior form of the transition amplitude

We consider single-electron capture in collisions of a
completely stripped projectile with a heliumlike target:

ZP + (ZT; e1,e2)1s2 −→ (ZP,e1)nf lf mf + (ZT,e2)1s , (1)

where ZK is the charge of the Kth nucleus (K = P,T) and
nf lf mf is the usual set of three hydrogenlike quantum
numbers. Here, the parentheses symbolize the bound states.
Let �s1 and �s2 (�x1 and �x2) be the position vectors of the first
and second electrons (e1 and e2) relative to the nuclear charge
of the projectile ZP (target ZT), respectively. Further, let �R be
the position vector of ZT with respect to ZP.

The prior form of the transition amplitude for process (1)
in the CB1-4B approximation reads as [37]

Tif (�η) =
∫ ∫ ∫

d �x1d �x2d �Rϕ∗
nf lf mf (�s1)ϕ∗

T(�x2)

×
(

2ZP

R
− ZP

s1
− ZP

s2

)
ϕi(�x1,�x2) e−i �α· �R−i�v·�x1E( �R),

(2)

where E( �R) can be either of the following two equivalent
expressions:

E( �R) =
{

(ρv)2iZP(ZT−2)/v(vR + �v · �R)iξ ,

(ρv)2i(ZT−1)(ZP−1)/v(vR − �v · �R)−iξ .
(3)

Here, ξ = (ZP − ZT + 1)/v where v is the velocity of
the projectile and �ρ is the projection of vector �R onto the
XOY plane ( �ρ = �R − �Z, �ρ · �Z = 0). As has been shown in
Ref. [1] for the exact eikonal transition amplitude, the overall
multiplying term (ρv)2iZP(ZT−2)/v or (ρv)2i(ZT−1)(ZP−1)/v does
not contribute to the total cross section and can be omitted
from further considerations.

The momentum transfers �α and �β are defined by

�α = �η − αz �̂v, �β = −�η − βz �̂v, �α + �β = −�v,

αz = v/2 − �E/v, βz = v/2 + �E/v,

where �E = Ei − Ef with Ei being the binding energy of
the two-electron target and Ef = −Z2

P/[2(nf )2] − Z2
T/2. The

quantity �E, which represents the energy defect for the
reaction under study, is often denoted by Q in the related
experimental studies and thus, for brevity, referred to as the Q
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factor. This notation and nomenclature are avoided in theoret-
ical examinations because of the common practice in which
the letter Q usually denotes cross sections. The transverse
component of the change in the relative linear momentum of a
heavy particle is denoted by �η = (η cos φη,η sin φη,0) and has
the property �η · �v = 0.

The function ϕi(�x1,�x2) denotes the two-electron ground-
state wave function of the atomic system (ZT; e1,e2)1s2 .

Hereafter, we shall use the general factorized form for the
bound state of the heliumlike atomic system:

ϕi(�x1,�x2) =
∑
k, l

ϕαk(�x1)ϕαl(�x2), (4)

where ϕαj (�r) = Nαj
exp(−αj r) where Nαj

= aj

√
N (j =

k, l) and N is the normalization constant. The values of the
summation indices k and l, as well as of the variationally
determined parameters αj and aj , depend upon the concrete
choice for the wave function. The functions ϕnf lf mf (�s1) and
ϕT(�x2) in Eq. (2) represent the bound-state wave functions of
the hydrogenlike atomic systems (ZP,e1)nf lf mf and (ZT,e2)1s ,

respectively.
In the CB1-4B model, the proper connection between the

long-range Coulomb distortion effects and the accompanying
perturbation potentials is accomplished according to the well-
established principles of scattering theory [32]. As evidenced
in abundant applications, imposing the correct Coulomb
boundary conditions in the entrance and exit channels is of
crucial importance, particularly for ion-atom collisions [28].

B. Analytical method for calculation of the transition amplitude
involving arbitrary final excited states of the formed

hydrogenlike atomic system

In the derivation presented here, we shall closely follow
Ref. [11] with adaptation to process (1). With this goal, the
transition amplitude (2) can be reduced to the following form
which is amenable to further analytical calculations:

Tif = ZP

∑
k, l

Nk, l

[
2J

(k, l)
R − J (k, l)

s1
− J (k, l)

s2

]
, (5)

where

J (k, l)
ω =

∫
d �R e−i �α· �R(vR + �v · �R)iξ W (k, l)

ω ( �R),

(ω = R,s1,s2), (6)

W
(k, l)
R = 1

R
BkAl , W (k, l)

s1
= CkAl , W (k, l)

s2
= BkDl , (7)

Al =
∫

d �x2 e−(ZT+αl )x2 = 8π

(ZT + αl)3
, (8)

Dl =
∫

d �x2 e−(ZT+αl )x2
1

s2
= 2π (ZT + αl)

∫ 1

0
dt1

(1 − t1)

�3
1

× (1 + �1R)e−�1R, (9)

Bk =
∫

d �x1 e−i�v·�x1−αkx1ϕ∗
nf lf mf (�s1) =

∫
d �x1 e−i�v·�x1−αkx1

×
[∫

d �q e−i �q·�s1 ϕ̃nf lf mf (�q)

]∗
, (10)

Ck =
∫

d �x1 e−i�v·�x1−αkx1
ϕ∗

nf lf mf (�s1)

s1
=

∫
d �x1 e−i�v·�x1−αkx1

×
[∫

d �q e−i �q·�s1 χ̃nf lf mf (�q)

]∗
, (11)

with χnf lf mf (�s1) = ϕnf lf mf (�s1)/s1, Nk, l =
(ZT)3/2Nαk

Nαl
/
√

π , and �2
1 = (ZT + αl)2(1 − t1). Using

the Fourier transform f̃ (�q) = (2π )−3
∫

d�r ei �q·�rf (�r) the
hydrogenlike wave functions ϕnf lf mf (�s1) and χnf lf mf (�s1) in
the momentum space can be written as [40]

ϕ̃nf lf mf (�q) = (2π )−3N
ZP
f il

f

nr∑
p= 0

cp

Ylf mf (�q)

[q2 + (ZP/nf )2]p+lf +2
,

(12)

χ̃nf lf mf (�q) = (2π )−3
N

ZP
f

2ZP
il

f

nr∑
p= 0

cp

Ylf mf (�q)

[q2 + (ZP/nf )2]p+lf +1
,

(13)

where

N
ZP
f = 16πZP

[
(ZP/nf )3

nf

(nf + lf )!

nr !

]1/2
lf !(4ZP/nf )l

f

(2lf + 1)!
,

(14)

cp = (−nr )p(nf + lf + 1)p
(lf + 3/2)pp!

(ZP/nf )2p, nr = nf − lf − 1.

(15)

The quantity Ylm(�q) denotes the regular solid harmonic
Ylm(�q) = q lYlm( �̂q) where Ylm( �̂q) is the spherical harmonic
(see the Appendix for the adopted definitions and phase
conventions), whereas (a)n is the Pochhammer symbol
(a)n = (a + n)/(a) = a(a + 1) · · · (a + n − 1), (a)0 = 1.
Using Eqs. (12) and (13), the integrals Bk and Ck

become

Bk = (2π )−3N
ZP
f (−i)l

f

8παk

nr∑
p=0

cpG(2)
k, p,

Ck = (2π )−3
N

ZP
f

2ZP
(−i)l

f

8παk

nr∑
p= 0

cpG(1)
k, p, (16)

with

G(ν)
k,p = ei �α· �R

∫
d �q e−i �q· �R

× Y∗
lf mf (�q − �α)(|�q − �α|2 + a2

f

)p+lf +ν(|�q + �β|2 + α2
k

)2

(ν = 1,2), (17)

where the translation �q → �q − �α is made, and af = ZP/nf .
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The denominators in the integral (17) can be collected into a
single term by means of the Feynman parametrization integral:

1

AsBr
= (s + r − 1)!

(s − 1)!(r − 1)!

∫ 1

0
dt

× t s−1(1 − t)r−1

[At + B(1 − t)]s+r
(s,r � 1), (18)

G(ν)
k, p = (p + lf + ν + 1)(p + lf + ν)

×
∫ 1

0
dt tp+lf +ν−1(1 − t)U (ν)

k,p, (19)

U (ν)
k, p = ei �α· �R

∫
d �q e−i �q· �R Y∗

lf mf (�q − �α)

(|�q − �Q |2 + �2)p+lf +2+ν

= e−i �Qα · �R
∫

d �q e−i �q· �R Y∗
lf mf (�q + �Qα)

(q2 + �2)p+lf +2+ν
, (20)

where a variable change �q → �q + �Q is introduced, and

�Q = �αt − �β(1 − t),
(21)�Qα = �Q − �α = (1 − t)�v,

�2 = v2t(1 − t) + a2
f t + α2

k (1 − t). (22)

Furthermore, the addition theorem for regular solid har-
monics [41,42] is given by

Ylf mf (�q + �Qα)

=
lf∑

l
f

1 =0

l
f

1∑
m

f

1 =−l
f

1

(
l
f

1 m
f

1

∣∣lf mf
)
Y

l
f

1 m
f

1
(�q)Y

l
f

2 m
f

2
( �Qα), (23)

where l
f

1 + l
f

2 = lf , m
f

1 + m
f

2 = mf , −l
f

j � m
f

j � l
f

j (j =
1,2), and

(
l
f

1 m
f

1

∣∣lf mf
) =

[
4π

2lf + 1(
2l

f

1 + 1
)(

2l
f

2 + 1
) (lf + mf )!(

l
f

1 + m
f

1

)
!
(
l
f

2 + m
f

2

)
!

(lf − mf )!(
l
f

1 − m
f

1

)
!
(
l
f

2 − m
f

2

)
!

]1/2

. (24)

Employing the relation Y
l
f

2 m
f

2
( �Qα) = Y

l
f

2 m
f

2
[(1 − t)�v ] = (1 −

t)l
f

2 vl
f

2 Y
l
f

2 m
f

2
( �̂v) and choosing the vector �v along the Z axes, the

spherical harmonic Y
l
f

2 m
f

2
( �̂v) will be nonzero only for m

f

2 = 0,

so that Y
l
f

2 m
f

2
( �̂v) =

√
(2l

f

2 + 1)/(4π )δ0,m
f

2
. In such a case, the

sum over m
f

1 in Eq. (23) disappears altogether and, therefore,
this formula is reduced to

Y∗
lf mf (�q + �Qα)

=
√

4π

lf∑
l
f

1 =0

,

l
f

1∑
m

f

1 =−l
f

1

(1 − t)l
f

2 �
(
l
f

1 ,�v)
Y

l
f

1 ,−mf (�q)δ
m

f

1 ,mf

=
√

4π

lf∑
l
f

1 =|mf |
(1 − t)l

f

2 �
(
l
f

1 ,�v)
Y

l
f

1 ,−mf (�q), (25)

where

�
(
l
f

1 ,�v) = (
l
f

1

∣∣lf mf
)
(−1)−mf

vl
f

2
/√

4π, (26)

(
l
f

1

∣∣lf mf
) =

[
2lf + 1(
2l

f

1 + 1
) (lf + mf )!(

l
f

1 + mf
)
!

(lf − mf )!(
l
f

1 − mf
)
!
(
l
f

2 !
)2

]1/2

.

(27)

Under these circumstances, the auxiliary integral U (ν)
k, p from

Eq.(20) can be written in the following form:

U (ν)
k, p = e−i �Qα · �R

lf∑
l
f

1 =|mf |
(1 − t)l

f

2 �
(
l
f

1 ,�v)
W (ν)

k,p, (28)

W (ν)
k,p =

√
4π

∫
d �q e−i �q· �R Y

l
f

1 ,−mf (�q)

(q2 + �2)p+lf +2+ν

= (−i)l
f

1 L(ν)
k,p Yl

f

1 ,−mf ( �R). (29)

In Eq. (29), the partial-wave expansion of the plane wave can
be used:

e−i �q· �R = 4π

∞∑
l=0

l∑
m=−l

(−i)ljl(qR)Y ∗
lm( �̂q)Ylm( �̂R), (30)

together with the formula [11,41]

L(ν)
k,p = (4π )3/2

Rl
f

1

∫ ∞

0
dq

ql
f

1 +2j
l
f

1
(qR)

(q2 + �2)p+lf +2+ν

= 4π5/2 k̂μν−1/2(R�)

2nν nν!�2nν−2l
f

1 −1
, (31)

with

μν = p + lf + 1 + ν − l
f

1 , nν = n − σν, (32)

n = p + lf + 3, σ1 = 1, σ2 = 0, (33)

where jl(x) is the spherical Bessel function [43]. Here, k̂δ(z) is
the reduced Bessel function k̂δ(z) = √

2/πzδKδ(z) and Kδ(z)
is the McDonald function [43].

In this way, the integrals U (ν)
k, p and G(ν)

k, p are transformed to

U (ν)
k, p = 4π5/2

2nν nν!
e−i �Qα · �R

lf∑
l
f

1 =|mf |
(−i)l

f

1 (1 − t)l
f

2

×�
(
l
f

1 ,�v)B
(μν )

l
f

1 ,−mf
( �R�)

�2nν−2l
f

1 −1
, (34)
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G(ν)
k, p = 4π5/2

2nν (nν − 2)!

lf∑
l
f

1 =|mf |
(−i)l

f

1 �
(
l
f

1 ,�v) ∫ 1

0
dt tnν−2

× (1 − t)l
f

2 +1e−i �Qα · �R
B

(μν )

l
f

1 ,−mf
( �R�)

�2nν−2l
f

1 −1
, (35)

where B
(μν )

l
f

1 ,−mf
( �R�) = k̂μν−1/2(R�)Y

l
f

1 ,−mf ( �R) is the so-

called B function [44]. Inserting Eq. (35) into Eq. (16) and
using Eqs. (6) and (7), we have

J (k,l)
ω = D

(k,l)
lf

nr∑
p=0

cp

2n(n − 3)!

lf∑
l
f

1 =|mf |
(−i)l

f

1 �
(
l
f

1 ,�v)

×
∫ 1

0
dt

tn−2(1 − t)l
f

2 +1

�2n−2l
f

1 −1
I

(p,l
f

1 )
w , (36)

where

D
(k,l)
lf

= 64π9/2(−i)l
f

N
ZP
f (ZT + αl)αk, (37)

I
(p,l

f

1 )
R = 4(2π )−3

(ZT + αl)4(n − 2)

∫
d �Re−i �Q· �R

× (vR + �v · �R)iξR−1B
(μ2)

l
f

1 ,−mf
( �R�), (38)

I
(p,l

f

1 )
s1 = 4�2(2π )−3

ZP(ZT + αl)4t

∫
d �R e−i �Q· �R

× (vR + �v · �R)iξB(μ1)

l
f

1 ,−mf
( �R�), (39)

I
(p,l

f

1 )
s2 = (2π )−3

(n − 2)

∫ 1

0
dt1

(1 − t1)

�3
1

∫
d �R e−i �Q· �R(vR + �v · �R)iξ

×B
(μ2)

l
f

1 ,−mf
( �R�)(1 + �1R)e−�1R. (40)

In order to obtain the results for the integrals from Eqs. (38)–
(40), we shall first express the B function in terms of a linear
combination of unnormalized Slater-type orbitals [11,44]:

B
(μν )

l
f

1 ,−mf
( �R�) =

μν−1∑
pr= 0

bμν

pr
�pr χ

(pn)

l
f

1 ,−mf
( �R�), (41)

where

bμν

pr
= (2μν − pr − 2)!2pr+1−μν

(μν − pr − 1)!pr !
, pn = pr + l

f

1 + 1,

(42)

χ
(pn)

l
f

1 ,−mf
( �R�) = Rpn−1e−R�Y

l
f

1 ,−mf ( �̂R). (43)

Next, the Fourier transform of the auxiliary function
χ

(pn,λ)

l
f

1 ,−mf
( �R�τ ) for λ = 0,1,2, as introduced by

χ
(pn,λ)

l
f

1 ,−mf
( �R�τ ) = (vR − �v · �R)iξRλ−1χ

(pn)

l
f

1 ,−mf
( �R�τ )

(τ = 0,2), (44)

�0 ≡ �, �2 = � + �1,

can be calculated, with the result

χ̃
(pn,λ)

l
f

1 ,−mf
( �Q�τ )

= (−1)l
f

1 (2i)l
f

1

2π2

pλ∑
k= 0

l
f

1∑
l1=|mf |

�
kl1

pr l
f

1 τ
(λ)Z

l
f

1 l1
( �Q · �v), (45)

pλ = pr + λ,

where

Z
l
f

1 l1
( �Q · �v) = (

l1|lf1 − mf
)
(−iv)l2Yl1,−mf ( �Q), (46)

(
l1

∣∣lf1 − mf
)=

[
2l

f

1 + 1

(2l1 + 1)

(
l
f

1 + mf
)
!

(l1 + mf )!

(
l
f

1 − mf
)
!

(l1 − mf )!(l2!)2

]1/2

.

(47)

The remaining quantities appearing in Eq. (45) are
defined as

�
kl1

pr l
f

1 τ
(λ) = (

aλ
τ bλ

τ

)
3F2(−kλ/2,−kλ/2 + 1/2,1

− iγ1; k + l
f

1 + 1,−pλ − l
f

1 ; 1/Aτ ), (48)

aλ
τ = (1 + iξ )

(
l
f

1 + 1
)
pλ

(2Dτ )pλ(
�2

τ + Q2
)l

f

1

Fτ , (49)

bλ
τ = (1 + iξ )l1 (−iξ )l2

B
l2
τ

(−pλ)k(iγ2)k(
l
f

1 + 1
)
k

(−1)kCk
τ

k!
, (50)

3F2(−kλ/2,−kλ/2 +1/2,1 − iγ1; k + l
f

1 +1,−pλ −l
f

1 ; 1/Aτ)

=
[kλ/2]∑
u=0

(−kλ/2)u(−kλ/2 + 1/2)u(1 − iγ1)u(
k + l

f

1 + 1
)
u

(−pλ − l
f

1

)
u
u!

(
1

Aτ

)u

,

(51)

where

Aτ = �2
τ

�2
τ + Q2

, Bτ = 2(v�τ − i �Q · �v)

�2
τ + Q2

,

Cτ = v

Bτ�τ

− 1, (52)

Dτ = Aτ

�τ

, Fτ = Biξ
τ

�2
τ + Q2

, (53)

kλ = pλ − k, l1 + l2 = l
f

1 ,

γ1 = −ξ + il1, γ2 = −ξ − il2. (54)

Here, 3F2 is the Clausen generalized hypergeometric polyno-
mial [45] and the symbol [kλ/2] denotes the largest integer
contained in the fraction kλ/2.
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This derivation maps the integrals J (k, l)
ω (ω = R,s1,s2) from Eq. (36) into

J
(k,l)
R = 2D

(k,l)
lf

π2(ZT + αl)4

nr∑
p=0

cp

2n(n − 2)!

lf∑
l
f

1 =|mf |
(−1)l

f

1 2l
f

1 �
(
l
f

1 ,�v)
M(p,l

f

1 )
R , (55)

J (k,l)
s1

= D
(k,l)
lf

π2ZP(ZT + αl)4

nr∑
p=0

cp

2n−1(n − 3)!

lf∑
l
f

1 =|mf |
(−1)l

f

1 2l
f

1 �
(
l
f

1 ,�v)
M(p,l

f

1 )
s1 , (56)

J (k,l)
s2

= D
(k,l)
lf

2π2

nr∑
p=0

cp

2n(n − 2)!

lf∑
l
f

1 =|mf |
(−1)l

f

1 2l
f

1 �
(
l
f

1 ,�v)
M(p,l

f

1 )
s2 , (57)

where

M(p,l
f

1 )
R = (2np)!

np!

np∑
pr=0

(−np)pr

(−2np)pr

2pr−np

pr !

∫ 1

0
dt

tn−2(1 − t)l
f

2 +1

�2n−2l
f

1 −pr−1
G

(pn,0)

l
f

1 ,−mf
( �Q�), (58)

M(p, l
f

1 )
s1 = (2np − 2)!

(np − 1)!

np−1∑
pr= 0

(1 − np)pr

(2 − 2np)pr

2pr−np+1

pr !

∫ 1

0
dt

tn−3(1 − t)l
f

2 +1

�2(n−1)−2l
f

1 −pr−1
G

(pn,1)

l
f

1 ,−mf
( �Q�), (59)

M(p,l
f

1 )
s2 = (2np)!

np!

np∑
pr=0

(−np)pr

(−2np)pr

2pr−np

pr !

∫ 1

0
dt1

(1 − t1)

�3
1

∫ 1

0
dt

tn−2(1 − t)l
f

2 +1

�2n−2l
f

1 −pr−1

[
G

(pn,1)

l
f

1 ,−mf
( �Q�2) + �1G

(pn,2)

l
f

1 ,−mf
( �Q�2)

]
, (60)

G
(pn,λ)

l
f

1 ,−mf
( �Q�τ ) =

pλ∑
k=0

l
f

1∑
l1=|mf |

�
kl1

pr l
f

1 τ
(λ)Z

l
f

1 l1
( �Q · �v), (61)

and np = n − l
f

1 − 1. With these results at hand, the final expression for the transition amplitude reads as

Tif =
∑
k,l

nr∑
p=0

lf∑
l
f

1 =|mf |
Nk,l

cp

2n(n − 3)!
(−1)l

f

1 2l
f

1 �
(
l
f

1 ,�v) {
4

(ZT + αl)4

[
2

n − 2
M(p,l

f

1 )
R − 1

ZP
M(p,l

f

1 )
s1

]
− 1

n − 2
M(p, l

f

1 )
s2

}
, (62)

where

Nk,l = 1

2π2
ZPNk,lD

(k,l)
lf

. (63)

This completes the calculation of the transition amplitude Tif

in terms of the two-dimensional integral over the real variables
t and t1.

C. Cross sections

The total cross section in the CB1-4B method is given
by

Qif (πa2
0) = 1

2π2v2

∫ ∞

0
dη η|Tif |2, (64)

where the angular integration of the orientation of the trans-
verse momentum transfer vector �η is performed analytically.
The remaining triple integration over η, t , and t1 must be
carried out numerically, and this is achieved at present by
means of the Gauss-Legendre quadratures.

III. RESULTS

A. Electron capture from He(1s2) by H+ into any excited
hydrogen state of H(n f l f m f )

The cross sections are computed in the prior version of the
CB1-4B method by using the two-parameter wave function of
Silverman et al. [46] for the ground state of the helium atom:
ϕi(�x1,�x2) = (N/π )(e−α1x1−α2x2 + e−α2x1−α1x2 ), where N−2 =
2[(α1α2)−3 + (α1/2 + α2/2)−6]. Specifically, we will apply
the formulas from Sec. II B to the following near-symmetric
charge-exchange reactions:

p + He −→ H(nf lf mf ) + He+(1s), (65)

Li3+ + He −→ Li2+(nf lf mf ) + He+(1s). (66)

The present state-selective cross sections for reaction (65)
within the energy range 20 � E � 1000 keV are displayed
in Table I as well as Figs. 1–3. The cross sections for
electron capture into the 2s and 2p states are compared with
the available experimental data in Fig. 1, whereas those for
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TABLE I. Cross sections (in cm2) as a function of proton incident energy (in keV) for state-selective capture as well as for capture from
He(1s2) into all the final states of atomic hydrogen according to process (1). The column labeled nf lf mf refers to the state-selective (or partial)
cross sections Qnf lf mf and Qnf lf for reaction (65). The row denoted “Total” represents the cross sections summed over all the bound states of
the H(nf lf mf ) atom by using Eq. (67). The notation X[−N ] implies X × 10−N .

E (keV)

nf lf mf 20 30 50 75 100 150

100 4.21[−16] 2.45[−16] 1.02[−16] 4.24[−17] 2.06[−17] 6.49[−18]
200 2.24[−17] 1.81[−17] 1.05[−17] 5.10[−18] 2.65[−18] 8.71[−19]
210 3.75[−17] 1.98[−17] 7.64[−18] 2.94[−18] 1.29[−18] 3.25[−19]
211 1.52[−18] 9.31[−19] 5.29[−19] 2.54[−19] 1.23[−19] 3.38[−20]
2p 4.05[−17] 2.17[−17] 8.70[−18] 3.45[−18] 1.53[−18] 3.93[−19]
300 5.55[−18] 4.73[−18] 2.94[−18] 1.49[−18] 7.87[−19] 2.61[−19]
310 1.09[−17] 6.08[−18] 2.46[−18] 9.84[−19] 4.40[−19] 1.13[−19]
311 4.35[−19] 2.63[−19] 1.57[−19] 8.02[−20] 4.01[−20] 1.14[−20]
3p 1.18[−17] 6.61[−18] 2.78[−18] 1.14[−18] 5.20[−19] 1.36[−19]
320 1.03[−18] 5.41[−19] 1.76[−19] 5.81[−20] 2.27[−20] 4.69[−21]
321 9.24[−20] 4.56[−20] 2.07[−20] 9.55[−21] 4.35[−21] 1.02[−21]
322 5.07[−21] 2.76[−21] 1.76[−21] 9.18[−22] 4.34[−22] 1.05[−22]
3d 1.23[−18] 6.38[−19] 2.21[−19] 7.90[−20] 3.22[−20] 6.94[−21]
400 2.20[−18] 1.91[−18] 1.22[−18] 6.27[−19] 3.32[−19] 1.11[−19]
410 4.56[−18] 2.58[−18] 1.06[−18] 4.30[−19] 1.94[−19] 5.02[−20]
411 1.81[−19] 1.09[−19] 6.59[−20] 3.43[−20] 1.74[−20] 4.98[−21]
4p 4.92[−18] 2.79[−18] 1.19[−18] 4.99[−19] 2.29[−19] 6.02[−20]
420 5.65[−19] 3.05[−19] 1.01[−19] 3.39[−20] 1.34[−20] 2.79[−21]
421 5.06[−20] 2.53[−20] 1.16[−20] 5.44[−21] 2.51[−21] 6.00[−22]
422 2.77[−21] 1.50[−21] 9.59[−22] 5.15[−22] 2.48[−22] 6.08[−23]
4d 6.72[−19] 3.59[−19] 1.26[−19] 4.58[−20] 1.89[−20] 4.11[−21]
430 1.32[−20] 7.15[−21] 2.05[−21] 5.91[−22] 2.08[−22] 3.56[−23]
431 2.13[−21] 1.02[−21] 3.63[−22] 1.52[−22] 6.39[−23] 1.26[−23]
432 2.38[−22] 1.14[−22] 5.75[−23] 2.89[−23] 1.29[−23] 2.63[−24]
433 1.30[−23] 6.58[−24] 4.31[−24] 2.32[−24] 1.05[−24] 2.16[−25]
4f 1.80[−20] 9.44[−21] 2.90[−21] 9.57[−22] 3.63[−22] 6.66[−23]
Total 5.23[−16] 3.10[−16] 1.34[−16] 5.67[−17] 2.76[−17] 8.60[−18]

200 300 500 750 1000

100 2.59[−18] 6.16[−19] 8.05[−20] 1.34[−20] 3.45[−21]
200 3.51[−19] 8.39[−20] 1.09[−20] 1.79[−21] 4.56[−22]
210 1.06[−19] 1.82[−20] 1.49[−21] 1.66[−22] 3.18[−23]
211 1.14[−20] 2.03[−21] 1.68[−22] 1.88[−23] 3.59[−24]
2p 1.29[−19] 2.23[−20] 1.83[−21] 2.04[−22] 3.89[−23]
300 1.06[−19] 2.53[−20] 3.27[−21] 5.37[−22] 1.36[−22]
310 3.73[−20] 6.43[−21] 5.28[−22] 5.88[−23] 1.12[−23]
311 3.91[−21] 7.02[−22] 5.88[−23] 6.60[−24] 1.26[−24]
3p 4.51[−20] 7.84[−21] 6.45[−22] 7.20[−23] 1.38[−23]
320 1.29[−21] 1.70[−22] 9.42[−24] 7.47[−25] 1.10[−25]
321 2.97[−22] 4.06[−23] 2.30[−24] 1.82[−25] 2.68[−26]
322 3.04[−23] 4.09[−24] 2.23 [−25] 1.71[−26] 2.46[−27]
3d 1.95[−21] 2.59[−22] 1.45[−23] 1.15[−24] 1.69[−25]
400 4.49[−20] 1.07[−20] 1.38[−21] 2.27[−22] 5,79[−23]
410 1.66[−20] 2.87[−21] 2.35[−22] 2.63[−23] 5.01[−24]
411 1.72[−21] 3.11[−22] 2.61[−23] 2.93[−24] 5.61[−25]
4p 2.00[−20] 3.49[−21] 2.88[−22] 3.21[−23] 6.13[−24]
420 7.73[−22] 1.02[−22] 5.66[−24] 4.49[−25] 6.64[−26]
421 1.76[−22] 2.41[−23] 1.37[−24] 1.09[−25] 1.61[−26]
422 1.79[−23] 2.42[−24] 1.33[−25] 1.02[−26] 1.47[−27]
4d 1.16[−21] 1.55[−22] 8.68[−24] 6.88[−25] 1.01[−25]
430 8.36[−24] 8.43[−25] 3.21[−26] 1.83[−27] 2.11[−28]
431 3.13[−24] 3.27[−25] 1.26[−26] 7.17[−28] 8.18[−29]
432 6.56[−25] 6.83[−26] 2.56[−27] 1.41[−28] 1.57[−29]
433 5.37[−26] 5.49 [−27] 1.99[−28] 1.06[−29] 1.16[−30]
4f 1.60[−23] 1.65[−24] 6.30[−26] 3.57[−27] 4.09[−28]
Total 3.39[−18] 7.92[−19] 1.01[−19] 1.67[−20] 4.26[−21]
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FIG. 1. State-selective cross sections Q2s and Q2p for electron
capture by protons from He(1s2). The curves represent the theoretical
results obtained using the CB1-4B method (present computations).
Experimental data: �, (Q2s ,Q2p) Cline et al. [47]; �, (Q2s ,Q2p)
Hughes et al. [48]; �, (Q2p) Hippler et al. [49]; and �, (Q2p) Hippler
et al. [50]. Both the theoretical and experimental results for Q2p are
divided by 10.

capture into 3s, 3p, and 3d states are depicted in Fig. 2. In
Fig. 3, in addition to capture into the H(4s) state, in which case
the experimental data exist, we also show, for completeness,

FIG. 2. State-selective cross sections Q3s ,Q3p , and Q3d for
electron capture by protons from He(1s2). The curves represent the
theoretical results using the CB1-4B method (present computations).
Experimental data: �, (Q3s) Conrads et al. [51], ◦, (Q3s) Cline et al.
[47]; �, (Q3s ,Q3p,Q3d ) Ford and Thomas [52]; �, (Q3s ,Q3p,Q3d )
Brower and Pipkin [53]; �, (Q3p,Q3d ) Cline et al. [54]; and •,
Edwards and Thomas [55]. Both the theoretical and experimental
results for Q3p and Q3d are divided by 10 and 1000, respectively.

FIG. 3. State-selective cross sections Q4s , Q4p , Q4d , and Q4f

for electron capture by protons from He(1s2). The curves represent
the theoretical results obtained using the CB1-4B method (present
computations). Experimental data: �, (Q4s) Doughty et al. [56]; �,
(Q4s) Brower et al. [53]; and ◦, (Q4s) Hughes et al. [57]. Theoretical
results for Q4p are divided by 10, whereas those for Q4d and Q4f are
divided by 100.

the computed cross sections describing the formation of the
H(4p), H(4d), and H(4f ) states. It can be seen from Figs. 1–3
that the present results for capture into the H(2s), H(3s), and
H(4s) states systematically exhibit excellent agreement at all
energies above 60 keV. A comparison of results of the CB1-4B
method with the measurements for capture into H(2p) and
H(3p) shows that the theoretical curves slightly overestimate
the experimental data. Nevertheless, it is clear that the CB1-4B
theory converges towards the experimental data as the impact
energy increases, i.e., within the main region of the anticipated
validity of this method. The theoretical results for capture
into H(3d) overestimate the experimental data at lower impact
energies, but for higher energies the CB1-4B method is in a
fairly good agreement with the measurements.

The total cross sections Qtot for capture summed over the
final states of atomic hydrogen according to the Oppenheimer
(nf )−3 scaling law,

Qtot 
 Q1 + Q2 + Q3 + 2.561 24Q4, (67)

where

Qnf =
nf −1∑
lf =0

Qnf lf , Qnf lf =
+lf∑

mf =−lf

Qnf lf mf , (68)

are shown in Fig. 4 alongside experimental data from a number
of measurements. The total cross sections of the CB1-4B
approximation are seen to be in very good agreement with
all the available measurements in an energy range which
remarkably covers nearly three orders of magnitude.

The employed Oppenheimer (nf )−3 scaling law was
originally introduced within the OBK1 approximation [18].
However, this practical procedure is not limited to the OBK1
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FIG. 4. Total cross sections for electron capture into all the
final states H(�) from the ground state of helium by protons:
p + He(1S) −→ H(�) + He+(1s). The full curve shows the results
for Qtot 
 Q1 + Q2 + Q3 + 2.561 24Q4 that are from the present
computations by means of the CB1-4B approximation. The dashed
curve represents Q1s ≡ Q1 from the CB1-4B method. Experimental
data: �, Shah et al. [58]; �, Schryber [59]; ◦, Shah and Gilbody [60];
�, Horsdal-Pedersen et al. [61]; ♦, Berkner et al. [62]; �, Williams
[63]; �, Martin et al. [64]; and •, Welsh et al. [65].

model alone. Namely, a number of related studies [10,11,13]
have indicated that the Oppenheimer rule is also valid in the
CB1-3B approximation. Moreover, this is further confirmed
by the present computations using the CB1-4B method.
Specifically, our computations were stopped when the total
cross sections Qtot became insensitive to the inclusion of more
partial cross sections Qnf . This was the case with nf = 4, as
illustrated in Table II for four impact energies: 20, 100, 1000,
and 10 000 keV. As can be seen from Table II, inclusion of
the higher partial cross sections Q5 and Q6 does not influence
Qtot which is computed explicitly for nf � 4 and augmented
by the Oppenheimer sum for all the higher excited states. It
should be noted that Melezhik et al. [66] have also found
it useful to employ the Oppenheimer procedure for studying
the convergence properties of the quantum time-dependent

TABLE II. Cross sections (in cm2) for the p-He col-
lisions (1). The Qtot(�4) are calculated by means of
Eq. (67), whereas Qtot(�5) = Q1 + Q2 + Q3 + Q4 + 3.0493Q5

and Qtot(�6) = Q1 + Q2 + Q3 + Q4 + Q5 + 3.5412Q6. Notation
X[−N ] implies X × 10−N .

E(keV) 20 100 1000 10000

Q4 7.80[−18] 5.80[−19] 6.41[−23] 1.99[−28]
Qtot(�4) 5.23[−16] 2.76[−17] 4.26[−21] 1.62[−26]

Q5 3.99[−18] 3.01[−19] 3.27[−23] 9.89[−29]
Qtot(�5) 5.23[−16] 2.76[−17] 4.26[−21] 1.62[−26]

Q6 2.30[−18] 1.75[−19] 1.89[−23] 5.74[−29]
Qtot(�6) 5.23[−16] 2.76[−17] 4.26[−21] 1.62[−26]

approach with semiclassical trajectories for stripping
processes (including ionization and electron transfer) as well
as for excitation in collisions between helium and protons.

The existing experimental data for Qnf lf are not directly
related to process (65), but instead correspond to p + He −→
H(nf lf ) + [He+], where the square brackets indicate that no
information is available on the postcollisional state of the He+
ion. This means that for a strict comparison with measure-
ments, theories must allow for all possible contributions arising
from transitions of the noncaptured electron in the He+ ion.
Earlier computations [67] in the framework of the first Born
approximation have shown that the inclusion of the excited
states of He+ does not increase the capture cross sections by
more than 5%. The present results support these estimates,
indicating that Q2s > Q2p0 , Q3s > Q3p0 , and Q4s > Q4p0 at
energies E � 50 keV, as well as Q2p0 > Q2p±1 , Q3p0 > Q3p±1 ,
and Q4p0 > Q4p±1 at all the considered energies. All the
shown theoretical cross sections are for total cross sections, but
our general program developed for the reported computation
can also provide differential cross sections for the cases
when ZP = 1 or ZT = 2. It would also be very important to
extend the CB1-4B method to encompass the excited states
of the residual hydrogenic ion, which is the remainder of the
target. This could help clarify the existing huge disagreement
between experiment and a four-body distorted-wave theory
for simultaneous charge exchange and target excitation in
proton-helium collisions at intermediate impact energies [39].
Recently, differential cross sections were reported for elec-
tron transfer in proton-helium collisions at 630, 1000, and
1200 keV with a sufficient resolution to distinguish certain
final electronic states [68]. These results were obtained by
means of the cold-target recoil-ion momentum spectroscopy
technique (COLTRIMS) and a spectrometer optimized for high
momentum resolution. Specifically, the COLTRIMS technique
can measure the recoil-ion momentum in coincidence with
the charge state of the projectile ion in the exit collisional
channel. These coincidences were utilized to separate various
capture channels, while the recoil-ion momentum was used to
obtain the energy defect or the earlier mentioned Q value and
the angular distributions. Such Q values were subsequently
employed to identify the populated states of these channels and
the angular distributions that helped identify the capture mech-
anisms. At the projectile energies 630, 1000, and 1200 keV,
this experiment [68] revealed that for the electronic states of
the single-capture process p + He → H (n) + He+(n′), with
simultaneous target excitation (n = 1,n′ � 2), the branching
ratio was 3.9%, 4.7%, and 5.2%, respectively. Conclusions of
this type have also been reached by Alessi et al. [69–71] in
their similar recent measurements using the same COLTRIMS
technique.

B. Electron capture from He(1s2) by Li3+ into any excited
hydrogenlike state of Li2+(n f l f m f )

Along the lines of Sec. III A and using the same formulas
from Sec. II B, we shall also examine electron capture from
He(1s2) by Li3+ in the energy range from 50 to 5000 keV/amu.
The obtained results are shown in Fig. 5. The present cross
sections from the CB1-4B method are in excellent agreement
with the measurements [60,72–74]. In the same figure, the
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FIG. 5. Total cross sections for electron capture into all the
final states Li2+(�) from the ground state of helium by Li3+ ions:
Li3+ + He(1S) −→ Li2+(�) + He+(1s). The full curve shows the
results for Qtot 
 Q1 + Q2 + Q3 + 2.561 24Q4 that are presently
computed by means of the CB1-4B approximation. The dashed curve
represents Q1s ≡ Q1 from the CB1-4B method. Experimental data: ,
Shah and Gilbody [60]; •, Woitke et al. [72]; ◦, Sant’Anna et al. [73];
and �, Dmitriev et al. [74].

cross sections for capture into the 1s state are depicted. As
expected, the contribution from the excited states is more
significant at lower than at higher impact energies.

C. Relevance of the present methodology
to interdisciplinary applications

The formalism of the present work can find useful ap-
plications in particle transport physics for computations of
energy losses of heavy ions during their passage through
matter, as needed in, e.g., fusion research and radiotherapy for
cancer treatment [27]. For example, in therapy by energetic
light ions, the present general results with the Slater-type
orbitals can be extended to encompass electron capture from
molecular targets to further the recent generalization of the
CB1 method to tissuelike targets, such as water [75–78].
Detailed stochastic simulations of energy losses of ions during
their passage through matter, including tissue and tissuelike
media, is customarily carried out by various Monte Carlo
(MC) codes, as discussed in, e.g., Refs. [27,79,80]. Every
MC code requires the input cross sections for binary atomic
and nuclear collisions. Moreover, the overall trust in and
adequacy of the MC simulations depend critically on the
accuracy and reliability of these input cross sections. Once
equipped with the input cross sections, the existing MC codes
can begin to produce the sought event histograms through
statistical assessments of energy losses of the given incident,
primary particles as well as their secondaries and tertiaries
and particles of high-order generation. The MC simulations
effectively approximate true transport of ions through matter.
Here, the prescribed event threshold for discriminating among

various channels is used to predict whether the interaction at a
considered point in space for the available energy would lead
to nuclear transmutations or other types of nuclear reaction or
to atomic transitions (excitation, electron capture, ionization,
or other atomic processes) through which energy loss of
all the involved particles could occur. In MC algorithms,
specific particle interactions could be examined through, e.g.,
the ratios of various input cross sections. Evidently, there
cannot be any substantial progress in studying ion transport
phenomena by MC modeling without heavy reliance upon
the most accurate databases for cross sections. These should
preferentially come from first-principle theories for atomic
and nuclear collisions that determine the stopping powers for
ions in their penetration through matter. Hence, an important
improvement in theoretical descriptions of the traversal of
fast heavy ions through matter would be to incorporate the
cross sections and stopping powers from the pertinent atomic
collisions into all the existing MC codes. The most relevant part
in these energy loss simulations, where the methodology from
the present study would be of direct use, is the contribution
to the databases for electron capture into excited states by
multiply charged ions. Capture cross sections attain their
maxima near the Massey resonance condition ZP ≈ nf , such
that for higher nuclear charges ZP of the projectile, the major
contribution stems from excited states with larger values of the
principal quantum number nf . Such collisional events with
excited-state capture become very important when the fast,
multiply charged ions from the entrance to the medium slow
down considerably near the Bragg peak, at which location
the major energy is deposited, yielding the main biological
effect on the irradiated tissue. Hence, in addition to ionization
and excitation, near the end of the ions’ paths (the so-called
range), electron capture and electron loss become competitive
channels for energy deposition in the traversed matter. Prior
to reaching their range in the immediate vicinity of the Bragg
peak, ions readily capture electrons, only to promptly lose
them via electron loss processes. Before being eventually
brought to rest, such conversions from partially or fully
dressed ions to partially or completely stripped projectiles
occur literally thousands of times close to the Bragg peak.
Such pre-equilibrium phenomena are capable of significantly
altering the overall energy balance and energy losses of
radiotherapeutic ions in tissue. For this special application,
it is important to have reliable databases for excited-state
electron capture involving light-ion projectiles (ZP � 8) that
are currently used in hospital-based accelerator facilities in
several countries worldwide [27]. The corrected first Born
approximation from the present work would adequately deal
with this particular need. The same theoretical databases are
also necessary for evaluation of the overall energy balance in
processes involving charge exchange studied within plasma
physics, astrophysics, and fusion research. For instance,
one of the major obstacles to ion plasma stability is ion
neutralization through electron capture. To remove such causes
of instability, one needs to eliminate substances from the ion
plasma environment that have the largest cross section for
charge exchange, which predominantly occurs into excited
states for multiply charged ions. Here too the present general
program for the CB1-4B method can come to the rescue. It
is important that the remarkable computational efficiency of
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our program with triple quadratures for total cross sections
is of great relevance for the said MC simulations that need
fast sampling from the supplied cross-section expressions.
This is in sharp contrast to the corresponding ten-dimensional
numerical integrations from the four-body distorted-wave
method from Refs. [29,38,39].

IV. CONCLUSIONS

The high-energy four-body first Born approximation with
the correct boundary conditions (CB1-4B) is a consistently
designed first-order perturbation theory for charge exchange,
starting from the basic principles of atomic scattering [31,32].
Here, the word “consistent” implies that the unperturbed
channel states and the perturbing potentials are determined
in accordance with the Coulomb boundary conditions for
two charged aggregates, which are widely separated [31,32].
Previous examinations in this method were limited exclusively
to the ground state of the captured electron {nf ,lf ,mf } =
{1,0,0}. Considering single-electron capture from heliumlike
targets by bare projectiles, the present study goes beyond
such restrictions and extends the computational feasibility
of the CB1-4B method to any possible triple of the final-
state hydrogenlike quantum numbers {nf ,lf ,mf }. With this
goal, we have carried out an analytical reduction of the
original nine-dimensional integral for the transition amplitude
to a straightforward and efficient two-dimensional numerical
quadrature over real variables that are left after the Feynman
parametrization of the usual two denominators encountered
in the momentum-space analysis. No further integration is
needed for differential cross sections. Total cross sections
necessitate an additional numerical quadrature over the trans-
verse component of the momentum transfer.

A general computer program was written based on the ob-
tained semianalytical expressions for arbitrary nuclear charges
of the completely stripped projectile and two-electron atomic
or ionic targets. This program is presently used to compute total
cross sections for electron capture into the atomic hydrogen
states H(nf lf ) by fast protons from helium. The theoretical
results obtained are compared with the related experimental
data that are available for several state-selective transitions, as
well as for electron capture into all the final states H(�). It
is observed that the CB1-4B method systematically predicts
very well the corresponding findings from measurements. The
same method is also applied to single-charge exchange in
fast collisions of Li3+ ions with helium, and the ensuing
total cross sections are reported to agree very well with
experimental data in a wide range of impact energies. This is
encouraging and it motivates a further extension of the CB1-4B

method to two-electron transitions with simultaneous electron
capture and excitation of the remaining hydrogenlike target in
proton-helium collisions. Such a generalization is particularly
needed in light of the current discrepancy between experiments
and a four-body distorted-wave method.
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APPENDIX

For completeness and definiteness regarding different ex-
isting phase conventions, the complex-valued spherical har-
monics used in the derivation in the main text are of the same
form as in Ref. [11]: Yl,m(θ,φ) = Pl,m(cos θ )�m(φ), where
�m(φ) = eimφ/

√
2π. Here, Plm is the associated normalized

Legendre function of the first kind:

Pl,m(z) = (−1)m
√

2l + 1

2

(l − m)!

(l + m)!
(1 − z2)m/2

×
(

d

dz

)l+m (z2 − 1)l

2l l!
, (A1)

with the magnetic quantum number symmetry Pl,−m(z) =
(−1)mPl,m(z) and Yl,−m(z) = (−1)mY ∗

l,m(z). The right-hand
side of Eq. (A1) is well defined for l + m � 0, i.e., m � −l.
Therefore, Eq. (A1) holds true for both positive and negative
values of m where −l � m � l.

The associated normalized Legendre function of the first
kind can be expressed via the associated Legendre function
Pl,m(z) = (1 − z2)m/2 (d/dz)l+m [(z2 − 1)l/2l l!]:

Pl,m(z) = (−1)m
√

2l + 1

2

(l − m)!

(l + m)!
Pl,m(z). (A2)

These definitions of polynomials Pl,m and Pl,m are valid for
zero, positive, and negative integer values of m, where |m| � l.
Moreover, the polynomials Pl,−m and Pl,m, which satisfy the
same differential equation, differ only by a constant multiplier
through the relationship [43]

Pl,−m(z) = (−1)m
(l − m)!

(l + m)!
Pl,m(z). (A3)
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[15] Dž. Belkić and I. Mančev, Phys. Scr. 42, 285 (1990).
[16] J. D. Jackson and H. Schiff, Phys. Rev. 89, 359 (1953).
[17] J. R. Oppenheimer, Phys. Rev. 31, 349 (1928).
[18] H. C. Brinkman and H. A. Kramers, Proc. K. Ned. Akad. Wet.

33, 973 (1930).
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