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Abstract

Given a Banach space operator T ∈ B(X ), the following statements are equivalent:
(i) T is polynomially meromorphic; (ii) T is generalised meromorphic; (iii) f(T ) is
meromorphic for some function f analytic on, and non-constant on the connected
components of, an open neighbourhood of σ(T ); (iv) there exists a finite sequence
of scalars {µi}ni=1 and a decomposition X =

⊕n
i=1 Xi such that T =

⊕n
i=1 T |Xi =⊕n

i=1 Ti, where µiIi − Ti is meromorphic for all 1 ≤ i ≤ n. An operator T ∈ B(X )
with countable spectrum (and at best a single point of accumulation) such that
every part, and the inverse of every invertible part, of T is normaloid is a translate
of a meromorphic operator.

1. Introduction

A Banach space operator (that is, a bounded linear transformation) T ∈ B(X ) is a
meromorphic operator if its non-zero spectral points are poles of the resolvent (of
T ). Compact operators, more generally Riesz operators, are meromorphic; algebraic
operators, although not Riesz, are meromorphic operators. The classes consisting
of Riesz operators and meromorphic operators, along with sharing some common
properties, have some elemental differences. Thus, an operator T ∈ B(X ) in either of
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these classes has a countable spectrum, and both T and T ∗ have the single-valued
extension property. Whereas the (Fredholm) essential spectrum (or the Browder
spectrum or the Weyl spectrum) of a Riesz operator T ∈ B(X ) consists at best of
the singleton set {0}, however, it is possibly the whole of the spectrum of T in the
case in which T is meromorphic.

T ∈ B(X ) is polynomially meromorphic (resp., compact, Riesz) if there exists a
non-trivial polynomial p(.) such that p(T ) is meromorphic (resp., compact, Riesz).
The structure of polynomially compact and polynomially Riesz operators has been
considered by a number of authors, amongst them Gilfeather [13], Kaashoek and
Smyth [18], Han et al. [15], Jeribi and Moalla [17] and Živkovic-Zlatanović et al.
[22]. In this article, we carry out a study (similar in spirit to the one carried out in
[18]) on the structure of holomorphically meromorphic operators to prove amongst
other results that f(T ), T ∈ B(X ), is meromorphic for some f ∈ Holoc(σ(T )), if
and only if there exists a finite subset {µ1, ..., µn} of complex numbers such that
f(µi) = 0 for all 1 ≤ i ≤ n, a decomposition X =

⊕n
i=1 Xi of X into a direct sum

of closed A invariant subspaces Xi and a decomposition T =
⊕n

i=1 T |Xi =
⊕n

i=1 Ti

such that µiIi − Ti is meromorphic for all 1 ≤ i ≤ n. Here Ii denote the identity
of B(Xi) and Holoc(σ(A)) denotes the set of functions f that are analytic on, and
non-constant on each of the connected components of, an open neighbourhood of
the spectrum σ(T ) of T . It is seen that T ∈ B(X ) is polynomially meromorphic if
and only if f(T ) is meromorphic for some f ∈ Holoc(σ(A)).

2. Some terminology and notation

A Banach space operator T ∈ B(X ) is polaroid if the isolated points of the spectrum
σ(T ) of T , points λ ∈ isoσ(T ), are poles of the resolvent of T . Let Π(T ) denote the
set of poles of the resolvent of T . A necessary and sufficient condition for λ ∈ Π(T )
is that asc(λI−T ) = dsc(λI−T ) < ∞, where the ascent of T , asc(T ) (resp. descent
of T , dsc(T )), is the least non-negative integer n such that T−n(0) = T−(n+1)(0)
(resp., TnX = Tn+1X ). (If no such integer exists, then asc(T ), resp. dsc(T ), = ∞.)

An operator T ∈ B(X ) is upper semi-Fredholm (resp., lower semi-Fredholm) if
TX is closed, and the deficiency index α(T ) = dimT−1(0) < ∞ (resp., β(T ) =
dimX/TX < ∞); T is semi-Fredholm if it is either upper or lower semi-Fredholm,
and the (semi-Fredholm) index of T is then the integer ind(T ) = α(T ) − β(T ). In
the following, we shall denote the set of semi-Fredholm points of an operator T
by ΦSF (T ), the set of upper semi-Fredholm (resp., lower semi-Fredhom) operators
by ΦSF+(X ) (resp., ΦSF−(X )), and the semi-group of semi-Fredholm operators by
ΦSF (X ). Let ΦSF−

+
(X ) = {T ∈ ΦSF+(X ) : ind(T ) ≤ 0} (resp., ΦSF+

−
(X ) = {T ∈

ΦSF−(X ) : ind(T ) ≥ 0}). T is Fredholm, T ∈ ΦF (X ), if T ∈ Φ+(X ) ∩ Φ−(X ), and
T is Weyl (resp., Browder) if it is Fredholm of index 0 (resp., Fredholm of finite
ascent and descent). The Weyl spectrum σW (T ) (resp., Browder spectrum σB(T ))
of T is the set of complex numbers λ, λ ∈ C, such that λI − T is not Weyl (resp.,
λ ∈ C such that λI − T is not Browder).
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Berkani [3] has called an operator T ∈ B(X ) a B-Fredholm operator, T ∈
ΦBF (X ), if there exists a natural number n, n ∈ N, for which Tn(X ) is closed and
the induced operator Tn : Tn(X ) −→ Tn(X ) is Fredholm in the usual sense, and
a B-Weyl operator, T ∈ ΦBW (X ), if, in addition, Tn has index 0. An operator T
is upper semi B-Fredholm (resp., lower semi B-Fredholm), T ∈ ΦUBF (X ) (resp.,
T ∈ ΦLBF (X )), if Tn(X ) is closed for some n ∈ N and the induced operator
Tn is upper semi-Fredholm (resp., lower semi-Fredholm) in the usual sense [4]; T
is semi B-Fredholm, T ∈ ΦSBF (X ), if T ∈ ΦUBF (X ) or T ∈ ΦLBF (X ), and T
is B-Fredholm, T ∈ ΦBF (X ), if T ∈ ΦUBF (X ) ∩ ΦLBF (X ). Let σUBF (T ) = {λ :
λI−T /∈ ΦUBF (X )} and σLBF (T ) = {λ : λI−T /∈ ΦLBF (X )}; then the B-Fredholm
spectrum of T is the set σBF (T ) = σUBF (T ) ∪ σLBF (T ). For a T ∈ ΦSBF (X ), the
index of T is defined by ind(T ) = ind(Td), where d ∈ N is the degree of stable
iteration of T (see [4, definition 2.2]). Let

ΦSBF−
+
(T ) = {T ∈ ΦSBF (X ) : T is upper B-Fredholm with ind(T ) ≤ 0},

and let

σSBF−
+
(T ) = {λ ∈ C : λI − T /∈ ΦSBF−

+
(X )}.

We say that a point λ ∈ σa(T ) is a left pole (resp., left pole of finite rank) of T ,
denoted λ ∈ Πa(T ) (resp., λ ∈ Πa

0(T )), if λI −T ∈ LD(X ) (resp., λI −T ∈ LD(X)
and α(λI − T )) < ∞), where LD(X ) is the regularity

LD(X ) = {T ∈ B(X ) : d = asc(T ) < ∞ and T d+1(X ) is closed}.

The (left Drazin) spectrum induced by the regularity LD will be denoted by σLD(.).
Evidently, Πa(T ) = {λ ∈ σa(T ) : asc(λI − T ) = d < ∞, T d+1X is closed}.

An operator T ∈ B(X ) has SVEP (= the single-valued extension property) at a
point λ0 ∈ C if for every open disc Dλ0 centered at λ0 the only analytic function
f : Dλ0 −→ X satisfying (λI − T )f(λ) = 0 is the function f ≡ 0. Evidently, every
T has SVEP at points in the resolvent ρ(T ) = C \ σ(T ) and the boundary ∂σ(T )
of the spectrum σ(T ). We say that T has SVEP if it has SVEP at every λ ∈ C.
The quasinilpotent part H0(λI − T ) and the analytic core K(λI − T ) of (λI − T )
are defined by

H0(λI − T ) = {x ∈ X : lim
n−→∞

||(λI − T )nx|| 1
n = 0}

and

K(λI − T ) = {x ∈ X : there exists a sequence {xn} ⊂ X and δ > 0

for which x = x0, (λI − T )xn+1 = xn and ∥xn∥ ≤ δn∥x∥ for all n = 1, 2, ...}.

We note that H0(λI −T ) and K(λI −T ) are (generally) non-closed hyperinvariant
subspaces of (λI − T ) such that (λI − T )−p(0) ⊆ H0(λI − T ) for all p = 0, 1, 2, ...
and (λI − T )K(λI − T ) = K(λI − T ) [1].
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Lemma 2.1. If λ ∈ isoσ(T ) and H0(λI − T ) = (λI − T )−p(0) for some integer
p ≥ 1, then λ is a pole (of the resolvent) of T .

Proof. If λ ∈ isoσ(T ) and H0(λI − T ) = (λI − T )−p(0), then

X = H0(λI − T )⊕K(λI − T ) = (λI − T )−p(0)⊕K(λI − T )

=⇒ (λI − T )p(X ) = 0⊕K(λI − T ) =⇒ X = (λI − T )−p(0)⊕ (λI − T )p(X ),

that is, λ is a pole (of order p) of T .

We say in the following that T is polar at λ if λ ∈ isoσ(T ) is a pole of T . The
operator T is polaroid on a subset F of C if T is polar at every point of F , and T
is polaroid if it is polar at every λ ∈ isoσ(T ). Observe that:

Lemma 2.2. T ∈ B(X ) is polaroid if and only if the dual operator T ∗ is polaroid.

Proof. A point λ ∈ isoσ(T ) is a pole of T if and only if there exists an integer
p > 0 such that

X = (λI − T )−p(0)⊕ (λI − T )p(X ) ⇐⇒ X ∗ = (λI∗ − T ∗)p(X ∗)⊕ (λI∗ − T ∗)−p(0),

since (λI − T )−p(0) and (λI − T )p(X ) are closed.

Let RD(X ) denote the regularity {T ∈ B(X ) : dsc(T ) = d < ∞, T dX is closed },
Πs(T ) = {λ ∈ σs(T ) : λI − T ∈ RD(X )} the set of right poles of T , ΦSBF+

−
(X )

the set of T ∈ ΦSBF (X ) that are lower semi B-Fredholm with ind(T ) ≥ 0, and
let σSBF+

−
(T ) = {λ : λI − T /∈ ΦSBF+

−
(X )}. Then, this follows from a straightfor-

ward argument, Π(T ) = Πa(T ) ∩ Πs(T ) and σBW (T ) = σSBF−
+
(T ) ∪ σSBF+

−
(T ) =

σSBF+
−
(T ∗) ∪ σSBF−

+
(T ∗) = σBW (T ∗). The regularities LD(X ) and RD(X ) give

rise to the left Drazin spectrum σLD(T ) = {λ : λI − T /∈ LD(X )} and the
right Drazin spectrum σRD(T ) = {λ : λI − T /∈ RD(X )}. The Drazin spectrum
σD(T ) = {λ : λI − T is not Drazin invertible} is then σD(T ) = σLD(T ) ∪ σRD(T ).
It is easily verified that σBF (T ) ⊆ σBW (T ) ⊆ σBB(T ) = σD(T ), where σBB(T ) =
{λ : λ ∈ σBF (T ) or asc(λI − T ) ̸= dsc(λI − T )} is the B-Browder spectrum of T .
It is clear that an operator T is Drazin invertible if and only if both asc(T ) and
dsc(T ) are finite; also, if λ ∈ Π(T ), then λI − T is Drazin invertible, and hence
B-Fredholm.

3. Some complementary results

T ∈ B(X ) is said to have uniform descent for n ≥ d ∈ N, if R(T ) + T−n(0) =
R(T )+T−d(0) for all n ≥ d. If, in addition, R(T )+T−d(0) is closed, then T is said
to have topological uniform descent for n ≥ d. Evidently, if either of the deficiency
indices α(T ) and β(T ) or the chain lengths asc(T ) and dsc(T ) is finite, then T has
uniform descent [14].
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Some of the following lemmas are well known.

Lemma 3.1. [10, lemma 3.1] If λ ∈ Πa(T ), then λI − T is of topological uniform
descent, λ ∈ isoσa(T ) and λ /∈ σSBF−

+
(T ).

Using Banach space duality, Lemma 3.1 implies the following.

Corollary 3.1. If λ ∈ Πs(T ), then λ ∈ isoσs(T ) and λ /∈ σSBF+
−
(T ).

Let Holo(σ(T )) denote the set of functions f that are analytic on an open neigh-
bourhood of σ(T ), and Holoc(σ(T )) = {f ∈ Holo(σ(T )) : f is non-constant on each
of the connected components of the set on which it is defined}. Recall from [3,
theorem 3.4] that f(σBF (T )) = σBF (f(T )) for all f ∈ Holo(σ(T )).

Lemma 3.2. If T has SVEP at points λ /∈ σBF (T ) , then σBW (f(T )) = f(σBW (T ))
for all f ∈ Holo(σ(T )).

Proof. Evidently, σD(T ) ⊇ σBW (T ). Let λ /∈ σBW (T ). Then there exists a natural
number n such that (λI−T )n is B-Fredholm and ind(λI−T )n = 0. Since σBF (T ) ⊆
σBW (T ), T has SVEP at λ implies asc((λI−T )n) = dsc((λI−T )n) < ∞ [1, theorem
3.4]. Hence, λ /∈ σD(T ), and we conclude that (σBW (T ) = σD(T ) and by the
spectral mapping theorem for σD(T ) that) f(σBW (T )) = f(σD(T )) = σD(f(T )) ⊇
σBW (f(T )) for every f ∈ Holo(σ(T )). Suppose now that µ /∈ σBW (f(T )). Then
µI − f(T ) is B-Fredholm and ind(µI − f(T )) = 0. Since f(σBF (T )) = σBF (f(T ))
for all f ∈ Holo(σ(T )), there exists a ν /∈ σBW (T ) such that µ = f(ν). Since T has
SVEP at ν, f(T ) has SVEP at µ, and hence µ /∈ σD(f(T )) = f(σBW (T )). Thus,
f(σBW (T )) ⊆ σBW (f(T )), and the proof is complete.

It is known that the left Drazin spectrum σLD(.) and the right Drazin spectrum
σRD(.) induced by the regularities LD(X ) and RD(X ) satisfy the spectral mapping
theorem for all analytic functions that are locally non-constant [21]. The following
lemma is proved in [5, theorem 2.5].

Lemma 3.3. If T is an operator of topological uniform descent, then T has SVEP
at 0 ⇐⇒ asc(T ) < ∞.

Dually, Lemma 3.3 implies that if T is an operator of topological uniform de-
scent, then T ∗ has SVEP at 0 ⇐⇒ dsc(T ) < ∞. Thus, if T has SVEP at points
λ /∈ σSBF+(T ) (resp., T ∗ has SVEP at points λ /∈ σSBF−(T )), then σSBF+(T ) =
σLD(T ) (resp., σSBF−(T ) = σRD(T )). Observe that if T ∗ has SVEP (resp., T has
SVEP), then σLD(T ) = σD(T ) (resp., σRD(T ) = σD(T )). This is encapsulated in
the following lemma.

Lemma 3.4. [10, lemma 3.5] If T has SVEP at points λ /∈ σSBF+
−
(T ) (resp., T ∗
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has SVEP at points λ /∈ σSBF−
+
(T )), then σSBF+

−
(T ) = σBW (T ) = σD(T ) (resp.,

σSBF−
+
(T ) = σBW (T ) = σD(T )).

Lemma 3.5. [10, lemma 3.6] If T has SVEP at points λ /∈ σSBF+
−
(T ) (resp., T ∗

has SVEP at points λ /∈ σSBF−
+
(T )), then f(σSBF+

−
(T )) = σSBF+

−
(f(T )) (resp.,

f(σSBF−
+
(T )) = σSBF−

+
(f(T )) for every f ∈ Holoc(σ(T )).

4. Meromorphic operators

An operator T ∈ B(X ) is meromorphic, T ∈ (M), if all its non-zero spectral points
are poles. It is clear that a meromorphic operator possesses at most countably
many spectral points. Hence, T meromorphic implies both T and T ∗ have SVEP.
Compact, more generally Riesz, operators are meromorphic. (Recall that Riesz op-
erators are meromorphic operators all of whose translates by scalars, except for the
translate by 0, are Fredholm operators; equivalently, Riesz operators are meromor-
phic operators such that the points of the spectrum of the operator, except for the
point 0, are finite rank poles of the operator.) Some of the following properties of
meromorphic operators are likely well known; we sketch a proof for the reader’s
convenience.

(P0). In contrast to Riesz operators, the sum of a pair of commuting meromor-
phic operators may not be a meromorphic operator. Example: If we let Q ∈ B(X )
denote a quasinilpotent operator, then Q is meromorphic, the identity operator
I ∈ B(X ) is meromorphic and commutes with Q, but I + Q is not meromorphic.
(This example shows also that the property of being quasinilpotent equivalent [20,
p. 253] does not preserve the meromorphic property of an operator.) Again, the
product of two commuting operators, one of which is meromorphic, may not be
meromorphic. Example: The operators I and I +Q above commute, I is meromor-
phic and I + Q = I(I + Q) is not meromorphic. However: For λ ∈ C and natural
numbers n,

(λI − T )n ∈ (M) ⇐⇒ λI − T ∈ (M).

Proof. The Drazin spectrum being a regularity [21], σD(f(A)) = f(σD(A)) for
all operators A and f ∈ Holoc(A). The proof now follows since λI − T ∈ (M) if
and only if σD(λI − T ) ⊆ {0} ⇐⇒ σD((λI − T )n) ⊆ {0}.

A part of an operator is its restriction to a closed invariant subspace. We say
that T ∈ B(X ) is polar if it is polar at 0 (that is, if 0 is a pole of T ).

(P1). A part of a meromorphic operator is again meromorphic. If a meromorphic
operator T is such that T is polar, then (σ(T ) consists of a finite number of poles,
and hence) T is algebraic.

Proof. That the restriction of a meromorphic operator to an invariant subspace is
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again meromorphic is proved in [8, proposition 2.10]. If 0 is a pole of a meromorphic
operator, then it has a finite spectrum consisting of poles of the resolvent. Hence,
it is algebraic [1, theorem 3.83].

(P2). T ∈ (M) if and only if (the dual operator) T ∗ ∈ (M).

Proof. Evident, since σ(T ) = σ(T ∗) and T is polaroid if and only if T ∗ is polaroid.

(P3). Given A,B ∈ B(X ), AB ∈ (M) ⇐⇒ BA ∈ (M).

Proof. Follows since σ(AB) \ {0} = σ(BA) \ {0}, asc(λI −AB) = asc(λI −BA)
and dsc(λI −AB) = dsc(λI −BA) for all non-zero λ [6].

(P4). T =
⊕n

i=1 Ti ∈ (M) if and only if Ti ∈ (M) for all 1 ≤ i ≤ n.

Proof. In this case, σ(T ) =
∪n

i=1 σ(Ti); since

asc(λIi − Ti) ≤ asc(λIi − Ti) ≤
n∑

i=1

asc(λIi − Ti) and

dsc(λIi − Ti) ≤ dsc(λI − T ) ≤
n∑

i=1

dsc(λIi − Ti)

for all 1 ≤ i ≤ n and complex λ [23, exercise 7, p. 293], the proof follows.

(P5). A,AB ∈ (M) does not imply B ∈ (M).

Proof. To see this, take A to be the 0 operator. Then AB ∈ (M) for every
B ∈ B(X ).

Given Banach spaces X and Y, let X⊗Y denote the completion, endowed with
a reasonable cross norm, of the algebraic tensor product of X and Y, and let
A ⊗ B ∈ B(X⊗Y) denote the tensor product of A ∈ B(X ) and B ∈ B(Y). Let
LARB ∈ B(B(Y,X )) denote the left-right multiplication operator LARB(X) =
AXB defined by A ∈ B(X ) and B ∈ B(Y).

(P6). A,B ∈ (M) implies A⊗B ∈ (M) and LARB ∈ (M). The converse fails.

Proof. The hypothesis A,B ∈ (M) implies that A,B are polaroid operators such
that σ(A⊗B) and σ(LARB) are countable sets with 0 as their only possible limit
point. Since the polaroid property transfers from A,B to A ⊗ B and to LARB

[11], the proof follows. To see that the converse fails, consider the example of the
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operators A and B such that A is quasinilpotent, the set isoσ(B) properly contains
{0} and B is not polaroid, when it follows that A, A⊗B and LARB are meromorphic
but B is not.

(P7). If f(T ) ∈ (M), f ∈ Holoc(σ(T )), then σD(T ) = σx(T ), where σx = σUBB

or σLBB or σBB or σUBW or σLBW or σBW or σUBF or σLBF or σBF or σLD or
σRD.

Proof. Since f(T ) (resp., f(T ∗) = f(T )∗) has SVEP at a point λ if and only if
T (resp., T ∗) has SVEP at every µ such that f(µ) = λ [1, theorem 2.39], f(T ) ∈
(M) implies both T and T ∗ have SVEP (everywhere). The proof now follows from
Lemma 3.4.

(P8). If A ∈ (M), AX = XB, X is injective and σ(B) \ {0} ⊆ σ(A) \ {0}, then
B ∈ (M).

Proof. If 0 ̸= λ ∈ σ(B), λ is an isolated point of both σ(A) and σ(B). Letting
Pλ(A) and Pλ(B) denote the associated spectral projections, it is seen that there
exists an integer p ≥ 1 such that (λI −A)−p(0) coincides with the range of Pλ(A),
and then:

0 = (λI −A)pPλ(A)X = (λI −A)pXPλ(B) = X(λI −B)pPλ(B)

=⇒ (λI −B)pPλ(B) = 0 =⇒ H0(λI −B) ⊆ Pλ(B)(X ) ⊆ (λI −B)−p(0)

=⇒ H0(λI −B) = (λI −B)−p(0).

Hence, B is polar at λ.

We say that an operator T ∈ B(X ) is generalised meromorphic, T ∈ (GM),
if there exists a finite subset E of the set C of complex numbers such that T is
polar at every λ ∈ C \ E (and then the points λ ∈ σ(T ) \ E have no points of
accumulation, except possibly for the points of E). Thus, T ∈ (GM) implies both
T and T ∗ have SVEP, and an operator T ∈ (GM) if and only if the set

σD(T ) = σLD(T ) = σRD(T ) = σBB(T ) = σBW (T ) = σBF (T )

has finite cardinality. We remark here that generalised Riesz operators (of [22]) are
generalised meromorphic.

Evidently, isof(σ(T )) = isoσ(f(T )).

Lemma 4.1. isof(σ(T )) = f(isoσ(T )), f ∈ Holoc(σ(T )).

Proof. Choose a λ ∈ isoσ(f(T )), and let µ ∈ σ(T ) such that λ = f(µ). Then µ ∈ Ω
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for some connected component Ω of the domain of definition of f . If µ /∈ isoσ(T ),
then there exists a sequence {µi} ⊆ σ(T ) ∩ Ω converging to µ. Since f(µi) = λ for
at most a finite number of values µi, there exists an integer m such that f(µi) ̸= λ
for all i ≥ m. But then f(µi) converges to λ = f(µ) implies λ /∈ isof(σ(T )) – a
contradiction. Hence, µ ∈ isoσ(T ) for every µ ∈ σ(T ) such that f(µ) = λ (that
is, isof(σ(T )) ⊆ f(isoσ(T ))). The reverse inclusion being evident, the proof is
complete.

The following theorem proves that T inherits the polaroid property from f(T ),
f ∈ Holoc(σ(T ).

Theorem 4.1. T is polaroid if and only if f(T ) is polaroid for every f ∈ Holoc(σ(T )).

Proof. Suppose to start with that T is polaroid and λ ∈ isoσ(f(T )). Then (we
may assume that) λ − f(z) has finitely many zeros {µ1, ..., µn} in σ(T ), where
µi ∈ isoσ(T ) for all 1 ≤ i ≤ n. Evidently, λ − f(z) = p(z)g(z), where p(z) =∏n

i=1 (µi − z)ai is a polynomial and g is analytic (in the domain of definition of f)
without zeros in σ(T ). This implies that λI−f(T ) = p(T )g(T ) with g(T ) invertible,
p(T ) =

∏n
i=1 (µiI − T )ai and

H0(λI − f(T )) = H0(p(T )) =
n⊕

i=1

H0(µiI − T ).

Since T is polaroid, there exists an integer p ≥ 1 such that asc(µiI − T ) ≤ p, and
then H0(µiI − T ) = (µiI − T )−pai(0), for all 1 ≤ i ≤ n. Thus,

H0(λI − f(T )) =

n⊕
i=1

H0(µiI − T ) =

n⊕
i=1

(µiI − T )−pai(0)

= ker(
n∏

i=1

(µiI − T )pai) = p(T )−p(0) = (λI − f(T ))−p(0).

This implies that f(T ) is polar at λ (see Lemma 2.1).
For the converse assume that f(T ) is polar for an f ∈ Holoc(σ(T )). We prove

that every µ ∈ isoσ(T ) is a pole of T . Let µ ∈ isoσ(T ) and let f(µ) = λ. Then
λ ∈ isoσ(f(T )), and so there exists an integer p ≥ 1 such that H0(λI − f(T )) =
(λI− f(T ))−p(0). Since λ− f(z) = f(µ)− f(z) = (µ− z)ap(z)g(z) for some integer
a ≥ 1, polynomial p(z) such that p(µ) ̸= 0 and an analytic function g(z), it follows
from H0(λI − f(T )) ∩ p(T )−1(0) = {0} that

H0(µI − T ) ⊆ H0(λI − f(T )) = (µI − T )−pa(0)
⊕

p(T )−p(0)

= (µI − T )−pa(0) ⊆ H0(µI − T ),

that is, H0(µI − T ) = (µI − T )−pa(0). Since µ ∈ isoσ(T ), this implies that T is
polar at µ.
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Remark 4.1. We are grateful to a referee for pointing out that a proof of Theorem
4.1 appears in [2], also that the results of our Theorem 4.2 infra are related to the
results of the reference loc. cit..

The following corollaries are immediate from the above.

Corollary 4.1. If f(T ) ∈ (M), f ∈ Holoc(σ(T )), then:
(i) For each µ such that f(µ) = 0, either T is polar at µ or µ is a limit point of

the poles of T . Consequently, if f(T ) ∈ (M), then σBF (T ) ⊆ {µ : f(µ) = 0}.
(ii) µI − T is B-Browder at every µ such that f(µ) ̸= 0.

Corollary 4.2. f(T ) ∈ (M) for some f ∈ Holoc(σ(T )) if and only if T ∈ (GM).

Corollary 4.3. If f(T ) ∈ (M), f ∈ Holoc(σ(T )), then α(µI − T ) < ∞ ⇐⇒
α(f(µ)I − f(T )) < ∞. Consequently, if If f(T ) ∈ (M), f ∈ Holoc(σ(T )), and
α(λI − f(T )) < ∞ for all λ ̸= 0, then T is generalised Riesz.

Corollary 4.4. If f(T ) ∈ (M) for some f ∈ Holoc(σ(T )), then either T is alge-
braic or each µ ∈ σ(T ) such that f(µ) = 0 is either a limit point of the eigenvalues
of T or dimH0(µI − T ) = ∞.

Proof. If f(µ) = 0, then either there exists a sequence (µn) ⊂ isoσ(T ) such that
µn → µ or µ ∈ isoσ(T ). If µ ∈ isoσ(T ) and T is polar at µ, then 0 is a pole of f(T ).
This forces f(T ), hence also T , to be algebraic. If, instead, µ ∈ isoσ(T ) and T is not
polar at µ, then dimH0(µI − T ) = ∞. (Observe that if dimH0(µI − T ) < ∞, then
there exists an integer p ≥ 1 such that H0(µI − T ) = (µI − T )−p(0); consequently,
T is polar at µ.) Assume finally that µ /∈ isoσ(T ). If σ(T ) ⊃ {µn} and µn → µ,
then each µn is a pole, hence an eigenvalue, which implies that µ is a limit point
of the eigenvalues of T .

Recall from [6] that for A,B ∈ B(X ), asc(λI − AB) = asc(λI − BA) and
dsc(λI −AB) = dsc(λI −BA) for all λ ̸= 0; furthermore, this follows from a slight
modification of the argument of [6], if λ ̸= 0 then (λI − BA)d(X ) is closed if and
only if (λI − AB)d(X ) is closed. Hence: for all λ ̸= 0, λ /∈ σx(AB) if and only if
λ /∈ σx(BA), where σx denotes either of σLD and σRD.

Corollary 4.5. f(BA) ∈ (M), f ∈ Holoc(σ(BA)), if and only if g(AB) ∈ (M)
for some g ∈ Holoc(σ(AB)).

Proof. Corollary 4.2 implies that f(BA) ∈ (M) ⇐⇒ BA ∈ (GM) ⇐⇒ AB ∈
(GM). Since σD(AB) = σD(BA) ⊆ {µi, 1 ≤ i ≤ n : f(µi) = 0}, f(BA) ∈ (M)
implies AB polynomially meromorphic. The same argument works for the reverse
implication.

If f(T ) ∈ (M), f ∈ Holoc(σ(T )), is such that σD(f(T )) ̸= ∅, then σD(f(T )) =
{0}, there exists a finite subset {µ1, ..., µn} ⊂ C such that f(µi) = 0 for all 1 ≤
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i ≤ n, and there exist countable disjoint subsets Si = {µim} ⊂ C such that µi ∈ Si

and S1 ∪ ... ∪ Sn = σ(T ). (Here, either of the sets Si may consist of the singleton
{µi}; evidently, H0(µiI − T ) is then infinite dimensional.) Letting Pi denote the
spectral projection associated with the spectral set Si, we obtain closed T -invariant
subspaces Xi of X and operators Ti = T |Xi such that X =

⊕n
i=1 Xi and T =⊕n

i=1 Ti. Clearly, σD(Ti) = {µi} and µiIi − Ti is meromorphic for all 1 ≤ i ≤ n.
(Here, as before, Ii is the identity B(Xi).) We have proved:

Proposition 4.1. If T ∈ B(X ) and f ∈ Holoc(T ) are such that f(T ) is mero-
morphic, then there exists a finite set {µ1, ..., µn} ⊂ f−1(0) of zeros of f for which
T =

⊕n
i=1 Ti of parts Ti of T such that µiIi − Ti is meromorphic for all 1 ≤ i ≤ n.

Proposition 4.1, first proved in [18], generalises a result of Gilfeather [13] on the
structure of polynomially compact operators, a result of Han et al. [15] on the
structure of polynomially Riesz operators on Hilbert spaces, and a result of Živkovic-
Zlatanovič et al. [22] on the structure of polynomially Riesz operators on Banach
spaces.

An operator T is polynomially meromorphic if there exists a non-trivial poly-
nomial p(.) such that p(T ) is meromorphic. Trivially, T polynomially meromorphic
implies f(T ) meromorphic for some f ∈ Holoc(σ(T )). The following proposition
says that this condition is if and only if. Recall from [3, proposition 3.2] that: (i)
The product

∏n
i=1 (λiI − T )αi is B-Fredholm if and only if (λiI−T ) is B-Fredholm

for all 1 ≤ i ≤ n; (ii) if f(T ) is B-Fredholm and g(T ) is invertible, then f(T )g(T )−1

is B-Fredholm.

Theorem 4.2. For an operator T ∈ B(X ), the following statements are equivalent.

(i) f(T ) ∈ (M) for some f ∈ Holoc(σ(T )).
(ii) p(T ) ∈ (M) for some non-trivial polynomial p(.).
(iii) There exists a finite sequence of scalars {µi}ni=1 and a decomposition X =⊕n

i=1 Xi such that T =
⊕n

i=1 T |Xi
=

⊕n
i=1 Ti, where µiIi − Ti ∈ (M) for all

1 ≤ i ≤ n.

Proof. We have already proved (ii) =⇒ (iii), see Proposition 4.1, and (ii) =⇒ (i)
is evident; we prove (i) =⇒ (ii) and (iii) =⇒ (ii).

(i) =⇒ (ii). Consider a point µ ̸= 0; then µI − f(T ) is B-Fredholm. Since µ− f(z)
has at best a finite number of zeros on σ(T ),

µ− f(z) =
n∏

i=1

(λi − z)αig(z)
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for some non-vanishing analytic function g(z). Hence,

(µI − f(T ))g(T )−1 =
n∏

i=1

(λiI − T )αi = p(T )

for some polynomial p(.). Evidently, p(T ) is B-Fredholm. Observe that the operator
f(T ) being meromorphic, both f(T ) and f(T ∗) have SVEP; hence, T and T ∗,
so also p(T ) and p(T )∗, have SVEP. Consequently, p(T ) is polaroid, and hence
meromorphic.

(iii) =⇒ (ii). Letting pj(z) denote the polynomial pj(z) =
∏n

j=1 (µj − z), it is seen
that

p(T ) =
n∏

j=1

(µjI − T ) =
n∏

j=1

{
n⊕

i=1

(µjIi − Ti)}

=
n⊕

i=1

{
n∏

j=1

(µjIi − Ti)} =
n⊕

i=1

pj(Ti),

where µiIi−Ti ∈ (M) for all 1 ≤ i ≤ n (and µjIi−Ti is invertible for all 1 ≤ i ̸= j ≤
n). Since σD(µiIi−Ti) = σBF (µiIi−Ti) = {0}, and since pj(Ti) =

∏n
j=1 (µjIi − Ti)

is B-Fredholm if and only if µjIi−Ti is B-Fredholm for all 1 ≤ j ≤ n [3], pj(Ti) is not
B-Fredholm for all 1 ≤ i ≤ n. It is clear that the spectrum σ(pj(Ti)) is a countable
set; hence, both pj(Ti) and pj(Ti)

∗ have SVEP (everywhere). The spectral mapping
theorem for B-Fredholm operators [3, theorem 3.4] implies that

σBF (pj(Ti)) = pj(σBF (Ti)) = pj(µi) = {0}.

Consequently, pj(Ti) − λ is B-Fredholm for all complex λ ̸= 0, and this coupled
with SVEP for pj(Ti) and pj(Ti)

∗ implies that the points λ ̸= 0 are poles of pj(Ti).
Hence, pj(Ti), and so also p(T ) =

⊕n
i=1 (pj(Ti), is meromorphic.

T ∈ B(X ) is normaloid if ||T || equals the spectral radius r(T ) = limn→∞||Tn|| 1
n .

T is said to be hereditarily normaloid, T ∈ (HN ), if every part of T is normaloid,
and T is totally hereditarily normaolid, T ∈ (T HN ), if T ∈ (HN ) and every in-
vertible part of T is normaloid. We say in the following that a subspace M of X is
orthogonal (in the Birkhoff-James sense of orthogonality [12, p. 93]) to a subspace
N of X, denoted M⊥N , if ||m|| ≤ ||m + n|| for all vectors m ∈ M and n ∈ N .
This asymmetric version of (Banach space) orthogonality coincides with the stan-
dard concept of orthogonality for Hilbert spaces. The following theorem considers
(T HN )-operators to prove that (T HN )-operators T with countable spectrum such
that 0 is the only (possible) limit point of σ(T ) are meromorphic.

Theorem 4.3. If T ∈ B(X ) ∩ (T HN ) is such that σ(T ) is countable with (at best)
a single limit point, then:
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(i) T is a translate of a (simply) polaroid meromorphic operator.

(ii) For every λ ∈ isoσ(T ), with corresponding spectral projection Pλ(T ), ||Pλ(T )|| =
1 and (λI − T )−1(0)⊥(λI − T )(X ).

Proof. (i) Given a λ ∈ isoσ(T ),

X = H0(λI − T )⊕K(λI − T ), H0(λI − T ) ̸= {0}.

Defining the operators T1 and T2 by T1 = T |H0(λI−T ) and T2 = T |K(λI−T ), it follows
that T = T1 ⊕ T2, where σ(T1) = {λ} and σ(T2) = σ(T ) \ {λ}. The operator T1

being normaloid, if λ = 0, then ||T1|| = 0 and T = 0
⊕

T2, where T2 is an invertible
(T HN )-operator. Assume hence that λ ̸= 0. The class of (T HN )-operators being
closed under multiplication by non-zero scalars, we may assume that λ = 1, and
then σ(T1) = {1} and sup||Tn

1 || ≤ 1 (where the supremum is taken over all integers
n). Recall from [20, theorem 1.5.14] that σ(A) = {1} for a doubly power bounded
operator A acting on a non-trivial Banach space if and only if A is the identity
operator. Hence, T1 = I1 = λI|H0(λI−T ) = λI|(λI−T )−1(0). (Thus, λ is a simple pole
of T .) Now let µ denote the (only) point of accumulation of σ(T ), and let pµ(.)
denote the polynomial pµ(z) = µ − z. Then σ(pµ(T )) = σ(T ) − {µ} is countable
with 0 as its only point of accumulation. Since pµ(T ) is polaroid if and only if T
is polaroid (see Theorem 4.1), T = −pµ(T ) + µI is a translate of a meromorphic
operator.

(ii) We start by considering the case in which σ(T ) is contained in the boundary ∂D
of a disc centered at 0. If σ(T ) ⊆ ∂D, then T0 = T

||T || is an invertible isometry such

that the points isoσ(T0) are all simple poles (hence, eigenvalues) of T0. Since the
eigenspaces corresponding to isolated eigenvalues of an invertible isometry have an
invariant complement [19], (ii) follows. Consider now the case in which σ(T ) ̸⊂ ∂D.
Let σπ(T ) denote the peripheral spectrum

σπ(T ) = {λ ∈ σ(T ) : |λ| = r(T )}

of T [16, p. 225]. Then σπ(T ) = {λ1, λ2, · · · , λm} is a finite set such that

T jPλi(T ) = λj
iPλi(T ), j ≥ 1 and λi ∈ σπ(T )

for all 1 ≤ i ≤ m (see the proof of (i) above). Let C be a circle centered at 0 of
radius ρ < r(T ) = ||T ||, Then

T j =
m∑
i=1

λj
iPλi(T ) +

1

2πi

∫
C

λj(λI − T )−1dλ

=
m∑
i=1

λj
iPλi(T ) + Γ2.
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Now let

maxλ∈C||(λI − T )−1|| = M

ρ
.

Then

||
n∑

j=1

1

λj
i

Γ2|| ≤ M

n∑
j=1

(
ρ

|λi|
)j ≤ M(1− ρ

|λi|
)−1

for all integers n ≥ 1. Again, if we let

α = max2≤i≤m||Pλi
(T )||, β = min2≤i≤m|1− λi

λ1
| and Γ1 =

n∑
j=1

m∑
i=2

(
λi

λ1
)jPλi

(T ),

then

||Γ1|| = ||
m∑
i=2

(
λi

λ1
)
1− ( λi

λ1
)n

1− λi

λ1

|| ≤ 2mα

β
.

Combining this with the estimate

1

n
||

n∑
j=1

(
A

λi
)j || ≤ 1

n
.n = 1,

we have

||Pλ1(T )−
1

n

n∑
j=1

(
A

λi
)j || = 1

n
||Γ1 + Γ2|| −→ 0 as n → ∞.

Hence, ||Pλ1(T )|| ≤ 1. Since ||Pλ1(T )|| = ||Pλ1(T )
2|| ≤ ||Pλ1(T )||2, ||Pλ1(T )|| = 1

and

||x|| = ||Pλ1(T )x|| = ||Pλ1(T )(x+ y)|| ≤ ||x+ y||

for all x ∈ (λ1I − T )−1(0) and y ∈ (λ1I − T )(X ). Our choice of the point λ1 ∈
σπ(T ) having been arbitrary, it follows that ||Pλi(T )|| = 1 for all 1 ≤ i ≤ m,
and (λiI − T )−1(0)⊥(λjI − T )−1(0) for all 1 ≤ i ̸= j ≤ m. Furthermore, we have
the decompositions X = X11

⊕
X22 and T = T |X11

⊕
T |X22 = T11

⊕
T22, where

σ(T11) = σπ(T ), σ(T22) = σ(T ) \σ(T11) and T22 ∈ (T HN ). To complete the proof,
one now applies the argument above to T22 (and so on).

Theorem 4.3 implies (T HN ) Hilbert space operators T , T ∈ B(H) ∩ (T HN ),
with countable spectrum converging to a point are diagonal, hence normal, opera-
tors. The role played by the normaloid property of the invertible part of an operator
in the proof of Theorem 4.3 is limited to proving the polaroid property of the oper-
ator; hence, Theorem 4.3 implies that meromorphic Hilbert space (HN ) operators
are normal. More generally:
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Corollary 4.6. Hilbert space operators T such that f(T ) ∈ (M)∩ (HN ) for some
f ∈ Holoc(σ(T )) are normal.

Proof. If f(T ) ∈ (M) ∩ (HN ), then there exist decompositions H =
⊕m

i=1 Hi of
H and T =

⊕m
i=1 T |Hi =

⊕m
i=1 Ti of T , and a finite sequence of scalars {µi}mi=1,

such that Ti ∈ (HN ) and µiIi − Ti ∈ B(Hi)∩ (M) for all 1 ≤ i ≤ m. The operator
µiIi − Ti being (meromorphic is) polaroid; hence, Ti is a polaroid (HN )-operator
with countable spectrum and µi as its only limit point. Hence, Ti is normal for
all1 ≤ i ≤ m. (We remark here that if σ(Ti) = {µi} for some i, then the hypothesis
Ti ∈ (HN ) forces H0(µiIi − Ti) = (µiIi − Ti)

−1(0).) Hence, T is normal.

A number of the more commonly considered classes of Hilbert space operators
satisfy the (HN )-property. Thus, the classes of operators T ∈ B(H) such that T is:

hyponormal, that is, TT ∗ ≤ T ∗T ;

paranormal, that is, ||Tx||2 ≤ ||T 2x||||x|| for all x ∈ H, and

∗-paranormal, that is, ||T ∗x||2 ≤ ||T 2x||||x|| for all x ∈ H

are (HN )-operators. Corollary 4.6 generalises a number of known results, amongst
them [13, corollary 2] and [22, corollary 2.15], on the normality of holomorphi-
cally compact, more generally Riesz, operators. We remark that hyponormal, more
generally paranormal, operators are known to be (T HN ).

The (HN ) property in Corollary 4.6 is not essential to the normality of meromor-
phic Hilbert space operators. Consider, for example, the class of operators T ∈ B(H)
for which there exists a real numberM > 0 such that ||(λI−T )∗x|| ≤ M ||(λI−T )x||
for all x ∈ H and scalars λ. Such operators, referred to in the literature as M -
hyponormal operators, are not normaloid. They are, however, known to be (gener-
alised) sub-scalar operators satisfying the property thatH0(λI−T ) = (λI−T )−1(0)
for all complex λ [20, proposition 2.4.9]. The isolated points of the spectrum of an
M -hyponormal operator are simple poles (and therefore, eigenvalues) of the op-
erator, which satisfy (λI − T )−1(0) = ((λI − T )∗)−1(0) [9, remark 3.2]. Hence, a
meromorphic M -hyponormal operator (more generally, an M -hyponormal operator
with countable spectrum) is normal.
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