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Abstract

In this paper, we determine the f-duals of the sets wj(A), vf(A) and 5(A) for ex-
ponentially bounded sequences A. Furthermore, we characterize matrix transformations
between the sequence spaces wy(A),vh(A),ch(A) (1 < p < oo) and certain BK spaces.
Finally, we apply the Hausdorff measure of noncompactness to give necessary and suf-
ficient conditions for a linear operator between these spaces to be compact.
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1. Introduction

We write w for the set of all complex sequences x = (x;),-,. Let ¢, £, c and
co denote the sets of all finite, bounded, convergent and null sequences, and cs
be the set of all convergent series. We write £, = {x € w : >_,° ||’ < oo} for
I1<p<oo.
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By e and e" (n € Nj), we denote the sequences such that ¢, =1 for
k=0,1,...,and e/ = 1and &!” = 0 (k # n). For any sequence x = (x;);",, let
xh =370 xre® be its n-section.

Throughout, let u = (u,),”, be a nondecreasing sequence of positive reals
tending to infinity. For 0 < p < oo, we write

wy(u) = {x Ew: 11m — Z el = 0}

rlko
1 n
Wl (1) = xew:sup—pZ|xk|”<oo )

n Hn =5
n

XEw: hm Z|xk—xk,1|p:0 ,
”ko

{xew sup pZ\xk—xk 1 <oo}
Hn 955

= {x cw: nllg)lc 7 ZO Ik — x| = 0},

() = {xe @ :Sup p 0 4 Z|:ukxk | < OO}

and ?(u) = {x € w:x—le € ch(pn) for some / € C} (cf. [8]). If p =1, we omit
the index p in all cases; in particular, we write ¢o(¢) = c})(u) c(p) = c!(u) and
¢ (1) = ¢! () for the sets of sequences that are p-strongly convergent to zero,
u-strongly convergent and u-strongly bounded (cf. [7,11]).

If y, =n+1forn=0,1,... the sets wj(u) and w”_(u) reduce to wj and w”_,
the sets of sequences that are strongly summable and strongly bounded with
index p by the C; method. These sets were introduced and studied by Maddox
(cf. [4]).

For 0 < p<1, the f-duals were given in [7] (p = 1) and [3] of the sets ¢ (u),
c’(p) and ¢ (u), and some matrix transformations characterized on these
spaces for exponentially bounded sequences u. These results were extended in [9]
to the case of 1 < p < oo for the sets ¢”(u) and ¢”_(p).

In this paper, we determine the f-duals, for exponentially bounded se-
quences p, of the sets vf(u) and ¢f(u) for p > 1 which are different from the f-
duals of v”_(u) and ¢”(u) or ¢ (u); thus we complete the list of the f-duals of
the sets ¢/ o(u), c(n) and ¢ (u). Furthermore we characterize matrix transfor-
mations on the spaces v} (i ) and ¢§(u) for 1 < p < oo and apply the Hausdorff
measure of noncompactness to give necessary and sufficient conditions for the
entries of an infinite matrix to be a compact operator between these spaces and
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certain BK spaces. In particular, we extend the results involving the spaces
¢o(u), given in [10, Sections 3.7 and 3.8].

2. Notations, definitions and well-known results

In this section, we give some notations and recall some definitions and well-
known results.

A sequence (b)) in a linear metric space X is called Schauder basis if for
every x € X, there is a unique sequence (4,),-, of scalars such that
x =300 A",

An FK space is a complete linear metric sequence space with the property
that convergence implies coordinatewise convergence; a BK space is a normed
FK space. An FK space X D ¢ is said to have AK if every sequence x =
(x1)i—o € X has a unique representation x = Y ;- xe®), that is x = lim,_ x"..

Let x and y be sequences, X and Y be subsets of w and 4 = (au),,_, be an
infinite matrix of complex numbers. We write xy = (x;)1), 0, X 'Y =
{acw:axeY}and M(X,Y)=,yx '*Y ={a€w:ax Y forall x € X}
for the multiplier space of X and Y. In the special case of ¥ = cs, we write
x# =x""xcsand X = M (X, cs) for the f-dual of X. By A, = (au),-, we denote
the sequence in the nth row of 4, and we write 4,(x) = >_;"j awxx (n=0,1,...)
and  A(x) = (4,(x)),",, provided A4,€x’ for all n. The set X;,=
{x € w: A(x) € X} is called the matrix domain of 4 in X and (X,Y) denotes the
class of all matrices that map X into Y, thatis 4 € (X,Y) if and only if X C ¥,
or equivalently 4, € X? for all n and 4(x) € Y for all x € X.

Let X and Y be Banach spaces. Then B(X,Y) is the set of all continuous
linear operators L : X — Y, a Banach space with the operator norm defined by
IIL]| = sup{|IL(x)]| : ||x|| <1} (Le€B(X,Y)). If Y=C then we write X* =
B(X,C) for the space of continuous linear functionals on X with its norm
defined by ||f|| = sup{|(x)| : ||lx|| <1} (f € X*). We recall that a linear operator
L:X — Y is called compact if D(L) = X for the domain of L and if, for every
bounded sequence (x,) in X, the sequence (L(x,)) has a convergent subsequence
in Y. It is well known (cf. [13, Theorem 4.2.8, p. 57]) that if X and Y are BK
spaces and 4 € (X,Y) then L, € B(X,Y) where L, is defined by L,(x) = A4(x)
for all x € X; we denote this by (X,Y) C B(X,7Y).

We define the matrices 2, 4 and £ by 2,;, =1 for 0<k<n, 2, =0 for
k>n, 4,,., =—-1, 4,, =1, 4,4 =0 otherwise, E,, =0 for 0<k<n—1 and
E.. = 1 for k = n, and use the convention that any term with a negative sub-
script is equal to zero. Then we can write vj(u) = (WH(w)) 4, 02 (1) = (W2 () 4,
() = '+ vf(w) and & (1) = p '+ 0% ().

Following the notations introduced in [7], we say that a nondecreasing se-
quence A = (), of positive reals tending to infinity is exponentially bounded
if there are reals s and ¢ with 0 < s <z < | such that for some subsequence
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(Ak)) ey Of A, we have s < Ay /A1) < ¢ for all v=0,1,...; such a subse-
quence (X)), is called an assoczated subsequence. 1f (k( ))f,io is a strictly
increasing sequence of nonnegative integers then we write K for the set of all
integers k£ with k(v) <k<k(v+1)—1, and > and max, for the sum and
maximum taken over all k in K.

Let A = (X),-, be an exponentially bounded sequence of positive reals and
(ik<v>)fi0 be an associated subsequence throughout.

If X7(A) denotes any of the sets wj(A), w2 (A), vf(A), 12 (A), cj(A), c(A)
or ¢? (A) then we write X?(A) for the respective space with the sec-
tions 1/A Zf:0~-- replaced by the blocks 1/4k+1)Y., -+ Furthermore, we
define

1/p
¥l sy = sup ( Ly |x,|”> ,

ko j=0

1/p
%112, 4 sup( ZIMI”) :
k(v-+1)

||vagc(A) = ||A(x)HWgC(A)7 ||x||ﬁg(A) = ||A(x)||w/;(/1)a

&) = 1A

%]

Lo(4) = | 4(Ax)]

w1 and

xller, ) = 1ALz 4y = [[4CAX) 1z (1)

Proposition 2.1. We have:

(@) wy(A) =w(A), the norms || - ||,z 4 and || - |z 4y are equivalent on wi(A)
and wiy(A) is a BK space with AK
(b) v{;( ) = % (A), the norms || - HL,D yand || - || 4 are equivalent on vy(A) and
the sequence (B®)}2 with b® = X(e®), that is b =0 for j <k and
=1forj=zk (k=0,1,.. ) is a Schauder basis ofv”( );
(c) cp( ) = &(A), the norms || - Hcp 2 and H ||Cp (1) are equivalent on c(A) and
the sequence ()" with c* (1//1) (k 0,1,...) is a Schauder basis

of ¢(A).

| 8

Proof. Using the technique applied in the proof of [7, Theorem 1(a) and (b)],
we can show the stated equality of the spaces and the equivalence of the
norms.
(a) The space wh(A) is a BK space with AK by [6, Theorems 2 and 5].
Parts (b) and (c¢) follow from Part (a) and [10, Theorem 3.3, p. 178] and [8,
Theorem 2.2]. O
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3. The p-duals of the spaces wj(A), vj(A4) and c¢)(A)

In this section, we give the f-duals of the spaces wi(A), vh(A) and cb(A). If
X D ¢ is a BK space and a € o then we write

o0
> ax| x| = 1},
k=0

provided the expression on the right is defined and finite which is the case
whenever a € X# (cf. [13, Theorem 7.2.9, p. 107]). We need the following re-
sults.

lally = llall" = Sup{

Proposition 3.1. Let 1 <p < oo and g=p/(p—1).
(a) Then
(wh ()" = (W, () = w7(A)

o0

00 1/q
= {a cw: Zik(‘qu) (Zv|ak|q> < OO}
v=0

Furthermore (w4(A))" with

00 1/q
lallyray = Ak(v+1) (Zvakr{)
v=0

and (wi(A))" are norm isomorphic when wi(A) has the norm || - [z (4.
(b) For eachn € Ny, let v(n) be the uniquely defined integer such that n € K",
We define the sequence d by

v(n)—1
dy =Y aeiny k(v + 1) = KON 4 Zauiyin (n 4 1T = k(v(n)))*
v=0

Jorn=0,1,... and put M(vh(A)) =d " * L. Then

M (15(A4), co) = M(v5(A), c) = M(vy(A)) (3.1)
and
(Wh(A)! = (#7(A) N M(1h(A)))- (3.2)

Furthermore, if v((A) has the norm | - || 4 then

lallyy ) = IE@)I|yoiq, for all a€ (t5(A))". (3-3)
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Proof. (a) This is by [6, Theorems 4 and 6].

(b) The identity in (3.1) is [8, Lemma 3.2(a)]. From this, Part (a) and [8,
Theorem 2.5], we obtain (3.2). Finally, we prove (3.3). Let a € (vﬁ(/l))ﬁ be
given. We observe that x € vfj(A) if and only if y = A(x) € wj(A4). Abel’s
summation by parts yields, with R = E(a),

n+1

Zakxk = ZRkyk — Rn+1xn+l (n = 07 17 .. )

k=0 k=0
Since a € (8(A))” implies R € M(14(A), o) by (3.1) and (3.2), it follows that
Z;io aiXy = Z;:C:O kak- Now
# (1) = HyHﬂx;(A) implies ||a||;;;(/1) = ”R”;ﬂC(A)

and (3.2) follows from Part (a). O

%]

Theorem 3.1. Let | < p < ooand q=p/(p—1). We define the sequence d as in
Proposition 3.1. Then

@) = (5) ) 0@ ),

that is a € (E(A)) if and only if

00 s | 1/q
;/ﬂuk(‘yﬂ) (Z‘ ZZ—; > < 0

J=k

and

i d, < oo.

= 7

sup

n

> |\Q

Furthermore, if ¢{(A) has the norm || - ||z, then

||a||:&</1) = |E(a/ )|l y»q) Sforall ae (CS(A))ﬁ7

1/q
) (3.4)

Proof. The first part is [8, Theorem 3.2]. Furthermore, the equality of the
norms on (c4(A))" is an immediate consequence of (3.3) in Proposition 3.1 and
the facts that a € ((A))" if and only if a/A € ()(A))’, and %l 1) =
HAxHﬁ;(A)- U

that is

aj;

4

la

m :Z k(v+1) (Z
v=0

=k
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4. Matrix transformations

In this section we characterize matrix transformations between the sequence
space wh(A), vh(A), ch(A4) (1 < p < c0) and certain BK spaces.

Throughout let 1 < p < 0o, ¢ = p/(p — 1) and the sequence d be defined as
in Proposition 3.1. A subset X of w is said to be normal if x € X and y € w with
| < x| (k=0,1,...) together imply y € X. We need the following general
results.

Proposition 4.1 [8, Theorem 2.7(a)]. Let X D ¢ be a normal FK space with AK
and Y be a linear space. If M(X,,c) = M(Xy,co) then A € (X4,Y) if and only if

R' € (X,Y) where r“:kzzank(mk:()a]a---) (4.1)

=k
and

RY € (X4,¢) for all n. (4.2)

Proposition 4.2 (cf. [10, Theorem 1.23, p. 155]). Let X D ¢ and Y be BK spaces.
(a) Then A € (X,4) if and only if
4]l = sup |4}y < o0. (4.3)
Furthermore, if A € (X,l) then ||Ly| = ||A|[y-
(b) If (BW)2, is a Schauder basis of X and Y, is a closed BK space in Y, then
A€ (X,n) ifand only if A € (X,Y) and A(b¥)) € Y, for all k.

We need the following result.

Proposition 4.3. Let X D ¢ be a BK space. Then A € (X, ¢,) if and only if

>4

neN

14l x ) = sup <oo (cf.[5, Satz 1)).

Ny
N finite

X

Furthermore, if A € (X, £,) then
14l iy < NEall <4 - 1Al g, (4.4)

Proof. We have to show (4.4). Let 4 € (X, ¢;) and m € N, be given. Then, for
all N  {0,...,m} and for all x € X with ||x|| =1,
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D Aux) Z w () < ILall,

neN n=0

and this implies

14l .y < [1Zall- (4.5)

Furthermore, given ¢ > 0, there is x € X with ||x|| = 1 such that
4, = ZlA )= Lall =
and there is an integer m(x) such that

>4, = 4@, -5

Consequently 32" (4, (x)| = ||[L4|| — &. By [10, Lemma 3.9, p. 181],
m(x)

ma A,(x)| = A, (x)| = ||Ly|| — &
WD IRECIED SIEHEIEY 121
and so 4[|4||x,,) = [|L4l| — &. Since ¢ > 0 was arbitrary, we have 4[|4]| ) =

[[L4], and together with (4.5) this yields (4.4). O
A matrix T is called a triangle if t,, =0 (k > n) and ¢,, # 0 for all n.
Proposition 4.4 [10, Theorem 3.8, p. 180]. Let T be a triangle. Then, for arbi-

trary subsets X and Y of w, A € (X,Yr) if and only if B=TA € (X,Y). Fur-
thermore, if X and Y are BK spaces and A € (X, Yr) then

ILall = I Ls]|- (4.6)
Now we characterize the classes (W{(A), s ), (Wh(A),co) and (wy(A),c).
Theorem 4.1. We have:

(a) 4 € (wg(4),4w) if and only if

1/q
ANl e, a0y = = sup Z)“" V1) (Z ||’ > < 00. (4.7)

(b) 4 € (Wy(A),co) if and only if condition (4.7) holds and
I}im au =0 for each k. (4.8)
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(c) A € (Wy(A),c) if and only if condition (4.7) holds and

klim au = oy for each k. (4.9)

(d) If Y is any of the spaces Uy, cy or ¢, wy(A) has the norm || - ) and
A € (wy(A),Y) then

L4l = ||A||(W{J’(A),1zx)~ (4.10)

Proof. Part (a) follows from Proposition 3.1(a) and Proposition 4.2(a).

Parts (b) and (c) follow from Proposition 4.2(b), since ¢y and ¢ are closed
subspaces of ¢, and wj(A) has AK by Proposition 2.1(a).

Part (d) holds since #7(A) with || - |, and (w(4))" are norm isomor-
phic by Proposition 3.1(a) when w{(A) has the norm w”_(4). O

Now we characterize the classes (vh(A4), s ), (h(A), o) and (vh(A),c). As an
immediate consequence of Proposition 4.1, Theorem 4.1 and Propositions
3.1(b) and 2.1(b), we obtain
Theorem 4.2. We have:

(@) 4 € ()(A), L) if and only if

o0 . a\ /4
14l ey = SUP D Zagrr) (Zv > ay, ) < (4.11)
T y=0 =k
and
sup dy Za,,j < oo for each n. (4.12)
k =

(b) 4 € (vj(A),co) if and only if conditions (4.11) and (4.12) hold and
}erolc i a,; =0 for each k. (4.13)
=k
(c) 4 € (th(A),c) if and only if conditions (4.11) and (4.12) hold and
,}LIEQ i a,; = o for each k. (4.14)
J=k

(d) If Y is any of the spaces L, ¢y or ¢, v4(A) has the norm | - ||y . and
A € (Vh(A),Y) then

||LA|| = ||A||(1)Zc(/l),[,x)' (4-15)

Now we characterize the classes (¢f(A), {x), (ch(A),co) and (cf(A),c).
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Theorem 4.3. We have:

(a) 4 € (§(A), L) if and only if

o0 00 1/q
4] (& () L) = SUP Z k(v+1) (Z Z /1—] ) < 0o (4.16)
n v=0 —k ]
and
sup Z i dy < oo for each n. (4.17)
=k 7

(b) 4 € (§(A), o) if and only if conditions (4.16), (4.17) and (4.13) hold.
(c) 4 € (ch(A),c) if and only if conditions (4.16), (4.17) and (4.14) hold.

(d) If Y is any of the spaces l, cy or ¢, c;(A) has the norm || - ||z and
A4 € (cy(A),Y) then
||LA|| = ||A||(cg(/1),lm)~ (4~18)
Proof. Parts (a), (b) and (c) are [8, Theorem 3.4(1.)—(3.)].
(d) If 4 € (cj(A),£x) then [|4]lz 4 = [IL4l| by Proposition 4.2(a). Since
411z (1) = sup, [[4allz () for all n, the conclus10n follows from (3.4) in Theo-

rem 3.1 Finally, since (c”(/l) co) C (ch(A),¢) C (h(A), L), the assertion also
follows for Y = ¢y or ¥ = ¢, by what we have just shown and Parts (b) and
(c). O

Finally we determine the classes (cf(A),c(p)), (ch(A),co(p)) and
(c5(4),e(u)).

Theorem 4.4. We have:

(@) 4 € (ch(A),coo(p)) if and only if condition (4.17) holds and

[|A]] P (A)en() = SUP maxm}zlkm

NuC{0 s

o 1/q
(EhEbEres))
'umnGN :k}vf' Jj=k /

< 0. (4.19)
(b) 4 € (c§(A),co(w)) if and only if conditions (4.17) and (4.19) hold and
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. 1 & 0 00
lim <_ Z Hn Za,,j —Hy Zawl,j ) =0 for each k. (4.20)
m = =
<

(c) 4 € (ch(A),c(w)) if and only if conditions (4.17) and (4.19) hold and

lim (L Z w, Za,,j — U, Za”*l‘f ) =oy for each k. (4.21)
" = =

(d) If'Y is any of the spaces (), co(pt) or c(w), cg(A) has the norm || - ||z 4
and A € (c(A),Y) then

14l ey < 12l <4 1Al e - (4.22)

Proof. Parts (a), (b) and (c) are [8, Theorem 3.4(4.)—(6.)].
(d) If X is a BK space and 4 € (X, Y), then by [10, Corollary 3.49 (3.109),

p. 210], for
1 *
o Z(,unAn - ,un—lAnfl) 5
X

,Um neN,

[l ¢x.c..) = sup ( max
m

N {0,....m}

we have
A1 x () < NZall <4 [ ANl 1 -

Now (4.22) follows from (3.4) in Theorem 3.1. O

5. Measure of noncompactness and transformations

If X and Y are metric spaces, then f : X — Y is a compact map if /(Q) is a
relatively compact (i.e., if the closure of f(Q) is a compact subset of ¥) subset
of Y for each bounded subset O of X. In this section, among other things, we
investigate when in some special cases the operator L, is compact. Our in-
vestigations use the measure of noncompactness. Recall that if Q is a bounded
subset of a metric space X, then the Hausdorff measure of noncompactness of Q
is denoted by y(0Q), and

%2(Q) = inf{e > 0 : Q has a finite € — net in X}.

The function y is called the Hausdorff measure of noncompactness, and for its
properties see [1,2,12]. Let us point out that the notation of the measure of
noncompactness has proved useful in several areas of functional analysis,
operator theory, fixed point theory, differential equations, etc. Denote by O the
closure of Q. For the convenience of the reader, let us mention that: If O, QO
and Q, are bounded subsets of a metric space (X,d), then
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2(0) =0 <= Qs a totally bounded set,
2(0) = 1(0),
0 CO = 2Q)<x2),
2(Q1U 0n) = max{y(01), 2(02)},
2(01 N Q>) < min{y(01), 2(02)}-

If our space X is a normed space, then the function y(Q) has some additional
properties connected with the linear structure. We have e.g.

201 + 02) < 2(01) + 2(01),
12(30) = 2[2(0) for cach i € C,

If X and Y are normed spaces, and 4 € B(X, Y), then the Hausdorff measure
of noncompactness of 4, denoted by ||4], is defined by ||4]|, = x(AK), where
K = {x € X : ||x|| <1} is the unit ball in X. Furthermore, 4 is compact if and
only if [|4]|, = 0; we also have ||4]|, <[|4]|.

Recall the following well-known result (see e.g. [2, Theorem 6.1.1] or [1,
1.8.1]): Let X be a Banach space with a Schauder basis {e;,e,,...}, O be a
bounded subset of X, and P, : X — X be the projector onto the linear span of
{e1,ea,...,e,}. Then

a n—0oo

1.
— limsup <s.1£|(lpn)x|> <z(9)

< inf sup||({ — B,)x|| < lim sup (sup [1¢4 —P,,)x||>7 (5.1
n xeQ xeQ

n—oo
where a = lim sup,_. || — B,||-

Theorem 5.1. Let A be an infinite matrix, 1 < p < oo, g = p/(p — 1) and for any
integers n and r with n > r, set

0 1/q
=0 3 (St )
() If 4 € (Wy(A),co), then

Lall, = Tim 14, (52)

(b) IfA € (Wh(A),¢), then

2 him A1 < Ll < tim )
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(c) If A € (Wy(A), L), then

0 Lall, < im 4], (5.4)

)

Proof. Let us remark that the limits in (5.2)-(5.4) exist. Set K =
{x ewj(4) : ||x||ﬁ/é(A) < 1}. (a) By inequality (5.1), we have

”LAHx = 7(AK) = lim [su];() [1¢4 —P,)Ax||], (5.5)
F—0o0 X<

where P, : ¢o — ¢p (r=0,1,...) is the projector on the first » + 1 coordinates,
ie., B(x) = (xo,--.,%,0,0,...), for x = (x;) € co; let us remark that || — P.|| =
1 for r=1,2,... Let 4(,) = (ax) be the infinite matrix defined by a,, = 0 if
0<n<rand a, = a, if r < n. Now, by Theorem 4.1(d) we have

(5.6)

wl’

SUp (£ = Po)Axl| = [[La, | = N1l wraye = JlAll¢,
xX€e

Clearly, by (5.5) and (5.6) we get (5.2).

(b) Let us remark that every sequence x = (x;),-, € ¢ has a unique repre-
sentation x = le + > ;- (x; — [)e!® where I € C is such that x — /e € co. Let us
define P :c — cby P.(x) = le + Y 1o (xx — 1)e® (» =0, 1,...). It is known that
I —P.] =2(=0,1,...). Now the proof of (b) is similar as in the case (a), and
we omit it (it should be borne in mind that now « in (5.1) is 2).

(c) Let us prove (5.4). Now define P, : ¢y, — {y, by P.(x) = (x0,x1,...,X,
0,...),x=(x) €y (r=0,1,..). It is clear that

AK C P.(AK) + (I — P.)(AK).
Now, by the elementary properties of the function y we have
2(AK) <7(P.(AK)) + 2((/ — P.)(AK))
= 11 = R)(AK) < sup (1 = P)dx]| = Ly, | (5.7

By (5.7) and Theorem 4.1(d) we get (5.4). O
Now as a corollary of the above theorem we have

Corollary 5.1
(@) If 4 € (Wy(A),co) or A € (Wh(A),c), then

Ly is compact if and only if lim ||A||E;Z,J(A)[ , =0. (5.8)
r—00 o\/)foc

(b) If A € (W(A), L), then

Ly is compact if lim ||A||(w,, 1 =0 (5.9)
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The following example will show that it is possible for L, in (5.9) to be
compact in the case lim,_, ||A|| ) > 0, and hence in general we have just
“if”” in (5.9).

Example 5.1. Let the matrix 4 be defined by 4, = ¢ for n =0,1,... Then
A4 € (Wy(A), L) and

||AH<3:» M) = Ay for each r.

Hence lim, ||AH (M) = = k1) > 0. Since L,(x) = xy)e for each x € wi (A1),
L, is a compact operator

The proof of the following theorem follows from Theorem 4.2 by the
method of Theorem 5.1.

Theorem 5.2. Let 1 < p < o0, g =p/(p— 1), and for any integers n and r with
n>r,set

||A|§Z%(A), = sup Z}k(‘+l (Z _
pry =
If A € (W(A),co), then
ILall, = lim 415, -
If 4 € (v(A4),c), then
1hm 141D ey < Lall, < lim 4]
(v T o o

If 4 € (h(A), L), then
<|IL4ll, < lim |14 ")
0<|Lall, FE?OH H(L{;(A)f )

Corollary 5.2
(a) If 4 € (h(A),co) or A € (Vj(A),c), then

Ly is compact if and only if hm 14]] 'L; =0
0

(b) If 4 € (}(A), L), then

Ly is compact if hm ||A||(l,, =0. (5.10)

0(/)
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The following example will show that it is possible for L, in (5.10) to be
compact in the case lim,_ |\A|| () t) 0, and hence in general we have just
“if”” in (5.10).

Example 5.2. Let the matrix 4 be as in Example 5.1. Then 4 € (vj(A),£) by
Theorem 4.2(a), L, is compact and

- K(v1)— 1/q
(r) _
nizﬂ( z > a )
n>re,—0 k=k( J=k

1/q
Sa )

:suplkm :/lk(]) fOI'l”:O,l,...

n>r

k(1)—1
= Sup /Ik(l) < Z

n>r k= k

Hence
. (r
lim ||A||(L%(A>,zoc) = () > 0.
The following theorem follows from Theorem 4.3 analogously as in the
proof of Theorem 5.1.

Theorem 5.3. Let | < p < o0, g =p/(p— 1), and for any integers n and r with
n>r,set

||AH(¢J’(/1 = sup Z k(1) (Z‘
n>r 7 =k

(a) If 4 € (h(A), <o), then

ILal, = tim 1%,
(b) If 4 € (ch(A),¢), then

3 hm AN 1y ey < Il < lim A0

(©) IfA € (cg(/l),foo), then

0< L4, < lim [L4]|(7

(e (M)lso)”
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As a corollary we have

Corollary 5.3
(@) If 4 € (h(A),co) or A € (ch(A),¢), then
Ly compact if and only if llm HA|| ) =0.

cjol lso)
(b) If 4 € (c(A), x), then
L4 compact if }Lrlolo ||A||EZ%(A>7Z%) =0. (5.11)

The following example will show that it is possible for L, in (5.11) to be
compact in the case lim,_ ||A|| 1 > 0 and hence in general we have just
“if”” in (5.11).

Example 5.3. Let the matrix 4 be as in Example 5.1. Then 4 € (c¢f(A),{x) by
Theorem 4.3(a), L, is compact and

n>rey—( k=k(v) | j=k "7
KD-1] oo a\ 1/
Ay
Sup}k 1)( Z/l_ >
nr k=k(0) | j=k 7
/ A
= 2K _ 2D forr=0,1,.
n>r Ak(0)  Ak(0)
Hence
Ak
hm Al =—1>0
40 0 = 7

Theorem 5.4. Let A be an infinite matrix, | < p < oo, g = p/(p — 1) and for any
integers n and r with n > r, set

(r) _ > 1
141l ey = sup | IhaX Zoﬂk(m)

>r

(@) If 4 € (c(4), co(n)), then

hm ”AH ’/)’ 1)) < HLAHZ < 4}52) ||AHE:%(A) Coo(p))"

(cp(4
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(b) IfA € (cg(4),c(n)), then

— hm ||A|| "

C

) (r)
D ety <ILall, 4T 41D - (5.14)

(C) IfA € ( O(A)’coo(.u)): lhen

0< 1L, <4 lim |

)
A (1) (5.15)

Proof. Since ¢,(u) has AK [5, Theorem 2(c)] every sequence x = (xx),, € co(u)
has a unique representationx = Y.~ xze®). Let B, : co(p) — co(u) (r=10,1,...)
be the projector on the first r+1 coordinates, that is P.(x) =
(X0, - -+, X,0,0,...) for x = (x;),—, € co(p). It follows that

1= P)E =110, -, 0, %1, %042, )|

r+1

1 r+k
_Sup{'u (|:ur+1xr+l‘ + Z |:ujx/ 1 X 1|) 1727"' }
r+k

j=r+2
(5.16)
From
11| By X1 — g%+ |10 — 11X
+ o xr — poxol + | ool
we have
r+k r+k
‘/’tr+1xr+l| + Z |lujxj - :uj—l-xjf1| < Z |:ujxj - luj—lxjfl| for k = 1a 2a s
j=r+2 =0
(5.17)
From (5.16) and (5.17) it follows that
r+k
[ = P)(x)[| = sup Zlu/x/ tyxj-r| < x| (5.18)

k=12 Hrpk 555

Therefore, ||[I — P.||<1. Since I — P, is a projector, we have || —P.| > 1
Hence ||/ — P|| = 1,7 =0, 1,... Now the proof of (5.13) follows from Theorem
4.4(b).

(b) Every sequence x = (xz),-, € c¢(u) has a unique representation x =
le+ > 2o (xx — 1)e® where I € C is such that x — le € ¢o(u) [3, Theorem 2(c)].
Let us define O, : c(p)—c(p) by O,(x) = le+ > ;_o(xx — I)e®, that is Q,(x) =
(%05, 1,1, ...) for r=10,1,... Since
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(=0 )|l
= ||(Oa"'707xr+l _l»xr+2_l,--.)H

r+1

1 r+k
—sup{ (Ium(xrﬂ =D+ > = 1) =y (x5 —l)|> k= 1,2,...}
Ko J=r+2
1 r+k
<sup \l|+'u— |1 X1 |+ Z ey — x| | k=1,2,...

r+k J=r+2
1 r+k

=|l|+supq — |:ur+1x"+1|+z‘:ujxjfluj—lxj—l| k=1,2,... 0,
ok Jj=r+2

we obtain from (5.15) and (5.17) we get
1 = O )xl| < |1 + Ix]|- (5.19)

Let us prove that |/| < ||x||. From x — le € ¢y(u) it follows that
.1
lim — Z (e = 1) — pyy (e — 1)| = 0. (5.20)

Since u is a nondecreasing sequence, we have

1 n
1] =— Z|ﬂk—1l—ﬂk”

My k=0

1 n
=— Z e — el = ey X1+ oy L — e + x|
H, =0

I & I &
= Z ook = 1) = gy Oy = D) +— Z |exe — 1 x|
M =0 M =0
that is
l n
1< o Dol = 1) = g (oo = D]+ lx])- (5.21)
n k=0
By (5.20) and (5.21) we get
1< ]l (5.22)

From (5.19) and (5.22) it follows ||(I — O,)x|| < 2||x||, that is || — Q,|| < 2. Fi-
nally by Theorem 4.4. we get (5.13).
(c) Inequality (5.14) could be proved similarly as inequality (5.4). O

Now as a corollary of Theorem 5.4 we have
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Corollary 5.4
(@) If 4 € (cg(A),co(n)) or A € (c(A),c(n)), then

Ly compact if and only if llm HA||'CE, ) = 0.
()

(b) If A € (ch(A),co0(t)), then
Ly compact if hm l4]] 'C})v ) =0 (5.23)
[)

The following example will show that it is possible for L, in (5.23) to be
compact in the case lim,_, ||AH () > 0> and hence in general in (5.23) we
have just “if”’.

Example 5.4. Let the matrix 4 be as in Example 5.1. Then 4 € (c§(A4), cao (1))

by Theorem 4.4(a), L, is compact and
LS ()
o Hy7— — Uy 57—
Hon NEN,m ’lk(O) ! )vk(O)

Akl A
— sup 1) ) Hm = eyt _ k() sup (1 B ,u,+l)
m>r

m>r ;Lk M ;Lk(()) oy

||AH(<"’<A o) = SUP L mAx i)

=2 for each r.

Thus

A

= > 0.
Dex®) = o)

Tim [|4[(3,,,

In the proof of Theorem 5.4 we investigate the projector Q.. Now we would
like to finish this paper with the following inequality for the norm of the
projector I — Q..

Lemma 5.1. Let Q, (r=0,1,...) be the projector considered in the proof of
Theorem 5.4. Then

211msup'u/';1 1 —0<2 forallr=0,1,... (5.24)

n—o00 n

Proof. From the proof of Theorem 5.4 we know that || — Q.|| <2 for all r.
Hence, it is enough to prove 2lim sup,_, (1, ;/t,) I — Q|- To prove this let
us consider the sequence b, n > r + 1, from Proposition 2.1(b). Now
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b —e=(—1,...,—1,0,0,...) € co(p)
————

implies 5™ € ¢(u). Since ||p™|| = 1, it follows that
=

17 =0l =117 = 2) (")
—(0,...,0,—1,...,—1,0,0,...)]
—————
r+1 n—(r+1)

sup{l,2m,2m,2m,...}
u

n Myt L)

;2@.
i,

Since it is true for each n > r + 1, we get (5.24). O

Let us remark that if y, =n+1 for n=0,1,..., then || —Q,| =2 for
r=0,1,...
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