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Abstract

Introduction: The major climatic oscillations during the Quaternary Ice Age heavily influenced the distribution
of species and left their mark on intraspecific genetic diversity. Past range shifts can be reconstructed with the aid
of species distribution modeling and phylogeographical analyses. We test the responses of the different members
of the genus Triturus (i.e. the marbled and crested newts) as the climate shifted from the previous glacial period
(the Last Glacial Maximum, ~21 Ka) to the current interglacial.

Results: We present the results of a dense mitochondrial DNA phylogeography (visualizing genetic diversity within
and divergence among populations) and species distribution modeling (using two different climate simulations) for
the nine Triturus species on composite maps.

Conclusions: The combined use of species distribution modeling and mitochondrial phylogeography provides insight
in the glacial contraction and postglacial expansion of Triturus. The combined use of the two independent techniques
yields a more complete understanding of the historical biogeography of Triturus than both approaches would on their
own. Triturus newts generally conform to the ‘southern richness and northern purity’ paradigm, but we also find more
intricate patterns, such as the absence of genetic variation and suitable area at the Last Glacial Maximum (T. dobrogicus),
an ‘extra-Mediterranean’ refugium in the Carpathian Basin (T. cristatus), and areas where species displaced one another
postglacially (e.g. T. macedonicus and western T. karelinii). We provide a biogeographical scenario for Triturus, showing
the positions of glacial refugia, the regions that were postglacially colonized and the areas where species displaced one
another as they shifted their ranges.
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Introduction
The Quaternary Ice Age (~2.59 Ma-present) is associ-
ated with large climatic oscillations [1-4]. Long, cold and
dry glacial cycles are alternated by relatively short, warm
and wet interglacials. The transition between the two
takes place in a geological blink of an eye [5,6]. The
climatic oscillations have a major impact on species
distribution patterns [1]. Generally, impacts of glacial cycles
are more extreme further away from the equator (and at
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higher elevations): areas at a higher latitude (and eleva-
tion) become inhospitable, whereas climate at a lower
latitude (and elevation) remains habitable [1,7]. Popula-
tions at higher latitude may cope with climate change
in situ, through adaptation or phenotypic plasticity, or
alternatively they may track suitable habitat [6,8].
However, a more likely outcome is that such popula-
tions go extinct [8-10]. At lower latitudes, populations
can endure glacial periods relatively unimpaired, in so
called glacial refugia [2,10,11]. During subsequent in-
terglacials, species can reclaim their former distribution,
by rapidly recolonizing the large tracts of still uninha-
bited, but freshly habitable land from glacial refugia [1].
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Table 1 Systematics of the genus Triturus

Species Authority

Marbled newts

Triturus marmoratus (Latreille, 1800)

Triturus pygmaeus (Wolterstorff, 1905)

Crested newts

Triturus cristatus (Laurenti, 1768)

Triturus carnifex (Laurenti, 1768)

Triturus macedonicus (Karaman, 1922)

Triturus dobrogicus (Kiritzescu, 1903)

Triturus karelinii * (Strauch, 1870)

eastern species

central species

western species

*The taxon traditionally referred to as T. karelinii actually comprises three
distinct species for which the taxonomy still has to be worked out fully [22,23].
For now these three species are referred to as the western, central and eastern
T. karelinii species.
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The fluctuating climate during the Quaternary has left
its mark on patterns of genetic diversity [1-3,5,12]. Po-
pulations persisting in glacial refugia have a relatively
long and stable demographical history compared to those
in areas claimed postglacially. As a result, populations in
glacial refugia are characterized by high levels of genetic
diversity, whereas populations established after the most
recent glacial cycle typically show little genetic variation.
This is the concept – devised from a northern hemisphere
perspective – of ‘southern richness and northern purity’
[1]. Furthermore, species displacement after postglacial
secondary contact regularly coincides with introgression of
genetic material (especially of cytoplasmic DNA) [12,13].
By uncovering the spatial structuring of genetic line-
ages between glacial refugia and along recolonization
routes, and by detecting mismatches between genetic
markers and species boundaries, phylogeographical
surveys provide insights in past distribution rearrange-
ment [9].
Independent from genetics, species distribution mo-

deling can be applied to answer historical biogeographical
questions [14]. Species distribution modeling involves the
approximation of the ecological requirements of a species,
based on the range of environmental conditions experi-
enced at known localities [15]. The constructed model can
then be extrapolated on current climate layers, to deter-
mine the species’ potential distribution. Similarly, the
model can be projected on climatological reconstructions
of the past. Niches evolve over time, questioning the
validity of predicting past distributions based on present
day models. However, considering the relatively short
time period spanning the shift from the last glacial
cycle to the present day, niche conservatism is a realis-
tic assumption [16,17]. Comparison of present and past
potential distribution provides information on range
shifts.
The distribution of amphibians is tightly linked to

environmental conditions and thus has to follow suit in
the face of rapid climate change [18-21]. The marbled
and crested newts (genus Triturus) are a group of nine
closely related species [22,23] (Table 1). Triturus newts
are distributed across most of Europe and adjacent Asia
(Figure 1). They are found in regions generally regarded
as important glacial refugia, such as the Iberian, Italian
and Balkan Peninsulas, Anatolia, Caucasia and the
southern Caspian basis [3,9,10]. On the other hand,
Triturus newts occupy large tracts of land which would
have been uninhabitable during glacial periods, particu-
larly temperate Eurasia [24]. Thus, within this single
model system, we expect to observe varying responses to
glaciation.
We first conduct a dense phylogeographical survey:

employing mitochondrial DNA, we determine geographical
genetic structuring (i.e. diversity within and divergence
among populations) for each of the different Triturus
species. We also delineate areas where mitochondrial DNA
has been asymmetrically introgressed. Subsequently, we ap-
proximate the distributions of the different Triturus species
at the Last Glacial Maximum (~21Ka) using species distri-
bution modeling. The outcome of the two independent
approaches is visualized on composite maps, which show
the nine different species side by side. Our hypothesis is
that those areas predicted suitable at the Last Glacial Max-
imum based on species distribution models are also the
ones showing the highest genetic diversity. Vice versa, we
expect areas suggested to have been unsuitable at the time
are genetically depleted. We summarize the signatures of
past distribution dynamics as inferred from mitochondrial
DNA phylogeography and species distribution modeling on
a map.

Methods
Genetic approach
Generally the identification of Triturus newts is straight-
forward based on geography (Figure 1). For individuals
occurring near the contact zone more care should be
taken. The Triturus individuals included were in the first
place identified based on morphology [26,27] and for a
subset nuclear genetic data confirming their identity [23]
(Arntzen et al., submitted; Wielstra et al., unpublished
data).
We included genetic data (658 bp of subunit 4 of the

NADH dehydrogenase gene complex; ND4) for 2470
Triturus newts, representing 493 populations (Figure 2
and Additional file 1). A large proportion of these indi-
viduals (n = 1795) was taken from previous studies (pub-
lished [25,28-32] or submitted [Arntzen et al.]; see
Additional file 1 for details). The remainder (n = 675)



Figure 1 The distribution of the genus Triturus. Species mostly meet at parapatric contact zones, but note the area of sympatry of T.
marmoratus and T. cristatus in western and central France. This map is adapted from [25].
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was newly sequenced for the current paper, using the
primers in Table 2 and following the protocol outlined
in [33]. Sequences were manually aligned and identical
ones merged into haplotypes using MacClade 4.08 [34].
Our purpose was 1) to test for mitochondrial DNA
introgression between species, and 2) to infer the spatial
genetic variation within each species.
To detect which individuals retain their ‘original’

mitochondrial DNA and which possess introgressed
mitochondrial DNA (derived from one of the other spe-
cies), we first assigned mitochondrial DNA haplotypes to
species by conducting a Neighbor Joining analysis in
MEGA 5.05 [35]. Calotriton asper was used as outgroup
(sequence taken from [28]; GenBank accession number:
GU982378).
To infer interspecific geographical structuring, we first

excluded introgressed mitochondrial DNA (as it does
not properly reflect the evolutionary history of either
‘host’ or ‘donor’). Subsequently, we determined – for
each species – 1) the genetic diversity within populations
and 2) the genetic distance among populations. The
mean number of pairwise differences among haplotypes
(π), as determined with Arlequin 3.5 [36], was used as a
measure of genetic diversity within populations. To de-
termine the genetic distance among populations we used
Alleles in Space 1.0 [37]. Alleles in Space connects the
populations in a network, based on Delaunay triangula-
tion. Subsequently, the program produces values of
average genetic distance among the populations that are
connected by the network (the proportion of mismatched
nucleotide sites; Zi). These values are positioned at the mid-
points of the connections in the network. For the measure
of genetic diversity within populations we only included
populations for which more than one sequence was avai-
lable (π will always be zero for populations with only one
sequence).
We interpolated the values for π and Zi across geo-

graphical space using inverse distance weighting in the
spatial analyst extension of ArcGIS (www.esri.com) [38].
The output for each species was cropped according to
its distribution range (Figure 1). For both π and Zi, we
compiled a single composite map from the nine crops
(i.e. one for each Triturus species). We used a color
scheme running from blue to red to reflect low to high
values of π and Zi. Using a single scale for all Triturus
species facilitates comparison among them, but runs
the risk that variation in genetically poor species is
overshadowed by that of genetically rich species.
Hence, we additionally apply a species specific scale
to better express intraspecific structuring. This way

http://www.esri.com/


Figure 2 Maps showing the Triturus localities used for the mitochondrial DNA phylogeography and species distribution modeling. The
inset shows part of the localities used in the genetic analyses (white circles) and the additional ones used for species distribution modeling (black
circles). Two cut-outs (A and B) show more details on introgressed mitochondrial DNA: populations containing foreign mitochondrial DNA are
labeled with a colored star (with the color denoting the ‘donor’ species) and populations containing two mitochondrial DNA types (of which one
mostly, but not exclusively, is of the original species) as a black star; populations containing original mitochondrial DNA are again labeled with
white circles. The colors used correspond to Figure 1. Details on localities can be found in Dataset S1 and S2.
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we managed to visualize 1) regions of relatively high
and low intraspecific genetic diversity and 2) the
relative genetic divergence among populations within
species.

Species distribution modeling approach
We composed a database of 4532 Triturus localities
(incorporating the 493 populations included in the
genetic analysis; see Figure 2 and Additional file 2). This
database is based on [39] and updated in the light of the
taxonomic developments [23] (see Table 1). For most spe-
cies the majority of localities concern accurate locations,
but in particularly for the wide ranging T. cristatus we
mostly only had the name of the nearest village of a lo-
cality or digitized atlas data to our disposal. Species dis-
tribution models are still expected to perform relatively
accurately if spatial error in localities is introduced and
the method we use (Maxent, see below) is robust
against such errors [40]. We used the bioclimatic vari-
ables available at a 2.5 arcminute resolution (c. 5 ×
5 km) from the WorldClim database version 1.4 [41] to
calibrate our species distribution models. In order to
prevent model overfitting, which would negatively influ-
ence transferability [16,42], we minimized multicolinearity



Table 2 Primers used for amplification and sequencing of
the ND4 mitochondrial DNA fragment

Species or groups of species with their forward
and reverse primers

Source

T. marmoratus

MARF1: CACCTGTGATTACCTAAAGCTCATGTAGAAGC This study

ND4R2: CCCTGAAATAAGAGAGGGTTTAA [33]

T. pygmaeus

PYGF1: CACCTCTGATTGCCTAAAGCCCACGTAGAGGC This study

ND4R2: CCCTGAAATAAGAGAGGGTTTAA [33]

T. karelinii group of crested newts

KARF4: AGCGCCTGTCGCCGGGTCAATA [33]

KARR1: AACTCTTCTTGGTGCGTAG [33]

Other crested newts

KARF4: AGCGCCTGTCGCCGGGTCAATA [33]

DOBR2: GTGTTTCATAACTCTTCTTGGT [33]
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among data layers by selecting a subset that showed a
Pearson’s correlation of r < 0.7. Furthermore, focusing on
climate layers that are deemed biologically meaningful
based on life history knowledge of the model system yields
the most appropriate species distribution models [43]. Vari-
ation in the availability of standing water during the breed-
ing season appears to have driven the ecological radiation
among Triturus newts [25]. Taking these two points into
consideration, we included a set of layers that encompasses
seasonal variation in evaporation and precipitation, in casu
bio10 =mean temperature of warmest quarter, bio11 =
mean temperature of coldest quarter, bio15 = precipitation
seasonality, bio16 = precipitation of wettest quarter,
and bio17 = precipitation of driest quarter. Bioclimatic
variables are also available from the WorldClim data-
base for the Last Glacial Maximum (~21 Ka). These
data are derived from the Paleoclimate Modelling
Intercomparison Project phase 2 [44]; [http://pmip2.
lsce.ipsl.fr/] and based on two climate simulations: the
Model for Interdisciplinary Research on Climate version
3.2 (MIROC) and the Community Climate System
Model version 3 (CCSM) [45].
Species distribution models were created with Maxent

3.3.3 k [46]. We restricted the feature type to hinge
features as this produces smoother model fits, so forcing
models to be focused on key trends rather than potential
idiosyncrasy in the data. This approach facilitates ex-
trapolation to a different time (or place) [47]. The envir-
onmental range covered by the pseudo-absence data,
used to discriminate presence data from background,
should neither be too narrow nor too broad [48-50].
Too narrow a range results in complex models that do
not generalize well, whereas too broad a range results in
too simple models that focus on coarse-scale and neglect
fine-scale variation. A practical solution is to focus on
area that is potentially accessible to the species of inter-
est if it were not for abiotic factors, i.e. an area where
spread would not be hampered by major physical
barriers. However, competition could lead to further ex-
clusion of the target species, even though the area would
be suited in the absence of such biotic interactions [51].
Taking these considerations into account, we restricted
the area from which pseudo-absence was drawn to the
distribution of the entire genus Triturus. This area was
broadly defined as a 200 km buffer zone [48] around
known Triturus localities (Additional file 2).
The species distribution models were tested for statis-

tical significance against a null model derived from
random localities [52]. For each tested species distribu-
tion model, we created a null distribution of 99 AUC
values. These AUC values were derived from species
distribution models, based on as many random localities
as used for the tested species distribution model. The
AUC value of the tested species distribution model was
treated as a 100th value and deemed statistically significant
if it ranked higher than the 95th value (i.e. above the 95%
confidence interval). Random point data were created with
ENMTools 1.3 [53]; [http://enmtools.blogspot.com/]. The
null model approach prevents interpreting model quality
based on an arbitrary AUC threshold and precludes the
requirement to set aside part of the localities for model
testing [52].
The species distribution models were projected on the

current and Last Glacial Maximum climate layers. Com-
posite maps were created for each set of climate layers
(in the same way as explained for the genetic approach).
Maxent provides predicted probability values between
zero and one and we used a color scheme running from
blue to red to reflect these values.

Results
The 2470 Triturus sequenced newts comprise 315 hap-
lotypes (see Additional file 1 for details and Additional
file 3 for GenBank accession numbers). The Neighbor
Joining phylogeny shows that haplotypes group in nine
reciprocally monophyletic lineages, corresponding to
species (Figure 3). A large number of individuals (n = 408; c.
16.5%) that belong to one species, possess mitochondrial
DNA characteristic of another (Figure 2 and Additional file 1).
This mitochondrial DNA introgression is mostly restricted to
near the contact zones; only T. pygmaeus, T. macedonicus,
T. cristatus and central T. karelinii have extended ranges
in which foreign mitochondrial DNA is present (derived
from T. marmoratus for the first one and from western
T. karelinii for the other three).
The number of populations included to determine gen-

etic diversity within (π) and genetic divergence among
(Zi) populations was 44 and 48 out of 52 populations
for T. carnifex, 60 and 88 out of 104 for T. cristatus,

http://pmip2.lsce.ipsl.fr/
http://pmip2.lsce.ipsl.fr/
http://enmtools.blogspot.com/


Figure 3 A Neighbor Joining phylogeny for the Triturus ND4 haplotypes. The Triturus haplotypes cluster into nine monophyletic
mitochondrial DNA lineages, corresponding to species and colored as in Figure 1. Significantly supported branches (≥ 80%, based on a thousand
bootstrap replicates) are denoted with an asterisk. The Calotriton asper outgroup used to root the phylogeny is not shown.
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29 and 40 out of 44 for T. dobrogicus, 55 and 79 out of
79 for western T. karelinii, 13 and 16 out of 24 for central
T. karelinii, 27 and 31 out of 31 for eastern T. karelinii, 32
and 37 out of 72 for T. macedonicus, 34 and 36 out
of 36 for T. marmoratus and 49 and 50 out of 51 for
T. pygmaeus (populations containing asymmetrically
introgressed mitochondrial DNA were excluded com-
pletely and populations represented by only a single indi-
vidual were additionally excluded in the calculation of π).
Measures of genetic diversity within and genetic divergence
among populations can be found in Additional file 1 and 4.
Composite maps visualizing genetic structuring in each
species are depicted in Figures 4 and 5. Because Alleles in
Space places the values for genetic divergence among popu-
lations at the midpoint of the network connecting the pop-
ulations, information falling outside the current range is
lost in Figure 5 (e.g. in the case of two allopatric popula-
tions). Uncropped maps for each species, showing a more
comprehensive picture per species but at the cost of con-
ciseness, can be found in Additional file 5. Triturus species
generally show considerable spatial variation in their ge-
netic composition (reflected by ‘warm’ and ‘cold’ areas in
Figures 4 and 5).
Species distribution models perform significantly bet-

ter than random (Additional file 6). Composite maps
depicting the predicted suitability of each species’ distri-
bution range at the Last Glacial Maximum, based on the
two different climate simulations (MIROC and CCSM),
are provided in Figure 6. As species were not necessarily
bound to their current ranges through time, projections
for each species on a wider area (roughly the distribution
of the entire genus Triturus) are provided in Additional
file 7. The ranges of all Triturus species are predicted to
have been restricted at the Last Glacial Maximum. A
composite map showing species distribution models
projected on present day climate layers is provided in
Figure 6. Predicted suitability of the distribution range
of each species under current conditions shows a con-
siderable overlap with the sketched outlines of their
ranges (Figure 1).



Figure 4 The geographical distribution of genetic variation for the different Triturus species. These are composite maps for all nine
Triturus species. For each species, the genetic variation within each population (π) was determined and subsequently interpolated across its
distribution range. In Figure 4a we use a single scale for all Triturus species (allowing direct comparison among species) whereas in Figure 4b we
use a species specific scale (better expressing genetic structure in genetically relatively poor species). Warmer colors refer to a higher genetic
diversity. The insets show the situation for T. cristatus (left) and T. marmoratus (right) in their area of sympatry (shown in dark gray on the
main maps).
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Discussion
Before we discuss our results, we first consider where
care should be taken when interpreting genetic or
species distribution modeling results in isolation and
explain how interpretation of the results of the two inde-
pendent techniques together at least partially negates
these problems. Then we identify the probable glacial
refugia and postglacially colonized area for each Triturus
species. Finally, we summarize our scenario regarding
the biogeographical response of Triturus newts to the
climate shift from the previous glacial period to the
current interglacial on a map.

Considerations and combination of the genetic and
species distribution modeling results
A high value for genetic diversity within populations
(Figure 4) can result from two distinct processes:
postglacial secondary contact from distinct source
populations or long term presence in situ throughout
glacial-interglacial cycles (potentially enforced by a low
connectivity between populations due to e.g. xeric envi-
ronment) [9]. To separate these two processes, phyloge-
netic relationships among haplotypes provide some insight.
For example, the obvious ‘hotspot’ found in T. cristatus
(SE Poland) likely reflects the comingling of haplotypes
belonging to the two distinct clades present in this spe-
cies (Figure 3; Additional file 1). On the other hand, the
hotspot found in eastern T. karelinii (SE Azerbaijan)
likely represents standing genetic variation, given the lack
of phylogeographic structure among the haplotypes in-
volved. Species distribution modeling can further help to
distinguish both processes by establishing whether an
area became suitable only recently or whether it has
continuously been so on the long term.



Figure 5 The genetic (dis)similarity among populations within the different Triturus species. These are composite maps for all nine Triturus
species. For each species, the genetic divergence among populations (Zi) was determined and subsequently interpolated across its distribution
range. In Figure 5a we use a single scale for all Triturus species (allowing direct comparison among species) whereas in Figure 5b we use a
species specific scale (better expressing genetic structure in genetically relatively poor species). Warmer colors refer to a higher genetic
divergence. The insets show the situation for T. cristatus (left) and T. marmoratus (right) in their area of sympatry (shown in dark gray on the
main maps).
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Maps showing genetic divergence among populations
(Figure 5) reflect a different aspect of geographical
genetic structuring. On the one hand, areas with a high
genetic overturn among populations (e.g. the southern
part of the range of T. macedonicus) show many
hotspots. Such areas would be expected to have been
habitable on the long term. On the other hand, genetic-
ally homogenous areas, due to high levels of gene flow
and/or demographic expansion stand out as cold areas
(e.g. both of these processes likely determine the absence
of genetic structuring among T. dobrogicus populations).
These two processes are more difficult to disentangle:
whereas demographic expansion would particularly be
expected in areas that became suitable postglacially,
gene flow could reduce genetic structuring both in-
side and outside of glacial refugia. In some cases
geographical barriers to gene flow stand out, such as
the Greater Caucasus mountain range separating
eastern T. karelinii on its northern and southern
side. Such barriers reflect climatically unsuitable re-
gions and can be identified as such in the species
distribution models.
The reliability of genetic diversity values for popula-

tions depends on sample size, and some populations are
relatively poorly sampled in our study. The genetic turn-
over between populations provides additional insight
that counters the adverse effects of low sample sizes. If
populations within an area are genetically diverse, but
sample sizes per population are low, genetic diversity
per population might be underestimated due to chance
effects in sampling. However, these effects are random
per population. Therefore, the more populations that are
being compared within that area, the less likely it is that
actual genetic diversity remains hidden by chance. For



Figure 6 The predicted suitability of each Triturus species’ range at the Last Glacial Maximum (MIROC and CCSM model) and at the
present. This is a composite map for all nine Triturus species. For each species, its species distribution model was projected on MIROC (a) and
CCSM (b) Last Glacial Maximum climate layers and on current climate layers (c), cut according to its current distribution range. Warmer colors
refer to a higher predicted suitability. The insets show the situation for T. cristatus (left) and T. marmoratus (right) in their area of sympatry (shown
in dark gray on the main map).
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this same reason determining the genetic turnover be-
tween populations is less susceptible to sample size to
begin with: low sample size per population adds up to a
big sample sizes within a region. So, in short, if multiple
populations within a region are found to be genetically
similar, even though samples sizes per population are
low, together they provide a good indication that genetic
diversity in the region really is low. We thus recommend
exploring genetic diversity within populations and gen-
etic divergence among populations together to improve
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the estimate of spatial genetic variation, especially when
sample sizes are low.
We present the results of a single (mitochondrial) gen-

etic marker. Although we consider our results indicative
(and use the species distribution modeling results as an
independent check), it should be taken into account that
a single marker may not accurately reflect species
history [54]. In fact, we explicitly exploit the mismatch
between species history and mitochondrial DNA in the
case of asymmetrically introgressed mitochondrial DNA.
Asymmetrically introgressed mitochondrial DNA may
suggest that species displaced one another (e.g. [29,55]).
For Triturus, the similarity of the introgressed mito-
chondrial DNA to that present in the ‘donor’ species
suggests a recent (postglacial) transference across the
species boundary. Given the climatic oscillations during
the Quaternary Ice Age, the Triturus newt species are
presumed to have been in periodic contact through time.
However, we did not identify ancient mitochondrial
DNA introgression events (as in e.g. [56-58]). A poten-
tial explanation is that introgressed mitochondrial DNA
was limited to areas of postglacial expansion and never
Figure 7 Biogeographical scenario for Triturus in response to the last
approximate positions of glacial refugia (dark shades) and postglacially colo
routes). Areas where species displaced one another (containing asymmetric
dobrogicus, neither the genetic nor species distribution modeling approach
text for further details.
penetrated those areas that repeatedly acted as glacial re-
fugia. In effect, any mitochondrial DNA that became
introgressed during an interglacial would be erased by
the next glacial period. Species distribution modeling al-
lows us to test this hypothesis.
A disadvantage of species distribution models is that

they cannot distinguish between potential and realized
distribution: areas that had suitable conditions at the
Last Glacial Maximum may not have actually been
inhabited. Genetic information can narrow down the
position of glacial refugia (e.g. both France and the
Carpathian Basin are suggested to have had suitable con-
ditions during the Last Glacial Maximum for T. cristatus
but only the latter shows the high genetic variation
expected to be present in a former glacial refugium). An-
other issue is that species distribution models are based
on the climatic conditions currently experienced by a
species, but the actual conditions under which they
could occur might be broader (e.g. no suitable condi-
tions were predicted to have been present at the Last
Glacial Maximum for T. dobrogicus, but yet it did
survive to the present day).
glacial to current interglacial climate shift. Shown are the inferred
nized area (light shades; arrows reflect approximate colonization
ally introgressed mitochondrial DNA) are shown in grey. For T.
manages to recover a refugium (reflected by question marks). See
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Glacial refugia and area postglacially colonized for each
Triturus species
The two marbled newt species illustrate the different ef-
fect of glaciations on species with a relatively southern
and relatively northern distribution. The northern T.
marmoratus is predicted to have withdrawn its range at
the Last Glacial Maximum more extensively than the
southern T. pygmaeus (especially according to the
CCSM climate simulation; Figure 6). In T. marmoratus
genetic structuring is highest in the south of its range,
but for T. pygmaeus it is not (Figures 4 and 5). The pres-
ence of T. marmoratus mitochondrial DNA in the
northern part of the range of T. pygmaeus suggests that
in this area the former was replaced by the latter
[31,59,60]. This is confirmed by the distribution models
projected on Last Glacial Maximum climate data outside
of the current species ranges (Additional file 7): at the
time, area predicted suitable for T. marmoratus (but not
for T. pygmaeus) was present in the northern part of the
area currently occupied by T. pygmaeus. Striking is that
both T. marmoratus and T. pygmaeus mitochondrial
DNA occurs throughout this area (Figure 2). Although a
species will often simply show foreign mitochondrial DNA
where it replaced another [13] see below for examples
in Triturus, exceptions similar to the T. marmoratus-
T. pygmaeus case are known (e.g. [61]).
The species distribution models based on the two cli-

mate simulations agree that most of the range of T.
cristatus was unsuitable at the Last Glacial Maximum
(Figure 6). Suitable area was suggested to be present at
the Last Glacial Maximum in both the Carpathian Basin
and in France. The genetic data suggest that only the
Carpathian Basin acted as a glacial refugium at the Last
Glacial Maximum as genetic diversity here is high
(Figures 3, 4, 5). This patterns corresponds to the geo-
graphical distribution of genetic variation based on nu-
clear DNA markers found in previous studies (MHC
genes, allozymes and microsatellites [62,63]). This also
suggests that the remainder of T. cristatus’ current range
(including France) was colonized post-glacially, as the
species is genetically depleted outside of the Carpathian
Basin. Although T. cristatus shows asymmetrically
introgressed western T. karelinii mitochondrial DNA
south of the Danube river, relatively distinct T. cristatus
haplotypes also occur here (Figures 2 and 3, Additional
file 1), suggesting a complex pattern of both range ex-
pansion at the cost of western T. karelinii but also long
term presence south of the Danube.
For T. carnifex there is a discrepancy between the two

climate simulations, with MIROC showing a more
extensive predicted distribution at the Last Glacial Ma-
ximum than CCSM. Particularly CCSM suggests a more
considerable range reduction and no suitable area in the
current northern Balkan range (Figure 6). The genetic
data better correspond to the modeled distribution
based on MIROC, as it shows distinct genetic clusters
distributed on both sides of the Adriatic Sea and high
genetic diversity in Italy (Figures 3, 4, 5), supporting long
term presence in the Balkans and a stable population in
Italy (see [32] for more detail). Both climate simulations
agree that T. carnifex colonized the part of its range east
and north of the Alps postglacially. The T. carnifex
mitochondrial DNA introgressed into T. cristatus where
the two species meet suggests that Balkan T. carnifex
were involved in this range expansion.
Compared to the other Triturus species, intraspecific

genetic diversity (i.e. phylogenetic depth) is low in T.
dobrogicus (Figure 3). Triturus dobrogicus shows a
‘starburst’ phylogeny – a large number of similar haplo-
types – suggesting a demographic expansion after a
bottleneck. At the Last Glacial Maximum, the range of
T. dobrogicus is predicted to have been unsuitable
(Figure 6). This is in line with a population bottleneck.
However, the species distribution models do not make it
possible to pinpoint a potential refugium: the entire
currently occupied range was predicted unsuitable at the
Last Glacial Maximum. Suitable area was also not
available outside the current range (Additional file 7).
Evidently, T. dobrogicus must have had a refugium some-
where and given its specialization on river floodplains
(e.g. [64]) this was likely positioned within its current
range. Furthermore, compared to the other Triturus
species T. dobrogicus does not show reduced genetic
diversity of nuclear DNA (allozymes [65]). This suggests
that perhaps the actual ecological niche of T. dobrogicus
is broader than is currently realized (and used to con-
struct the species distribution models). Another option
would be that the niche of T. dobrogicus has evolved in
a brief time interval to adapt to the environmental shift
[66]. We consider this less likely as T. dobrogicus must
have survived multiple glacial-interglacial cycles in situ.
The western part of the current range of T. macedonicus

is predicted to have been suitable during the Last Glacial
Maximum (Figure 6). This does not fully correspond to
mitochondrial DNA data, which shows structuring in the
southern part of the range, including the southeast, but not
in the northwest (Figures 4 and 5). Genetic variation in T.
macedonicus is the highest of all Triturus newts (Figure 3).
In a large part of its range, T. macedonicus possesses
western T. karelinii mitochondrial DNA (Figure 2). This
can be explained by T. macedonicus displacing western T.
karelinii there after the Last Glacial Maximum as the area
only became unsuitable for T. macedonicus after the Last
Glacial Maximum (Figure 6; see [29] for a detailed
analysis).
In western T. karelinii, a basal split separates a clade

occurring in European Turkey and extreme southeastern
Bulgaria (Figure 3). The species distribution modeling
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approach suggests suitable area was present here during
the Last Glacial Maximum (Figure 6). The genetic
distinction of this clade is expressed by the ‘barrier’ in
Figure 5 surrounding the populations in which it is
represented. The other clade shows extensive structuring
in Asiatic Turkey, suggesting the region acted as a
refugium. Suitability at the Last Glacial Maximum is con-
firmed by the species distribution modeling approach. A
single sub-clade derived from (i.e. nested within) Asiatic
Turkey has recently colonized the Balkan part of the
range; it shows a starburst phylogeny in line with demo-
graphic growth during a range expansion [12]. The spe-
cies distribution modeling approach agrees that the area
only became hospitable after the Last Glacial Maximum.
Central T. karelinii shows a fragmented distribution at

the Last Glacial Maximum (Figures 6 and 7). This is
reflected by an east west divide (the ‘barrier’ in Figure 5)
between two distinct clades separated by a basal split
(Figure 3), which are currently in secondary contact (the
‘warm’ spot in Figure 4). Central T. karelinii contains
western T. karelinii mitochondrial DNA in northwestern
Asiatic Turkey (Figure 2), suggesting postglacial species
displacement (see [23] for a detailed analysis).
For eastern T. karelinii, the southern Caspian basin

and western Georgia (Colchis) are suggested to have har-
bored suitable area at the Last Glacial Maximum
according to species distribution models (Figure 6).
Genetic diversity is particularly high along the southern
Caspian Sea shore (Figures 3, 4, 5). Relatively recently a
single nested clade colonized the Caucasus and Crimea
from the Caspian part of the range [28]. However, this
clade is still distinct (reflected by a relatively deep co-
alescence; see Figure 3), suggesting that colonization
happened during a previous interglacial and thus that
the clade persisted here in a glacial refugia during one or
several glacial cycles.

Historical biogeographical scenario
We provide a historical biogeographical scenario for the
genus Triturus in Figure 7, summarizing glacial refugia,
areas of postglacial expansion and regions where species
displaced one another. The genetic and species distribu-
tion modeling results provide insight into the distribu-
tion dynamics of Triturus in response to climate change
during the Quaternary Ice Age. Triturus conforms to the
general pattern of the Iberian, Italian and Balkan
Peninsulas functioning as glacial refugia [1,67]. Further-
more, several regions that are increasingly appreciated
as glacial refugia are also identified as such for Triturus:
Anatolia, the southern Caspian Basin and the Caucasus re-
gion (e.g. [10,68]). The novel idea of extra-Mediterranean
refugia, positioned more to the north [69], also applies to
Triturus: the glacial refugium of T. cristatus was situated in
the Carpathian Basin.
Similarly, areas typically identified as having been
postglacially colonized from glacial refugia are predicted
as such for Triturus: T. marmoratus, T. carnifex and (to
a lesser extent) ‘eastern T. karelinii’ extended their
ranges into temperate Europe from their southerly
positioned refugia. However, postglacial expansion is
best exemplified by T. cristatus. The contemporary
range of T. cristatus outside its glacial refugium in the
Carpathian Basin encompasses a huge (c. 4.75 million
km2) postglacially acquired area, stretching all the way
from western Europe to Scandinavia and central Russia.
This gives an indication of the speed with which postgla-
cial colonization can be accomplished.

Conclusions
The combination of phylogeography and species distri-
bution modeling aids locating of glacial refugia [70]. The
two approaches to visualize intraspecific geographical
genetic structuring together illustrate which areas are
genetically rich and thus suspected to reflect long term
inhabited area and which areas are genetically poor and
thus probably only recently became habitable (Figures 4
and 5). Additionally, asymmetrically introgressed mito-
chondrial DNA suggests where species displaced one
another upon post-glacial secondary contact (Figure 2).
Independently, the two reconstructions of potential dis-
tribution at the Last Glacial Maximum (based on the
MIROC and CCSM climate simulations) provide an in-
dication of which areas were habitable at the time and
which were unsuitable for Triturus (Figure 6). We pro-
vide a qualitative comparison of the results of the two
independent techniques (summarized in Figure 7). We
anticipate that future developments in the synthesis of
phylogeography and species distribution modeling will
make it possible to integrate the two approaches into a
single analysis even further.
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