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Abstract

Quasinilpotent equivalent elements of a unital Banach algebra have the same left
and right spectrum; if the Banach algebra is the algebra of operators on a Banach
space, then they (also) have the same approximate point and surjectivity spec-
trum. We apply the notion of quasinilpotent equivalent to investigate perturbation
of left/right and upper/lower Fredholm (and Weyl, Browder) spectrum by poly-
nomially Riesz operators. The resulting theorems lead to an improvement of some
recently obtained results.

1. Introduction

A Banach space operator (i.e. a bounded linear transformation) A ∈ BX is Riesz,
A ∈ R(X ), if its non–zero spectral points are finite rank poles of the resolvent (of
A); A ∈ BX is polynomially Riesz, A ∈ Poly−1(R(X )), if there exists a non–trivial
polynomial p(.) such that p(A) ∈ R(X ). Perturbation of Banach space operators by
Riesz operators, more generally by polynomially Riesz operators, has been consid-
ered by a number of authors. Thus it is known that the ‘Browder spectrum σb(A)
of an operator A ∈ BX is the largest distinguished part of the spectrum σ(A) of A
which is stable under perturbation by commuting Riesz operators’ [15]. Jeribi and
Moalla [11] have considered perturbation by polynomially compact operators, and
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Baklouti [8] in his consideration of perturbation by polynomially Fredholm per-
turbation operators has introduced the idea of ‘communicating operators’. Here,
if we let Ptrb(Φ) denote the perturbation class of Fredholm operators, then for
an operator A such that p(A) ∈ Ptrb(Φ) for some non–trivial polynomial p(.) the
operators A and B communicate if there exists a continuous function φ : [0, 1] → C
such that φ(0) = 0, φ(1) = 1 and φ([0, 1])π−1

A (0) has no points in common with
the Fredholm spectrum of B. (Here, πA denotes the minimal polynomial such that
πA(A) ∈ Ptrb(Φ).) The concept of communicating operators has been exploited by
Živković-Zlatanović et al. [19, 21] to obtain enhanced results on the perturbation
of one sided Fredholm (Banach algebra) elements by algebraically Riesz operators.

Given a unital Banach algebra A, and elements a, b ∈ A, the elements a, b are
quasinilpotent equivalent if

d(a, b) = max{ lim
n→∞

||δna,b(1)||
1
n , lim

n→∞
||δnb,a(1)||

1
n } = 0,

where δa,b ∈ B(A) is the generalized derivation δa,b(x) = ax − xb for all x ∈ A.
Quasinilpotent operators have the same left, and right, spectrum (hence, also the
same spectrum). More is true in the case in which A is the algebra BX: Quasinilpo-
tent operators in BX have the same (left, right,) spectrum, the same approximate
point spectrum and the same surjectivity spectrum. Suppose now that A and B
are two unital Banach algebras, and T : A → B is a homomorphism mapping left
(resp., right) Fredholm elements of A onto left (resp., right) invertible elements of
B. Then d(Ta, Tb) = 0 for some a, b ∈ A implies a and b have the same left (resp.,
right) Fredholm spectrum. Similarly, if A and B are algebras of operators, and T
maps upper (resp., lower) Fredholm operators onto bounded below (resp., surjec-
tive) operators, then d(TA, TB) = 0 for some A,B ∈ A implies A and B have the
same upper (resp., lower) Fredholm spectrum.

In this paper we apply the idea of quasinilpotent equivalence to obtain results
on perturbations of (one–sided) Fredholm, Weyl and Browder elements by polyno-
mially Riesz (or, holomorphically Riesz) elements of a Banach algebra. It is proved
that ifA and B are unital Banach algebras, a, b ∈ A, T : A → B is a homomorphism,
T (ab− ba) is in the radical of B and p(Tb) is quasinilpotent in B for some polyno-
mial p, then either of the conditions p(Ta) is left invertible and p−1(0)∩σl(Ta) = ∅
(resp., right invertible and p−1(0) ∩ σr(Ta) = ∅) in B implies T (a − b) is left in-
vertible (resp., right invertible, invertible) in B (cf. [18]). Working in the algebra
BX, let σ×

f (A) stand for one of the upper/lower and right/left Fredholm spectrum
of the operator A. Recall that given operators A,B ∈ BX, the operator A is in
×–communication with B if there exists a continuous function φ : [0, 1] → C such
that

φ(0) = 0, φ(1) = 1 and µφ([0, 1]) /∈ σ×
f (A)

for all µ ∈ π−1
B (0) [8]. Here πB(z) =

∏m
i=1 (z − µi) is the minimal polynomial such

that πB(B) is a Riesz operator. Let Φ×(X ) denote the class of ×–Fredholm opera-
tors in BX (where × stands for one of upper, lower, right, left or
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(simply) Fredholm). Suppose that πB(B) =
∏m

i=1 (B − µi) is Riesz. We prove:
(a) If AB − BA ∈ Ptrb(Φ×(X )), then, for every scalar λ such that πB(A, λ) =∏m

i=1 (A− λµi) ∈ Φ×(X ), A − λB ∈ Φ×(X ). If, in addition, λ = λ(t) is a con-
tinuous function from a connected subset I of the reals (into the set of com-
plex numbers) such that λ(t1) = 0 and λ(t2) = 1 for some t1 < t2 ∈ I, then
ind(A) = ind(A − B) = ind(A − λ(t)B) for all t ∈ [t1, t2]. (b) Suppose that
AB − BA = 0. If πB(A, λ) =

∏m
i=1 (A− λµi) ∈ Φ×(X ) for some scalar λ, then

πB(A, λ) ∈ ×–Browder implies A − λB ∈ ×–Browder; if, in addition, λ = λ(t)
is the continuous function of (a) and A has SVEP at 0 whenever ×–Fredholm is
left or upper Fredholm (resp., A∗ has SVEP at 0 whenever ×–Fredholm is right or
lower Fredholm; both A and A∗ have SVEP at 0 whenever ×–Fredholm is simply
Fredholm), then A − B ∈ ×–Browder. It is seen that this is sufficient to obtain,
and sometimes enhance, the results of [8; 11; 19; 21]. We consider an application to
paranormal, in particular normal, Banach space operators.

2. Some terminology and notation

An operator A ∈ BX has SVEP (= the single-valued extension property) at a
point λ0 ∈ C if for every open disc Dλ0 centered at λ0 the only analytic function
f : Dλ0 −→ X satisfying (A − λ)f(λ) = 0 is the function f ≡ 0. (Here we have
shortened A−λI to A−λ.) Evidently, every A has SVEP at points in the resolvent
ρ(A) = C \ σ(A) and the boundary ∂σ(A) of the spectrum σ(A). We say that T
has SVEP if it has SVEP at every λ ∈ C. The ascent of A, asc(A) (resp. descent
of A, dsc(A)), is the least non-negative integer n such that A−n(0) = A−(n+1)(0)
(resp., AnX = An+1X ): If no such integer exists, then asc(A), resp. dsc(A), = ∞.
It is well known that asc(A) < ∞ implies A has SVEP at 0, dsc(A) < ∞ implies
A∗ (= the dual operator) has SVEP at 0, finite ascent and descent for an operator
implies their equality, and that a point λ ∈ σ(A) is a pole (of the resolvent) of A if
and only if asc(A− λ) = dsc(A− λ) < ∞ (see [1; 13; 14]).

Quasinilpotent equivalence preserves SVEP, i.e., if A,B ∈ BX are quasinilpo-
tent equivalent then A has SVEP (everywhere) implies B has SVEP [13]. Per-
turbation of an operator by a commuting operator does not, in general, preserve
SVEP (even if the commuting operator has SVEP). However, if the commuting
operator is a quasinilpotent, then (the quasinilpotent equivalence of the operator
and its perturbation ensures that) the operator has SVEP (everywhere), which im-
plies SVEP (everywhere) for the perturbed operator. Does this property hold for
localized SVEP? The following recent result of Aiena and Müller [3, theorem 0.3]
answers this question in the affirmative for commuting Riesz perturbations.

Proposition 2.1. If A ∈ BX and R ∈ BX is a Riesz operator which commutes
with A, then A has SVEP at λ implies A+R has SVEP at λ.

The left spectrum σl(a), the right spectrum σr(a) and the spectrum σ(a) of an
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element a ∈ A, A a unital Banach algebra, are the sets σl(a) = {λ ∈ C : a − λ
is not left invertible} = {λ ∈ C : a − λ /∈ A−1

left}, σr(a) = {λ ∈ C : a − λ is

not right invertible} = {λ ∈ C : a − λ /∈ A−1
right} and σ(a) = σl(a) ∪ σr(a) =

{λ ∈ C : a − λ /∈ A−1}; if A is the algebra BX, then the approximate points
spectrum σa(A) and the surjectivity spectrum σs(A) of an A ∈ BX are the sets
σa(A) = {λ ∈ C : A − λ is not bounded below} and σs(A) = {λ ∈ C : A − λ is
not surjective}. In the following we shall use the notation σ×(.) to denote (either)
one of these spectra. An operator A ∈ BX) is upper semi–Fredholm (resp., lower
semi–Fredholm) if AX is closed, and the deficiency index α(A) = dimA−1(0) < ∞
(resp., β(A) = dim(X/AX ) < ∞); A is semi–Fredholm if it is either upper or lower
semi–Fredholm, and A is Fredholm if it is both upper and lower semi–Fredholm.
The index of a semi–Fredholm operator is the integer ind(T ) = α(T ) − β(T ). The
operator A is left (resp., right) Fredholm if it is upper semi-Fredholm and AX
(resp., lower semi–Fredholm and A−1(0)) is complemented in X . Corresponding
to these classes of one sided Fredholm operators, we have the following spectra:
the upper (lower) Fredholm spectrum σupper

f (A) = {λ ∈ σ(A) : A − λ is not

upper semi–Fredholm} (resp., σlower
f (A) = {λ ∈ σ(A) : A − λ is not lower semi–

Fredholm}), left (right) Fredholm spectrum σleft
f (A) = {λ ∈ σ(A) : A − λ is not

left semi–Fredholm} (resp., σright
f (A) = {λ ∈ σ(A) : A − λ is not right semi–

Fredholm}), and Fredholm spectrum σf (A) = {λ ∈ σ(A) : A− λ is not Fredhom}.
An operator A ∈ BX is upper Browder (resp., lower Browder, left Browder, right
Browder, (simply) Browder) if it is upper Fredholm with asc(A) < ∞ (resp., lower
Fredholm with dsc(A) < ∞, left Fredholm with asc(A) < ∞, right Fredholm with
dsc(A) < ∞, Fredholm with asc(A) = dsc(A) < ∞). The Browder spectrum σb(A)
of an operator A ∈ BX is the set σb(A) = {λ ∈ C : A− λ is not Browder}.

The quasinilpotent part H0(A) of an operator A ∈ BX is the (generally) non–
closed set

H0(A) = {x ∈ X : lim
n→∞

||Anx|| 1
n = 0}.

Evidently, A−n(0) ⊆ H0(A) for all integers n ≥ 1. It is fairly straightforward to see,
[2, theorem 2.3], that if A ∈ Φupper(X ) (or, A ∈ Φleft(X )) and asc(A) < ∞, then
there exists an integer n ≥ 1 such that H0(A) = A−n(0). Suppose that A,B ∈ BX
are commuting operators. Then AB ∈ Φ×(X ) if and only if A,B ∈ Φ×(X ). Further-
more, if also A and B have finite ascent, then there exist integers p1 and p2 such that
dim(H0(A)) = dim(A−p1(0)) < ∞ and dim(H0(B)) = dim(B−p2(0)) < ∞; conse-
quently, with p = max(p1, p2), dim((AB)−p(0)) ≤ dim(H0(AB)) ≤ dim(H0(A)) +
dim(H0(B)) < ∞, which implies asc(AB) < ∞ and hence that AB is upper–
Browder. A similar argument holds for other cases (use duality), and one has: If
A,B ∈ BX are commuting ×–Browder operators, then AB is ×–Browder operator.
The converse holds:

Proposition 2.2. (cf. [9, theorem 7.9.2]) If A,B ∈ BX are commuting operators,
then A,B are ×–Browder if and only if AB is ×–Browder.
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Proof. A,B being in Φ×(X ) whenever AB ∈ Φ×(X ), the proof of the converse
statement for the case in which × is left or upper is a direct consequence of the fact
that the following inequalities imply finite ascent:

dim(A−p(0)) ≤ dim(H0(A)) ≤ dim(H0(AB)) < ∞, and

dim(B−p(0)) ≤ dim(H0(B)) ≤ dim(H0(AB)) < ∞

for all integers p ≥ 1. Working with the dual, the other case is similarly proved.

Any other notation/terminology will be defined in the sequel on a first use basis.

3. Quasinilpotent equivalence, homomorphisms and holomorphically
Riesz operators

3.1. Quasinilpotent equivalence.
Let A be a unital Banach algebra (with unit 1), and let δa,b, a and b ∈ A, denote the
generalized derivation δa,b(x) = La(x) − Rb(x) = ax − xb for all x ∈ A (where La

and Ra denote the operators La(x) = ax and Ra(x) = xa of left and (respectively)
right multiplication by a). The function

d(a, b) = max{ lim
n→∞

||δna,b(1)||
1
n , lim

n→∞
||δnb,a(1)||

1
n }

defines a semi–metric on A such that

d(a, b) = d(La, Lb) = d(Ra, Rb) and d(La, Rb) ≤ d(La, Ra) + d(Ra, Rb).

Recall from [17] (and [16]) that if d(a, b) = 0, then σ(a) = σ(b). More is true. Sup-
pose a ∈ A is left invertible by aℓ ∈ A. If a and b commute, then (a straightforward
argument shows that) d(a, b) = 0 ⇐⇒ d(aℓb, 1) = 0. In the general case, i.e. if a
and b do not commute, then let B denote a maximal commutative subalgebra of the
Banach algebra B(A) of bounded linear operators on A containing La, Rb and the
identity operator I (= L1 = R1). Then σ(Laℓ

Rb,B) = σ(Laℓ
Rb, B(A)) = σ(aℓ)σ(b).

Since

δnI,Laℓ
Rb

(1) = δn−1
I,Laℓ

Rb
{(I − Laℓ

Rb)(1)} = (I − Laℓ
Rb)

n(1)

= Ln
aℓ
{(La −Rb)

n(1)} = Ln
aℓ
δna,b(1) = (−1)nLn

aℓ
{δnb,a(1)}

= (−1)nLn
aℓ
{(Rb − La)

n(1)} = (−1)n(Laℓ
Rb − I)n(1) = (−1)nδnLaℓ

Rb,I
(1),

it follows that if d(a, b) = 0, then d(La, 1) = 0. Hence, in either of the cases,
σ(aℓb) = {1}, which then implies that b is left invertible. Since

d(a, b) = 0 ⇐⇒ d(a− λ, b− λ) = 0
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for all complex λ, d(a, b) = 0 also implies σl(a) = σl(b). A similar argument works
for the right spectrum, and we conclude that d(a, b) = 0 implies

σ×(a) = σ×(b), σ× = σ or σl or σr.

Considering La and Ra (etc.) as Banach space operators (acting on the Banach
space BX), the equality d(a, b) = 0 implies also that

σ×(La) = σ×(Lb) and σ×(Ra) = σ×(Rb),

where σ× = σ or σa or σs [13, proposition 3.4.11]. Since σ(La) = σ(Ra) = σ(a),
σa(La) = σa(a) = σs(Ra) and σs(La) = σs(a) = σa(Ra) whenever A = BX, we
have that if a, b ∈ BX and d(a, b) = 0 then σ×(a) = σ×(b) for σ× = σ or σa or σs.
Summarising:

Theorem 3.1. If A is a unital Banach algebra, a and b ∈ A and d(a, b) = 0, then
σ×(a) = σ×(b), where σ× = σ or σl or σr. Furthermore, if A = BX, then also
σ×(a) = σ×(b) for σ× = σa and σs.

3.2. Homomorphisms and holomorphically Riesz operators.
Let A and B be unital Banach algebras, and let T : A → B be a homomorphism:

T (ab) = T (a)T (b), a and b ∈ A, and T (1) = 1.

We say that an element a ∈ A is ×–Fredholm (more precisely, T -×–Fredholm),
a ∈ Φ×, if T (a) ∈ B−1

× . Here B−1
× stands for one of B−1

l (= the left invertible
elements of B), B−1

r (= the right invertible elements of B) and B−1 (= the invertible
elements of B), and (correspondingly) Φ× stands for one of Φl = {a ∈ A : a is left
Fredholm}, Φr = {a ∈ A : a is right Fredholm} and Φ = {a ∈ A : a is Fredholm}.
An element a ∈ A is T–Riesz if Ta ∈ QN(B), equivalently a ∈ T−1QN(B), where
QN(B) = {b ∈ B : b is quasinilpotent} = {b ∈ B : σ(b,B) = {0}}.

Let H(σ(a)) denote the class of functions f which are holomorphic in a neigh-
bourhood of σ(a). We say that a ∈ A is holomorphically Riesz if there exists an
f ∈ H(σ(a)) such that f(a) ∈ T−1QN(B) (equivalently, a ∈ Holo−1T−1QN(B)). If
f(a) ∈ T−1QN(B) for a function f which is holomorphic on Ω ⊃ σ(a) and non–
constant on open connected subsets of Ω (alternatively, if Ω is connected), then f
has at most a finite number of zeros λi such that f(Ta) =

∏n
i=1 (Ta− λi)

αig1(Ta),
where the holomorphic function g1(z) ̸= 0 (on any neighbourhood of σ(a)). Let
πa(z) denote the monic irreducible polynomial with roots λi, 1 ≤ i ≤ n, each re-
peated according to its multiplicity αi. Then f(z) = πa(z)g(z), where g(z) ̸= 0 on
any neighbourhood of σ(a) and πa(a) ∈ T−1QN(B). We have (see also [8; 12; 18]:

Lemma 3.2. Let a ∈ A, and let Ω be an open subset of the complex plane such
that σ(a) ⊆ Ω. If Ω is connected (more generally, if f is non–constant on connected
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components of Ω), then f(a) ∈ T−1QN(B) if and only if there exists a minimal
polynomial πa such that πa(a) ∈ T−1QN(B).

The following theorem is proved for polynomially Riesz (Banach algebra) elements,
using a different argument, in [18, theorems 11.2 and 12.3] (see also [19, theorems
2.1, 2.3]). Let Rad(B) = {b ∈ B : 1− Bb ⊂ B−1} = {b ∈ B : 1− bB ⊂ B−1} denote
the radical of B.

Theorem 3.3. Suppose that A and B are unital Banach algebras, a, b ∈ A, T :
A → B is a homomorphism, T (ab − ba) ∈ Rad(B) and f(Tb) ∈ QN(B) for some
f ∈ H(σ(b)).

(i) If f(Ta) ∈ (B−1
× ), then T (a− b) ∈ (B−1

× ) (equivalently, a− b ∈ Φ×).

(ii) If f−1(0) ∩ σ×(Ta) = ∅, then T (a− b) ∈ (B−1
× ) (equivalently, a− b ∈ Φ×).

Proof. It suffices to prove the theorem for the case T (ab− ba) = 0; in the general
case, T (ab − ba) ∈ Rad(B), one transfers the argument to the quotient algebra
B/Rad(B) (see Remark 3.4 below). Observe that T (ab − ba) ∈ Rad(B) implies
T (f(a)f(b)− f(b)f(a)) ∈ Rad(B).

(i) The hypothesis T (ab) = T (ba) implies T (f(a)f(b)) = T (f(b)f(a)). Set
Tf(b) = f(Tb) = d and Tf(a) = f(Ta) = e. Then de− ed = 0 and

δne−d,e(1) = (−1)ndn = (−1)nδne.e−d(1) =⇒ d(e− d, e) = 0.

Hence

σ×(e− d) = σ×(Tf(a)− Tf(b))) = σ×{(Ta− Tb)g(Ta, Tb)}
= σ×(Tf(a))

for some analytic function g. This, together with Tf(a) ∈ B−1
× , implies

T (a− b) ∈ B−1
× . Equivalently, a− b ∈ Φ×.

(ii) The hypothesis f−1(0) ∩ σ×(Ta) = ∅ implies that Tf(a) ∈ B−1
× . The proof

now follows from the argument above. �

Remark 3.4. (i) If (in the theorem above) we let Πp : B → B/Rad(B) denote the
natural (projection) homomorphism, then TaTb− TbTa ∈ Rad(B) and Πpf(Tb) ∈
QN(B/Rad(B)) imply d(Πp(f(Ta) − f(Tb)),Πpf(Ta)) = 0. Hence σ(f(Ta),B) =
σ(Πpf(Ta),B/Rad(B)) = σ(Πp(f(Ta)−f(Tb)),B/Rad(B)) ⊂ σ(Πp(f(Ta)),B/Rad(B))−
σ(Πp(f(Tb)),B/Rad(B)) = σ(Πp(f(Ta)),B/Rad(B)) = σ(f(Ta),B).

4. Algebra BX: Perturbations

Let Φ×(X ) denote operators A ∈ BX which are ×–Fredholm, where ×–Fredholm
stands for one of left–Fredholm, right-Fredholm, upper–Fredholm, lower–Fredholm
and (simply) Fredholm. Then σ×

f (A) = {λ ∈ σ(A) : A − λ /∈ Φ×(X )} is the ‘×–
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essential (Fredholm) spectrum of A ∈ BX’. Let Hc(σ(A)) = {f ∈ H(σ(A)) : f is
non–constant on the connected components of σ(A)}. Recall from Lemma 3.2 that
if an A ∈ BX is holomorphically Riesz for some f ∈ Hc(σ(A)), A ∈ (Holo)1c(R(X ))
then there exists a monic irreducible polynomial πA(A) =

∏m
i=1(A− µi), the mini-

mal polynomial of A, such that πA(A) ∈ R(X ).

Let Ptrb(Φ×(X )) denote the closed two sided ideal,

Ptrb(Φ×(X )) = {A ∈ BX : A+B ∈ Φ×(X ) for every B ∈ Φ×(X )},

of the perturbation class of Φ×(X ). Then Ptrb(Φright(X )) = Ptrb(Φleft(X )) =
Ptrb(Φ(X )) and Ptrb(Φupper(X )) ∪ Ptrb(Φlower(X )) ⊆ Ptrb(Φ(X )).

If Π denotes the Calkin homomorphism Π : BX → BX/K(X ), K(X ) the
ideal of compact operators on X , then an A ∈ BX is in Φleft(X ) (similarly,
Φright(X ), Φ(X )) if it has a left–invertible (resp., right invertible, invertible) image
in BX/K(X ) [6]. In the following we shall be interested in a further couple of homo-
morphisms of the algebra BX: the homomorphism Πp : BX → BX/Ptrb(Φ×(X ))
(effected by the natural projection ofBX into the quotient algebraBX/Ptrb(Φ×(X )))
and the homomorphism Πq : BX → B(Xq), Xq = ℓ∞(X )/m(X ), effecting the
‘essential enlargement A → Πq(A) = Aq’ (of [5] and [14, theorems 17.6 and
17.9]). It is clear from the definition that AB − BA ∈ Ptrb(Φ×(X )) for some
A,B ∈ BX if and only if Πp(AB − BA) = Πp(A)Πp(B) − Πp(B)Πp(A) = 0. Fur-
thermore, if a function f is holomorphic in a neighbourhood of σ(A) ∪ σ(B), then
AB−BA ∈ Ptrb(Φ×(X )) implies f(A)f(B)−f(B)f(A) ∈ Ptrb(Φ×(X )), and hence
Πp(f(A)f(B)− f(B)f(A)) = 0.

Theorem 4.1. Suppose that A,B ∈ BX, where B ∈ Poly−1(R(X )) (equivalently,

B ∈ (Holo)
−1
c (R(X ))) with minimal polynomial πB(z) =

∏m
i=1 (z − µi).

(a) If AB − BA ∈ Ptrb(Φ×(X )), then A − λB ∈ Φ×(X ) for every scalar λ
such that πB(A, λ) =

∏m
i=1 (A− λµi) ∈ Φ×(X ). If, additionally, (i) λ =

λ(t) is a continuous function from a connected subset I of the reals (into
the set of complex numbers) such that λ(t1) = 0 and λ(t2) = 1 for some
t1 < t2 ∈ I, then ind(A) = ind(A−B) = ind(A− λ(t)B) for all t ∈ [t1, t2];
(ii) AB −BA = 0 and πB(A, λ) ∈ ×–Browder, then A− λB ∈ ×–Browder.

(b) Suppose now that AB − BA = 0 and πB(A, λ) =
∏m

i=1 (A− λ(t)µi) ∈
Φ×(X ), where λ(t) is the continuous function of (a) above. If A has SVEP
at 0 whenever ×–Fredholm is left or upper Fredholm (resp., A∗ has SVEP
at 0 whenever ×–Fredholm is right or lower Fredholm; both A and A∗ have
SVEP at 0 whenever ×–Fredholm is simply Fredholm), then A − B ∈ ×–
Browder.

Proof. Let T denote the homomorphism Πp : BX → BX/Ptrb(Φ×(X )) in the
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proof of (a) (below), and let T denote the Calkin homomorphism Π if × = either
left or right, respectively the homomorphism Πq if × = either upper or lower, in
the proof of (b).

(a) Let
∏m

i=1 (A− λµi) = E, λmπB(B) = F , and E−F = D. Then the hypoth-
esis AB − BA ∈ Ptrb(Φ×(X )) implies T (EF − FE) = Πp(EF − FE) = 0,
and

δnT (D),T (E)(I) = δn−1
T (D),T (E)((−1)T (F ))

= · · · = (−1)nT (F )n = · · · = (−1)nδnT (E),T (D)(I).

Hence, since TF is quasinilpotent,

d(T (D), T (E)) = 0,

which (since E ∈ Φ×(X )) implies that D ∈ Φ×(X ). Since D = (A −
λB)gλ(A,B) =)gλ(A,B)(A − λB) for some polynomial gλ, it follows that
A − λB ∈ Φ×(X )). To complete the proof of (i), we note that both A and
A−B are ×–Fredholm. Since every locally constant function on a connected
set is constant, we have from the local constancy of the index function that
ind(A) = ind(A−B) = ind(A− λ(t)B) for all t ∈ [t1, t2].

To prove (ii), suppose that πB(A, λ) ∈ ×–Browder. Then πB(A, λ) has
SVEP at 0 whenever ×–Browder is left or upper Browder, (πB(A, λ))∗

has SVEP at 0 whenever ×–Browder is right or lower Browder, and both
πB(A, λ) and (πB(A, λ))

∗ have SVEP at 0 whenever ×–Browder is Brow-
der. We consider the first case: The other cases are similarly proved. It is
clear from the proof of (i) above that D = E −F = πB(A, λ)− λmπB(B) ∈
Φ×(X ). The commutativity of A and B implies the commutativity of E
and F . Suppose now that E (is ×–Browder, and so) has SVEP at 0. Since
F ∈ R(X ) and E,F commute, it follows from an application of 2.1 that D
has SVEP at 0. Hence D ∈ ×–Browder. But then D = (A−λB)gλ(A,B) =
gλ(A,B)(A− λB) (for some function gλ) implies (by Proposition 2.2) that
A− λB ∈ ×–Browder.

(b) Suppose now that A,B commute, πB(A, λ) ∈ Φ×(X ) and λ = λ(t) is the
continuous function of part (a). Then the argument above implies that A−
λ(t)B ∈ Φ×(X ) and ind(A − λ(t)B) = ind(A) for all t ∈ [t1, t2]. Suppose
further that A has SVEP at 0. (As before, we consider the case × = left or
upper only. The proof for the case in which A∗ has SVEP follows from a
duality argument: Observe that d(D,E) = 0 ⇐⇒ d(D∗, E∗) = 0.) Then A ∈
Φ×(X ) has finite ascent asc(A) < ∞ [1, theorem 3.16], and hence A−∞(0)∩
A∞(X ) = {0} = A−∞(0) ∩ A∞(X ) [1, lemma 3.2]. The commutativity of
A and B combined with the continuity of λ(t) : [t1, t2] → C implies that
λ(t) 7→ (A− λ(t)B)−∞(0) ∩ (A − λ(t)B)∞(X ) is locally constant, hence
constant on (the convex set) [t1, t2]. Consequently, A−∞(0) ∩ A∞(X ) =
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{0} = (A−B)−∞(0) ∩ (A − B)∞(X ) = (A − B)−∞(0) ∩ (A − B)∞(X ),
which implies that A − B has SVEP at 0 [1, corollary 2.26]. Since already
A−B ∈ Φ×(X ), A−B is ×–Browder [1, theorem 3.44]. �

A closer examination of the argument of the proof of theorem 4.1 shows that
for operators B such that πB(B) ∈ R(X ) either of the hypotheses AB − BA ∈
Ptrb(Φ×(X )) and AB − BA = 0 implies πB(A) ∈ Φ×(X ) if and only if πB(A) −
πB(B) ∈ Φ×(X ); furthermore, if AB − BA = 0 and πB(A) has SVEP at 0 when
× = left or upper (resp., πB(A

∗) has SVEP at 0 when × = right or lower, both
πB(A) and πB(A

∗) have SVEP at 0 when Φ×(X ) = Φ(X )), then πB(A) − πB(B)
is ×–Browder whenever πB(A) ∈ Φ×(X ).

Remark 4.2. (i) It is immediate from the proof above that if the hypotheses of
Theorem 4.1(a)(i) are satisfied, then A is ×–Weyl implies A − B is ×–Weyl with
the same index. (Recall that A is: left (resp., upper) Weyl if A ∈ Φleft(X ) (resp.,
A ∈ Φupper(X )) and ind(A) ≤ 0, right (resp., lower) Weyl if A ∈ Φright(X ) (resp.,
A ∈ Φlower(X )) and ind(A) ≥ 0, and Weyl if A ∈ Φ(X ) and ind(A) = 0.) As
observed in the proof of (b) above, if A and B are as in the statement of Theorem
4.1(b), then SVEP at 0 transfers from A to A−B. Consequently, if A in Theorem
4.1(b) is lower (or right) Weyl and has SVEP at 0, then A−B is lower (resp., right)
Weyl with SVEP at 0, consequently Weyl with SVEP at 0 and hence Browder.
(ii) Theorem 4.1 subsumes a number of extant results, amongst them a number
of the results from [19, section 3] on communicating operators (see Corollary 4.3
below). We note here that if an A ∈ BX is an almost bounded below (or, almost
surjective) operator of [19, corollary 3.1], then A (resp., A∗) has SVEP at 0, and
hence if (also) A ∈ Φleft(X ) (resp., A ∈ Φright(X )), then asc(A) < ∞ (resp.,
dsc(A) < ∞).

Let A,B ∈ BX such that B ∈ Poly−1(R(X )) (with minimal polynomial πB).
Following [8, 11] and [19, 21], we say that A is in ×–communication with B if there
exists a continuous function φ : [0, 1] → C such that

φ(0) = 0, φ(1) = 1 and µφ([0, 1]) /∈ σ×
f (A)

for all µ ∈ π−1
B (0). (Thus, A is in left–communication with B if φ(t)π−1

B (0) /∈
σl
f (A) for all 0 ≤ t ≤ 1.) Clearly, if A is in left–communication (resp., right–

communication or simply communication) with B, and πB(z) =
∏m

i=1 (z − µi), then∏m
i=1 (A− φ(t)µi) ∈ Φ×(X ), Πp(

∏m
i=1(A− φ(t)µi)) is left (resp., right or simply)

invertible for all 0 ≤ t ≤ 1 and Πp(πB(B)) is quasinilpotent in the quotient algebra.
The homomorphism Πq maps upper–Fredholm (resp., lower–Fredholm) operators
onto bounded below (resp,. surjective) operators [14]. The following corollary of
Theorem 4.1 appears in [19].

Corollary 4.3. Suppose that A,B ∈ BX, B ∈ Poly−1(R(X )) with minimal poly-
nomial πB(z) =

∏m
i=1 (z − µi), and A is in ×–communication with B.
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(i) If AB−BA ∈ Ptrb(Φ×(X )), then A−B ∈ Φ×(X ) and ind(A−B) = ind(A).
(ii) If AB − BA = 0, and asc(A) < ∞ (resp., dsc(A) < ∞), then A− B ∈ ×–

Browder for × = left or upper (resp., × = right or lower).

Proof. The hypothesis asc(A) < ∞ (resp., dsc(A) < ∞) implies A (resp., A∗)
has SVEP at 0, and the hypothesis A is in ×–communication with B implies
φ(t)π−1

B (0) /∈ σ×
f (A) for all 0 ≤ t ≤ 1. Theorem 4.1 applies.

We remark here that the conclusion A − B ∈ Φ×(X ) in (i) of the Corollary
above does not require the full force of the hypothesis A is in ×–communication
with B: the mere fact that πB(A) ∈ Φ×(X ) would do. Again, the hypothesis that
πB(A) ∈ Φ×(X ) has SVEP at 0 if × = left or upper and πB(A

∗) has SVEP at 0
if × = is right or lower, then AB − BA = 0 in (ii) of the Corollary is sufficient to
guarantee A−B ∈ ×–Browder (once again the full force of the hypothesis A is in
×–communication with B is not required).

Theorem 4.1 has an extension to operators A,B ∈ B(X ) such that f(B) ∈ R(X )
for some f ∈ H(σ(A) ∪ σ(B)) . Recall from Proposition 2.2 that if C,D ∈ B(X )
are commuting operators, then CD is ×–Browder if and only if C and D are ×–
Browder.

Theorem 4.4. ([21, theorem 2.1]) Let A,B ∈ B(X ) be such that f(B) ∈ R(X )
for some f ∈ H(σ(A) ∪ σ(B)).

(i) If AB −BA ∈ Ptrb(Φ×(X )) and f(A) ∈ Φ×(X ), then A−B ∈ Φ×(X ).
(ii) If AB−BA = 0 and f(A) ∈ ×–Browder, then A−B ∈ ×–Browder for × =

left or upper (resp., × = right or lower).

Proof.
(i) The hypothesis AB −BA ∈ Ptrb(Φ×(X )) implies

f(A)f(B)− f(B)f(A) ∈ Ptrb(Φ×(X )).

Choosing λ = 1 in Theorem 4.1, the hypothesis f(B) ∈ R(X ) then implies
that

d(Πp(f(A)− f(B)),Πpf(A)) = 0.

Thus f(A) ∈ Φ×(X ) implies f(A)−f(B) = (A−B)g(A,B) ∈ Φ×(X ); hence
A−B ∈ Φ×(X ).

(ii) In this case f(A)f(B)−f(B)f(A) = 0 and f(B) ∈ R(X ) imply f(A)−tf(B)
and f(A) have the same ×–Fredholm spectrum for all 0 ≤ t ≤ 1. The
hypothesis f(A) ∈ ×–Browder implies that either f(A) (if × is either left or
upper) or f(A∗) (if × is either right or lower)has SVEP at 0. Since SVEP at
0 transfers from f(A) to f(A)−tf(B) (resp., from f(A∗) to f(A∗)−tf(B∗))
for all 0 ≤ t ≤ 1, see [3] or argue as in the proof of Theorem 4.1(ii), f(A)−
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f(B) ∈ Φ×(X ) (resp., f(A∗)− f(B∗) ∈ Φ×(X )) implies f(A)− f(B) ∈ ×–
Browder. Consequently, A−B ∈ ×–Browder. �

The hypotheses of Theorem 4.4, or something akin to the hypotheses of Theorem
4.4, may be achieved in a number of ways (see theorems 2.2, 2.3 and 2.4 of [21]):
We mention here just one such case.

Corollary 4.5. Let A,B ∈ BX with f(B) ∈ R(X ) for some f ∈ Hc(σ(B)) and
g(A) ∈ R(X ) for some g ∈ Hc(σ(A)).

(i) If AB−BA ∈ Ptrb(Φ×(X )) and f−1(0)∩g−1(0) = ∅, then A−B is Browder.
(ii) If AB − BA = 0 and f−1(0) ∩ g−1(0) = ∅, then A − B is Browder, A − µ

is Browder at every µ ∈ f−1(0) and B − λ is Browder at every λ ∈ g−1(0).

Proof. From f(B) ∈ R(X ) for some f ∈ Hc(σ(B)), g(A) ∈ R(X ) for some g ∈
Hc(σ(A)) and f−1(0)∩g−1(0) = ∅ it follows that there exist (minimal) polynomials
πA and πB such that πA(A), πB(B) ∈ R(X ) and π−1

A (0)∩π−1
B (0) = ∅. According to

[20, theorem 2.1] we have σb(A) = π−1
A (0) and σb(B) = π−1

B (0). From the spectral
mapping theorem for Browder spectrum it follows that σb(πB(A)) = πB(σb(A)) =
πB(π

−1
A (0)), and since πB(π

−1
A (0)) does not contain 0, we get that πB(A) is Browder.

Similarly, πA(B) is Browder. (The fact that πB(A) and πA(B) are Browder implies
without any further hypotheses that A−µ is Browder at every µ ∈ f−1(0) and B−λ
is Browder at every λ ∈ g−1(0).) Furthermore, the operators A,B, πB(A), πB(B)
(and their adjoints) have SVEP (everywhere). If AB−BA ∈ Ptrb(Φ×(X ), then (as
in the proof of Theorem 4.1) πB(A) − πB(B) ∈ Φ×(X ). Hence, since SVEP at 0
transfers from πB(A) and its adjoint to πB(A)−πB(B) and its adjoint (respectively),
πB(A)−πB(B) is Browder, and this in turn implies (see Proposition 2.2) that A−B
is Browder. The proof of (ii) is now evident.

Corollary 4.5 strengthens the conclusions of [21, theorem 2.4].

5. An application to normal operators

An operator A ∈ BX is normal if A = H + iK for some commuting Hermitian
operators H,K ∈ BX. Trivially, A ∈ BX normal implies A − λ normal for all
complex λ. Normal operators A satisfy the (James–Birkhoff) orthogonality property

A−1(0) ⊥ A(X ) : ||x|| ≤ ||x+Ay||, all x ∈ A−1(0) and y ∈ X

[4, page 25]. Hence, for normal A ∈ BX, A−1(0) ∩ A(X ) = {0}, consequently
asc(A) ≤ 1. Since the adjoint operator A∗ of a normal operator A ∈ BX is again
normal, both A and A∗ have SVEP (everywhere) for a normal operator A ∈ BX.
Thus, for normal A ∈ BX, σ(A) = σ(A∗) = σa(A), A is semi–Fredholm if and only
if it is Fredholm (indeed, Weyl, even Browder), A is bounded below implies A is
invertible, and if A(X ) is closed then X = A−1(0) ⊕ A(X ) (implies dsc(A) < ∞).
The following theorem is a generalisation of [19, theorem 3.8].
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Theorem 5.1. Let B ∈ Poly−1(R(X )), with minimal polynomial πB(z) =
∏m

i=1 (z − µi),
and let A ∈ BX be a normal operator.

(i) If If πB(A) is semi–Fredholm and AB −BA = 0, then A−B is Browder.
(ii) If πB(A, t) =

∏m
i=1 (A− tµi) is semi–Fredholm for all t ∈ [0, 1] and AB −

BA ∈ Ptrb(Φ(X )), then A−B ∈ Φ(X ) and ind(A−B) = 0 (so that A−B
is Weyl).

Proof.
(i) The hypotheses πB(A) is semi–Fredholm (hence, Fredholm), AB −BA = 0

(hence, πB(A)πB(B)−πB(B)πB(A) = 0) and πB(B) ∈ R(X ) imply πB(A)−
πB(B) ∈ Φ(X ). Since both normal operator A and its adjoint A∗ have SVEP
(everywhere), πB(A) and πB(A

∗) have SVEP at 0. Hence πB(A) − πB(B)
and πB(A

∗)−πB(B
∗) = (πB(A)−πB(B))∗ have SVEP at 0. Consequently,

πB(A)− πB(B) is Browder [1, theorem 3.52]. Hence A−B is Browder.

(ii) Choose λ = λ(t) = t, t ∈ [0, 1], in the proof of Theorem 4.1, and conclude
from πB(A, t)− πB(B) is semi–Fredhom that A−B is semi–Fredhom with
ind(A − B) = ind(A). Since both A and A∗ have SVEP at 0,
ind(A) = 0. �

Theorem 5.1 has an extension to paranormal operators A ∈ BX: ||Ax||2 ≤ ||A2x||
for all unit vectors x ∈ X [10, section 54]. Since paranormal operators have (finite)
ascent≤ 1, hence SVEP at 0, an upper (or left) semi–Fredholm paranormal operator
is upper (resp., left) Browder with index ≤ 0 and a lower (resp., right) semi–
Fredholm paranormal operator with index ≥ 0 is Browder.

Corollary 5.2. Let B ∈ Poly−1(R(X )) (with minimal polynomial πB). Suppose
that A ∈ BX is a paranormal operator such that A − µ is ×–Fredholm for all
µ ∈ tπ−1

B (0); t ∈ [0, 1]. If:

(i) AB −BA ∈ Ptrb(Φ(X )), then A−B ∈ Φ×(X ) and ind(A−B) = ind(A).

(ii) AB−BA = 0, then A and A−B are ×–Browder. Furthermore, if πB(A, t) =∏m
i=1 (A− tµi) is lower or right semi–Fredholm and ind(πB(A, t)) ≥ 0, t ∈

[0, 1], then A−B is Browder.

Proof. The proof of (i) is clear from that of Theorem 4.1. (Observe that if
Φ×(X ) = right or lower Fredholm, then, see the argument below, A−B is Fredholm
with ind(A−B) ≤ 0.)

To complete the proof of (ii), one observes that a paranormal operator has SVEP
at every point µ such that A−µ ∈ Φ×(X ) [7, corollary 2.10]. This, if A−µ is lower
(or, right) semi–Fredholm implies ind(A − µ) ≤ 0, which then forces A − µ to be
Fredholm. Thus if πB(A, t) is lower or right semi–Fredholm, then πB(A, t) ∈ Φ(X )
with ind(πB(A, t)) ≤ 0. If we now also have that ind(πB(A, t)) ≥ 0, then πB(A, t)
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is Weyl with SVEP (at 0). Consequently, πB(A, t)− tmπB(B) is Browder and this
implies A−B is Browder.
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