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Abstract. It is well known that the set of semi-Fredholm operators is an
open semigroup in the set of all bounded linear operators on Banach spaces [3].
Perturbations theorems for semi-Fredholm operators are of great interest (see e.g.
[3], [4], [6], [9], [13], [14], [15] and [20]). The main results is a general perturbation
theorem for semi-Fredholm operators. Then as a corollary we get some well known
results of [6] and [7].

1. Introduction and preliminaries

In this paper X and Y are complex Banach spaces, B(X;Y ) (K(X;Y ) )
the set of all bounded (compact) linear operators from X into Y . We shall write
B(X) (K(X)) instead of B(X;X) (K(X;X)).

An operator T 2 B(X;Y ) is in �+(X;Y ) (��(X;Y )) if the range R(T ) is
closed in Y and the dimension �(T ) of the null space N(T ) of T is �nite (the
codimension �(T ) of R(T ) in Y is �nite). Operators in �+(X;Y ) [ ��(X;Y ) are
called semi-Fredholm operators. For such operators the index is de�ned by i(T ) =
�(T )� �(T ). We set �(X;Y ) = �+(X;Y ) \��(X;Y ). The operators in �(X;Y )
are called Fredholm operators. We shall write �+(X) (resp. ��(X); �(X) ) instead
of �+(X;X) (resp. ��(X;X), �(X;X) ).

Since index is locally constant (see [3, Theorems (4.2.1), (4.2.2), (4.4.1)]) we
have

Lemma 1. Let A, B 2 �+(X;Y ) [ ��(X;Y ) and f be a continuous map
from [0; 1] into B(X,Y) such that f(0) = A, f(1) = B and f([0; 1]) � �+(X;Y ) [
��(X;Y ); then i(A) = i(B).

Let U denote the closed unit ball of X . Let T 2 B(X;Y ) and

m(T ) = inffkTxk : kxk = 1g
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be the minimum modulus of T , and let

n(T ) = supf� � 0 : �U � TUg

be the surjection modulus of T .

Obviously m(T ) > 0 if and only if there is a number c > 0 such that ckxk �
kTxk; x 2 X , and in this case we say that operator T is a bounded below. It is well
known that m(T ) > 0 if and only if the null space of T is zero and the range of T
is closed, and n(T ) > 0 if and only if T is surjective.

Further, for T , S 2 B(X;Y ) we have

m(T + S) � m(T ) + kSk

and analogously
n(T + S) � n(T ) + kSk:

It is well known that if an operator T is bounded below (surjective) and the norm
of a perturbation S is smaller than m(T ) (n(T )), then T + S is bounded below
(surjective). Namely,

m(T ) = m(T + S � S) � m(T + S) + kSk < m(T + S) +m(T )

) m(T + S) > 0:

Obviously a bounded below operator is �+ and a surjective operator is ��.

An operator T 2 B(X;Y ) is strictly singular (T 2 S(X;Y )) if, for every
in�nite dimensional (closed) subspace M of X , the restriction of T to M , T jM ,
is not a homeomorphism, i.e., m(T jM ) = 0. An operator T 2 B(X;Y ) is strictly
cosingular (T 2 CS(X;Y )) if, for every in�nite codimensional closed subspace V
of Y the composition QV T is not surjective, where QV is the quotient map from
Y onto Y=V , i.e., n(QV T ) = 0. It is well known that K(X;Y ) � S(X;Y ) and
K(X;Y ) � CS(X;Y ).

Let S be a subset of a Banach space A. The perturbation class associ-
ated with S is denoted P (S) and P (S) = fa 2 A : a + s 2 S for all s 2
Sg. The perturbation class associated with �+(X;Y ) (resp. �+(X); ��(X;Y );
��(X)) is denoted by P (�+(X;Y )) (resp. P (�+(X)); P (��(X;Y )); P (��(X)) ).

For T 2 B(X;Y ), we set (see [18], [19])

me(T ) = dist(T; B(X;Y )n�+(X;Y ))

for the essential minimum modulus and

ne(T ) = dist(T; B(X;Y )n��(X;Y ))

for the essential surjection modulus .
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For T 2 B(X), the quantities

s+(T ) = supf� � 0 : j�j < � =) �I � T 2 �+(X)g

s�(T ) = supf� � 0 : j�j < � =) �I � T 2 ��(X)g

are semi-Fredholm radii of the operator T (see [18], [19]).

We shall use � to denote the natural homomorphism of B(X) onto the Calkin
algebra C(X) = B(X)=K(X). C(X) is itself a Banach algebra in the quotient
algebra norm

k�(T )k = inffkT +Kk : K 2 K(X)g:

Let re(T ) denote spectral radius of the element �(T ) in C(X), T 2 B(X), i.e.,

re(T ) = lim
n!1

(k�(Tn)k)
1
n and it is called essential spectral radius of T . Recall that

re(T ) = supfj�j : �I � T =2 �(X)g (see [3]). An operator T 2 B(X) is Riesz
operator if and only if re(T ) = 0 [3, Theorem 3.3.1]. Let R(X) denote the set of
Riesz operators in B(X).

2. Results

If f : B(X;Y ) 7! [0;1), set N(f) = fT 2 B(X;Y ) : f(T ) = 0g. The main
result in this paper is the following perturbation theorem.

Theorem 1. Let f be a seminorm on B(X;Y ), and h : B(X;Y ) 7! [0;1) a
function such that for A; B 2 B(X;Y )

h(A) > 0 () A 2 �+(X;Y );(1)

h(A+B) � h(A) + f(B);(2)

K(X;Y ) � N(f) and f(A) � kAk;(3)

then:

(a) h(A+ C) = h(A) for all C 2 N(f);

(b) If f(B) < h(A), then A; A+B 2 �+(X;Y ) and i(A) = i(A+B);

(c) N(f) is closed subspace of B(X;Y ) and N(f) � P (�+(X;Y ));

(d) If kBk < h(A), then A, A+B 2 �+(X;Y ) and i(A+B) = i(A);

(e) me(A) � h(A).

For A 2 B(X) we have

(f) s+(A) � h(A);

(g) s+(A) � lim
n!1

(h(An))
1
n ;

(h) If f(A) < h(I), then I �A 2 �(X) and i(I �A) = 0;

(i) If f(An) < h(I) for some n > 1, then I �A 2 �(X) and i(I �A) = 0;

(j) re(A) = lim
n!1

(f(An))
1
n ;
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(k) If AB �BA 2 P (�+(X)) and re(B) < limn!1(h(An))
1
n ,

then A; A+B 2 �+(X) and i(A+B) = i(A).

Proof : (a) Let C 2 N(f). By (2) we have

h(A+ C) � h(A) + f(C) = h(A);

h(A) = h(A+ C + (�C)) � h(A+ C) + f(�C) = h(A+ C)

and hence h(A) = h(A+ C).

(b) Let f(B) < h(A) and � 2 [0; 1]. By (2) we have

h(A) = h(A+ �B + (��B)) � h(A+ �B) + f(��B) = h(A+ �B) + �f(B) <

< h(A+ �B) + h(A);

and hence h(A+ �B) > 0. Further, by (1) it follows that A+ �B 2 �+(X;Y ) and
hence A; A+B 2 �+(X;Y ). Now by Lemma 1 we have i(A+B) = i(A).

(c) Let A; B 2 N(f) and �; � 2 C . Since f is a seminorm on B(X;Y ) it follows
that

0 �f(�A+ �B) � f(�A) + f(�B) = j�jf(A) + j�jf(B) = 0 =)

ff(�A+ �B) = 0 =) �A+ �B 2 N(f):

So N(f) is a subspace of B(X;Y ).

Let An 2 N(f); n 2 N and A 2 B(X;Y ) such that kAn � Ak ! 0 when
n!1. Then

0 � f(A) = f(A�An +An) � f(A�An) + f(An) = f(A�An) � kAn �Ak:

It follows that f(A) = 0, so A 2 N(f). Hence N(f) is closed.

Let A 2 �+(X;Y ) and B 2 N(f). By (1) it follows that f(B) = 0 < h(A).
Now by (b) we have A + B 2 �+(X;Y ). Hence B 2 P (�+(X;Y )), and (c) is
proved.

(d) Let kBk < h(A). By (3) f(B) � kBk and this implies f(B) < h(A). Now by
(b) we get A; A+B 2 �+(X;Y ) and i(A+B) = i(A).

(e) Since me(A) = maxf� � 0 : kBk < �) A+B 2 �+(X;Y )g, (d) implies (e).

(f) Obviously s+(A) � me(A) and hence (f) follows from (e).

(g) It is known that s+(A
n) = [s+(A)]

n; n 2 N. Hence by (f) we have s+(A) =

(s+(A
n))

1
n � (h(An))

1
n for all n 2 N. It implies (g).

(h) Let f(A) < h(I). Now (b) implies I � A 2 �+(X) and i(I � A) = i(I) = 0.
Hence I �A 2 �(X).
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(i) Let f(An) < h(I) for some n > 1, and let � 2 [0; 1]. Then f((�A)n) =
�nf(An) � f(An) < h(I) and by (h) it follows that I � (�A)n 2 �(X). Since

I � (�A)n = (I � �A)(I + �A+ ... + �n�1An�1)

= (I + �A+ ... + �n�1An�1)(I � �A)

by [3, Corollary 1.3.6] we have I � �A 2 �(X). Hence I �A 2 �(X). Further, by
Lemma 1 we get i(I �A) = i(I) = 0.

(j) Let � 2 C and j�j > (h(I))�
1
n (f(An))

1
n for some n 2 N. Then h(I) > f((A=�)n)

and by (i) it follows I � A=� 2 �(X), i.e., �I � A 2 �(X). Hence re(A) �

(h(I))�
1
n (f(An))

1
n for all n 2 N. This implies

re(A) � lim
n!1

(h(I))�
1
n lim
n!1

(f(An))
1
n = lim

n!1
(f(An))

1
n :

From (3) it follows that for all T 2 B(X) and K 2 K(X)

f(T +K) � f(T ) + f(K) = f(T );

f(T ) = f(T +K + (�K)) � f(T +K) + f(�K) = f(T +K);

so that f(T ) = f(T +K) � kT +Kk. Thus

f(T ) � inffkT +Kk : K 2 K(X)g = k�(T )k:

Hence

re(A) � lim
n!1

(f(An))
1
n � lim

n!1
(f(An))

1
n � lim

n!1
(k�(An)k)

1
n = re(A);

and we get (j). (k) Let AB � BA 2 P (�+(X)) and re(B) < lim
n!1

(h(An))
1
n . Let

� be such that re(B) < � < lim
n!1

(h(An))
1
n . By (j) we have lim

n!1
(f(Bn))

1
n < � <

lim
n!1

(h(An))
1
n . Hence there exists n 2 N such that (f(Bn))

1
n < � < (h(An))

1
n , i.e.,

f(Bn) < h(An). From (b) it follows An �Bn 2 �+(X). Since P (�+(X)) is a two
sided ideal of B(X) (see [3, Lemma 5.5.5]), from AB � BA 2 P (�+(X)) we get
An�Bn = C(A�B)+P , where C = An�1+BAn�2+� � �+Bn�1 and P 2 P (�+(X)).
Thus, C(A�B) 2 �+(X), and by [3, Corollary 1.3.4] we get A�B 2 �+(X). Let
us remark that from our proof, it follows that A + �B 2 �+(X) for 0 � � � 1.
Now by Lemma 1, we have i(A+B) = i(A). �

Remark 1. Let us remark that we can get (g) as a consequence of (k).

If lim
n!1

(h(An))
1
n = 0, then the inequality (g) obviously holds. Suppose that

lim
n!1

(h(An))
1
n > 0. For � 2 C , let j�j < lim

n!1
(h(An))

1
n and B = �I . Then we have

re(B) = j�j < lim
n!1

(h(An))
1
n and AB = BA. By (k) we have �I � A 2 �+(X).

Therefore s+(A) � lim
n!1

(h(An))
1
n .
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The next theorem is a dual part of Theorem 1. We omit the proof.

Theorem 1'. Let f be a seminorm on B(X;Y ), and h : B(X;Y ) 7! [0;1)
a function such that for A; B 2 B(X;Y )

h(A) > 0 () A 2 ��(X;Y );(1)

h(A+B) � h(A) + f(B);(2)

K(X;Y ) � N(f) and f(A) � kAk;(3)

then:

(a) h(A+ C) = h(A) for all C 2 N(f);

(b) If f(B) < h(A), then A; A+B 2 ��(X;Y ) and i(A) = i(A+B);

(c) N(f) is closed subspace of B(X;Y ) and N(f) � P (��(X;Y ));

(d) If kBk < h(A), then A, A+B 2 ��(X;Y ) and i(A+B) = i(A);

(e) ne(A) � h(A).

For A 2 B(X) we have

(f) s�(A) � h(A);

(g) s�(A) � lim
n!1

(h(An))
1
n ;

(h) If f(A) < h(I), then I �A 2 �(X) and i(I �A) = 0;

(i) If f(An) < h(I) for some n > 1, then I �A 2 �(X) and i(I �A) = 0;

(j) re(A) = lim
n!1

(f(An))
1
n ;

(k) If AB �BA 2 P (��(X)) and re(B) < limn!1(h(An))
1
n ,

then A; A+B 2 ��(X) and i(A+B) = i(A).

Set

��+(X;Y ) = fT 2 �+(X;Y ) : i(T ) � 0g;

�+
�(X;Y ) = fT 2 ��(X;Y ) : i(T ) � 0g:

We shall write ��+(X) (�+
�(X)) instead of ��+(X;X) (�+

�(X;X))

For A 2 B(X;Y ), set

m��
+

(A) = dist(A;B(X;Y )n��+(X;Y ));

n�+
�

(A) = dist(A;B(X;Y )n�+
�(X;Y ));

and

s�+(A) = supf� � 0 : j�j < � =) �I �A 2 ��+(X)g;

s+�(A) = supf� � 0 : j�j < � =) �I �A 2 �+
�(X)g:
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Let us remark that me(A) � m��
+

(A) (ne(A) � n�+
�

(A)) and if m��
+

(A) > 0

(n�+
�

(A) > 0), then me(A) = m��
+

(A) (ne(A) = n�+
�

(A)) (because index is locally

constant). Also s+(A) � s�+(A) (s�(A) � s+�(A)) and if s�+(A) > 0 (s+�(A) > 0),

then s+(A) = s�+(A) (s�(A) = s+�(A)).

Let us remark that ��+(X;Y ) (�+
�(X;Y )) is an open subset of �+(X;Y )

(��(X;Y )) and that �+(X;Y ) (��(X;Y )) does not contain any boundary point
of ��+(X;Y ) (�

+
�(X;Y )) (because index is locally constant). By [3, Lemma 5.5.4]

it follows that P (�+(X;Y )) � P (��+(X;Y )) (P (��(X;Y )) � P (�+
�(X;Y ))).

Rako�cevi�c proved in [10] that P (�+(X)) = P (��+(X)) (P (��(X)) = P (�+
�(X))).

We set the following question: does the equality P (�+(X;Y )) = P (��+(X;Y ))

(P (��(X;Y )) = P (�+
�(X;Y ))) hold?

Analogously as Theorem 1 the following two theorems can be proved.

Theorem 2. Let f be a seminorm on B(X;Y ), and h : B(X;Y ) 7! [0;1)
a function such that for A; B 2 B(X;Y )

h(A) > 0 () A 2 ��+(X;Y );(1)

h(A+B) � h(A) + f(B);(2)

K(X;Y ) � N(f) and f(A) � kAk;(3)

then:

(a) h(A+ C) = h(A) for all C 2 N(f);

(b) If f(B) < h(A), then A; A+B 2 �+(X;Y ) and i(A) = i(A+B) � 0;

(c) N(f) is closed subspace of B(X;Y ) and N(f) � P (��+(X;Y ));

(d) If kBk < h(A), then A, A+B 2 �+(X;Y ) and i(A+B) = i(A) � 0;

(e) m��
+

(A) � h(A).

For A 2 B(X) we have

(f) s�+(A) � h(A);

(g) s�+(A) � lim
n!1

(h(An))
1
n ;

(h) If f(A) < h(I), then I �A 2 �(X) and i(I �A) = 0;

(i) If f(An) < h(I) for some n > 1, then I �A 2 �(X) and i(I �A) = 0;

(j) re(A) = lim
n!1

(f(An))
1
n ;

(k) If AB �BA 2 P (�+(X)) and re(B) < limn!1(h(An))
1
n ,

then A; A+B 2 �+(X) and i(A+B) = i(A) � 0.

Theorem 20. Let f be a seminorm on B(X;Y ), and h : B(X;Y ) 7! [0;1)
a function such that for A; B 2 B(X;Y )

h(A) > 0 () A 2 �+
�(X;Y );(1)

h(A+B) � h(A) + f(B);(2)

K(X;Y ) � N(f) and f(A) � kAk;(3)
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then:

(a) h(A+ C) = h(A) for all C 2 N(f);

(b) If f(B) < h(A), then A; A+B 2 ��(X;Y ) and i(A) = i(A+B) � 0;

(c) N(f) is closed subspace of B(X;Y ) and N(f) � P (��+(X;Y ));

(d) If kBk < h(A), then A, A+B 2 ��(X;Y ) and i(A+B) = i(A) � 0;

(e) n�+
�

(A) � h(A).

For A 2 B(X) we have

(f) s+�(A) � h(A);

(g) s+�(A) � lim
n!1

(h(An))
1
n ;

(h) If f(A) < h(I), then I �A 2 �(X) and i(I �A) = 0;

(i) If f(An) < h(I) for some n > 1, then I �A 2 �(X) and i(I �A) = 0;

(j) re(A) = lim
n!1

(f(An))
1
n ;

(k) If AB �BA 2 P (��(X)) and re(B) < limn!1(h(An))
1
n ,

then A; A+B 2 ��(X) and i(A+B) = i(A) � 0.

Now we shall list several examples of known functions, which satisfy the
conditions of Theorem 1, Theorem 1', Theorem 2 or Theorem 2'.

Examples. 1. For A 2 B(X;Y ) set

kAkC = inffkA+Kk : K 2 K(X;Y )g;

mC(A) = supfm(A+K) : K 2 K(X;Y )g ( see [8])

nC(A) = supfn(A+K) : K 2 K(X;Y )g:

The functions k � kC and mC (k � kC and nC) satisfy the conditions of Theorem 2
(Theorem 2') (see [17]).

2. The functions k � kC and me (k � kC and ne) satisfy the conditions of
Theorem 1 (Theorem 1') (see [19, Proposition 1]).

3. If 
 is a nonempty subset ofX , then the Hausdor� measure of noncompact-
ness of 
, is denoted by q(
), and q(
) = inff� > 0 : 
 has a �nite �-net in Xg.
For A 2 B(X;Y ) the Hausdor� measure of noncompactness of A, denoted by kAkq,
is de�ned by

kAkq = inffk � 0 : qY (A
) � kqX(
); 
 � X is bounded.g

It is easy to see that

kAkq = supfqY (A
) : 
 � X; qX(
) = 1g:

Set (see [7])
mq(A) = inffqY (A
) : 
 � X; qX(
) = 1g:
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The functions k � kq and mq satisfy the conditions of Theorem 1 (see [7, Theorem
4.10], [1, p. 73] or [11, Posledica 2.12.12]). Fainstein [4] proved that

kAkq = inffkQNAk : N �nite-dimensional subspace of Y g;

where QN is the quotient map from Y into Y=N .

Set (see [4] and [20])

nq(A) = supfn(QNA) : N �nite-dimensional subspace of Y g:

The functions k � kq and nq satisfy the conditions of Theorem 1' (see [20, Theorem
4.1]).

Let us remark that Theorem 4 in [6] follows from Theorem 1 (Theorem 1').

4. For A 2 B(X;Y ) set

kAk� = inffkAjLk : L subspace of X; codimL <1g;

and
m�(A) = supfm(AjL) : L subspace of X; codimL <1g:

We conclude that the functions k � k� and m� satisfy the conditions of Theorem 1
(see [7] and [13, Lemma 2.13]). Hence Theorem 6.1 in [7] follows from Theorem 1.

5. Let l1(X) be the Banach space obtained from the space of all bounded
sequences x = (xn) in X by imposing term-by-term linear combination and the
supremum norm kxk = supn kxnk. Let m(X) stand for the closed subspace

f(xn) 2 l1(X) : fxn : n 2 Ng relatively compact in Xg

of l1(X). Let X+ denote the quotient l1=m(X). Then A 2 B(X;Y ) induces an
operator A+ : X+ 7! Y +, (xn) + m(X) 7! (Axn) + m(Y ), (xn) 2 l1(X). The
function A 7! kA+k is a measure of noncompactness, i.e., it is a seminorm on
B(X;Y ) such that kA+k = 0() A 2 K(X;Y ) (see [1] and [2]).

The functions A 7! kA+k and A 7! m(A+) (A 7! kA+k and A 7! n(A+))
satisfy the conditions of Theorem 1 (Theorem 1') (see [2, Theorem 2] and [5,
Theorem 3.4]).

6. For A 2 B(X;Y ) set

GM (A) = inf
N�M

kAjNk; G(A) = GX(A); �M (A) = sup
N�M

GN (A); �(A) = �X (A);

where M , N denotes in�nite dimensional subspaces of X

We conclude that the function � and G satisfy the conditions of Theorem 1
(see [13]).
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Weis [16] introduced for A 2 B(X;Y ) the following functions

KV (A) = inf
W�V

kQWAk ; K(A) = Kf0g(A) ;

rV (A) = sup
W�V

KW (A) ; r(A) = rf0g(A) ;

where V; W denote closed in�nite codimensional subspaces of Y (we use the nota-
tions from [20]). It is not diÆcult to show that the functions r and K satisfy the
conditions of Theorem 1'.

Schechter [13] proved that �(A) � kAk�, and similarly it can be proved that
r(A) � kAkq; A 2 B(X;Y ). Therefore, the functions k � k� and G (k � kq and K)
satisfy the conditions of Theorem 1 (Theorem 1').

7. For A 2 B(X;Y ) set (see [9] and [10])

tM (A) = inf
N�M

kAjNkq ; t(A) = tX(A);

gM (A) = sup
N�M

tN (A) ; g(A) = gX(A);

where M; N denote in�nite dimensional subspaces of X .

We conclude that the functions g and t satisfy the conditions of Theorem 1.

Remark 2. From the proof of Theorem 1 it is clear that if we replace the
condition (2) of Theorem 1 ((2) of Theorem 1') by a weaker condition:

(20) If f(B) < h(A), then A+B 2 �+(X;Y )

((20) If f(B) < h(A), then A+B 2 ��(X;Y )),

then we can prove the assertions (c){(k) of Theorem 1 (Theorem 1'). Zem�anek [20]
considered the following functions

u(A) = supfm(AjW ) : W is closed subspace of X with dimW =1g;

v(A) = supfn(QVA) : V is closed subspace of Y with codimV =1g:

From the de�nition of strictly singular and strictly cosingular operators it is obvious
that u(A) = 0 if and only if A 2 S(X;Y ), and v(A) = 0 if and only if A 2 CS(X;Y ).
Zem�anek denoted the quantitiesm� and nq with B andM , respectively and proved:
If T; S 2 B(X;Y ) and v(S) < M(T ), then T + S is a ��{operator, and if u(S) <
B(T ), then T +S is a �+{operator. Now it is clear that the functions u and B (v
and M) satisfy the conditions (1), (20) and (3) of Theorem 1 (Theorem 1').

The quantities mC ; mq ; m�; m(�+); me; G; t; �
0

; g
0

may be considered as

substitutes for the minimum modulus of an operator and nC ; nq; n(�
+); ne; K; r

0

as substitutes for the surjection modulus. Also we can say that measures of non-
compactness k � kC ; k � kq; k � k�; k �

+ k generalize norm. Further, the quantities
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�; g; u and r; v generalize measures of noncompactness in the same way as
strictly singular and strictly cosingular operators generalize compact operators.

Let us introduce the following functions for T 2 B(X;Y ):

kTkP�+ = inffkT �Bk : B 2 P (�+(X;Y ))g ;

kTkP�� = inffkT �Bk : B 2 P (��(X;Y ))g :

Clearly k�kP�+ (k�kP��) is seminorm on B(X;Y ) with property kTkP�+ � kTk
(kTkP�� � kTk) ; T 2 B(X;Y ). Since P (�+(X;Y )) (P (��(X;Y ))) is a closed
set [3, Lemma 5.5.3] the function k�kP�+ (k�kP��) disappears on P (�+(X;Y ))
(P (��(X;Y ))). SinceK(X;Y ) � P (�+(X;Y )) (P (��(X;Y ))) [3, Corollary 1.3.7]
we conclude that the functions k�kP�+ (k�kP��) satisfy the condition (3) of The-
orem 1 (Theorem 1').

Lemma 2. Let T 2 B(X;Y ). Then

me(T ) = me(T +A); for A 2 P (�+(X;Y ));(a)

ne(T ) = ne(T + A); for A 2 P (��(X;Y )):(b)

Proof. (a) Let A 2 P (�+(X;Y )). Since P (�+(X;Y )) is a linear subspace of
B(X;Y ) (see [3, Lemma 5.5.3]) it follows that �A 2 P (�+(X;Y )). It implies that
B 2 �+(X;Y ) if and only if B + A 2 �+(X;Y ), i.e., B 2 B(X;Y )n�+(X;Y ) if
and only if B 2 �A+B(X;Y )n�+(X;Y ). Hence

me(T ) = inffkT �Bk : B 2 B(X;Y )n�+(X;Y )g

= inffkT � (�A+ C)k : C 2 B(X;Y )n�+(X;Y )g

= inffk(T +A)� Ck : C 2 B(X;Y )n�+(X;Y )g

= me(T +A):

(b) can be proved analogously. �

Lemma 3. Let T; S 2 B(X;Y ). Then

me(T + S) � me(T ) + kSkP�+ ;(a)

ne(T + S) � ne(T ) + kSkP�� :(b)

Proof. Recall that

(4) me(A+B) � me(A) + kBk; A; B 2 B(X;Y ):

For each A 2 P (�+(X;Y )), by Lemma 2 (a) and (4) we have

me(T + S) = me(T + S +A) � me(T ) + kS +Ak;
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hence

me(T + S) � me(T ) + inffkS +Ak : A 2 P (�+(X;Y ))g = me(T ) + kSkP�+ :

(b) can be proved analogously. �

We conclude that the functions k�kP�+ and me (k�kP�� and ne) satisfy the
conditions of Theorem 1 (Theorem 1').

Let us introduce the following functions for A 2 B(X;Y ):

kAkS = inffkA+ Ck : C 2 S(X;Y )g;

kAkCS = inffkA+ Ck : C 2 CS(X;Y )g;

and

mS(A) = supfm(A+ C) : C 2 S(X;Y )g;

nCS(A) = supfn(A+ C) : C 2 CS(X;Y )g:

It is clear that

mS(A+ P ) = m(A) for P 2 S(X;Y );(5)

nCS(A+ P ) = nCS(A) for P 2 CS(X;Y ):

Lemma 4. Let A; B 2 B(X;Y ). Then

mS(A+B) � mS(A) + kBkS ;(a)

nCS(A+B) � nCS(A) + kBkCS:(b)

Proof. For each C 2 S(X;Y ) we have

m(T + S + C) � m(T + C) + kSk:

It implies that

supfm(T + S + C) : C 2 S(X;Y )g � supfm(T + C) : C 2 S(X;Y )g+ kSk;

i.e.,

(6) mS(A+B) � mS(A) + kBk:

Now as in the proof of Lemma 3, (a) follows from (5) and (6).

(b) can be proved analogously. �
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Lemma 5. For A 2 B(X;Y )

mS(A) > 0() A 2 ��+(X;Y );(a)

nCS(A) > 0() A 2 �+
�(X;Y ):(b)

Proof. (a) (=)) Let mS(A) > 0. This implies that there is C 2 S(X;Y )
such that m(A + C) > 0. Hence A + C 2 �+(X;Y ) and i(A + C) � 0. Since
S(X;Y ) � P (�+(X;Y )), then �C 2 P (�+(X;Y )) for � 2 [0; 1] and we get A +
�C 2 �+(X;Y ). It implies that A 2 �+(X;Y ), and from Lemma 1 it follows that
i(A) = i(A+ C) � 0. Thus A 2 ��+(X;Y ).

((=) Assume A 2 ��+(X;Y ). Obviously mS(A) � mC(A). Since (see [17])

mC(A) > 0() A 2 ��+(X;Y );

it follows that mS(A) > 0.

(b) can be proved analogously. �

Now we see that the functions k � kS and mS (k � kCS and nCS) satisfy the
conditions of Theorem 2 (Theorem 2').

Let us introduce the following functions for T 2 B(X;Y ):

mP�+(T ) = supfm(T + C) : C 2 P (�+(X;Y ))g;

nP��(T ) = supfn(T + C) : C 2 P (��(X;Y ))g:

Similarly as above we get

mP�+(T ) > 0() T 2 ��+(X;Y );

nP��(T ) > 0() T 2 �+
�(X;Y ):

and

mP�+(T + S) � mP�+(T ) + kSkP�+ ;

nP��(T + S) � nP��(T ) + kSkP�� T; S 2 B(X;Y ):

Thus, the functions k � kP�+ and mP�+ (k � kP�� and nP��) satisfy the conditions
of Theorem 2 (Theorem 2').

Since the sets ��+(X;Y ) and �+
�(X;Y ) are open, for A 2 B(X;Y ) we have

m��
+

(A) > 0() A 2 ��+(X;Y );

n�+
�

(A) > 0() A 2 �+
�(X;Y ):

Set

kAkP��
+

= inffkA+ Ck : C 2 P (��+(X;Y ))g;

kAkP�+
�

= inffkA+ Ck : C 2 P (�+
�(X;Y ))g:



86 �Zivkovi�c

Using the same metod as in Lemma 2 and Lemma 3, we conclude

m��
+

(A+B) � m��
+

(A) + kBkP��
+

;

n�+
�

(A+B) � n�+
�

(A) + kBkP�+
�

:

Now we see that the functions k � kP��
+

and m��
+

(k � kP��
+

and n�+
�

) satisfy the

conditions of Theorem 2 (Theorem 2').

For A 2 B(X) recall that

(7)
s+(A) = lim

n!1
(me(A

n))
1
n = lim

n!1
(mq(A

n))
1
n = lim

n!1
(m�(A

n))
1
n

= lim
n!1

(m((An)+))
1
n = lim

n!1
(G(An))

1
n = lim

n!1
(t(An))

1
n

and

(8)
s�(A) = lim

n!1
(ne(A

n))
1
n = lim

n!1
(nq(A

n))
1
n = lim

n!1
(n((An)+))

1
n

= lim
n!1

(K(An))
1
n

(see [19], [4], [15], [20], [19]). Set (see [20])

m1(A) = supfm(A+ F ) : dimR(F ) <1g;

n1(A) = supfn(A+ F ) : dimR(F ) <1g:

From the inequalities

m1(A) � mC(A) � mS(A) � mP�+(A) � m��
+

(A);

n1(A) � nC(A) � nCS(A) � nP��(A) � n�+
�

(A);

Theorem 2 (g), Theorem 2' (g) and by [20, Theorem 8.3] we get

s�+(A) = lim
n!1

(m1(An))
1
n = lim

n!1
(mC(A

n))
1
n = lim

n!1
(mS(A

n))
1
n

= lim
n!1

(mP�+(A
n))

1
n = lim

n!1
(m��

+

(An))
1
n ;

and

s+�(A) = lim
n!1

(n1(An))
1
n = lim

n!1
(nC(A

n))
1
n = lim

n!1
(nCS(A

n))
1
n

= lim
n!1

(nP��(A
n))

1
n = lim

n!1
(n�+

�

(An))
1
n :

By Theorem 1(k), Theorem 1'(k), (7) and (8) we get:
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Corollary 1. Let A; B 2 B(X).

(a) If AB �BA 2 P (�+(X)) and re(B) < s+(A), then A; A+B 2 �+(X) and
i(A+B) = i(A).

(b) If AB �BA 2 P (��(X)) and re(B) < s�(A), then A; A+B 2 ��(X) and
i(A+B) = i(A).

Corollary 2. Let A 2 B(X) and B 2 R(X).

(a) If A 2 �+(X) and AB � BA 2 P (�+(X)), then A + B 2 �+(X) and
i(A) = i(A+B).

(b) If A 2 ��(X) and AB � BA 2 P (��(X)), then A + B 2 ��(X) and
i(A) = i(A+B).

Proof. From Corollary 1. �

We are grtefull to the referee for pointing out that Zema�anek's result [21,
Theorem 4] is related to our results.

Theorem 3. (Zem�anek) Let !(T ) = f� 2 C : �I � T =2 �+(X) [ ��(X)g.
There exists a non-negative function �(�) de�ned on all bounded linear operators
on X and having the following properties:

(1) j�(T )� �(S)j � kT � Sk for all operators T; S;

(2) �(T + C) = �(T ) for every T and every compact operator C;

(3) !(T ) = f� 2 C : �(T � �) = 0g;

(4) for every point �0 in C we have dist (�0; !(T )) = limn!1[�((T � �0)
n)]1=n.

Let us recall that Zem�anek noted that the each of the four functions

�1(T ) = maxfG(T );K(T )g;

�2(T ) = maxfB(T );M(T )g;

�3(T ) = maxfm1(T ); n1(T )g;

�4(T ) = maxfme(T ); ne(T )g;

�5(T ) = maxfm(T+); n(T+)g;

satis�es Theorem 3. Let us remark that the following functions also satisfy this
theorem:

�6(T ) = maxfmC(T ); nC(T )g;

�7(T ) = maxfmS(T ); nS(T )g;

�8(T ) = maxfmP�+(T ); nP��(T )g;

�9(T ) = maxfm��
+

(T ); n�+
�

(T )g:
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3. Abstract case

Now, we show that some of the results above can be put in an abstract form,
i.e., in general Banach algebra. Let A be a complex Banach algebra with identy
1, K two sided proper closed ideal, � the canonical homomorphism from A onto
A=K, and G the group of invertibles in A=K. We write � to denote the semigroup
��1(G) and P (�) to denote the perturbation class associated with �. An (abstract)
index consist of a homomorphism i of the semigroup � into the additive group Z

of integers such that

(a) i(x) = 0 for all invertibile elements x in A

(b) i(1 + k) = 0 for all k in K.

It follows from the above de�nition that i(x+ k) = i(x); (x 2 �; k 2 K) and that
if x 2 �, then there exists � > 0 such that for each y 2 A with kx� yk < � we have
y 2 � and i(y) = i(x) (see [2]).

For x 2 A de�ne:

kxkP� = inffkx+ yk : y 2 P (�)g;

m�(x) = dist (x;An�):

Let re(x) be the spectral radius of the element �(x) in the algebra A=K, i.e.,
re(x) = supfj�j : �� x =2 �g.

Set r�(x) = inffj�j : �� x =2 �g. It is easy to see that r�(x) = supf� � 0 :
j�j < � =) �� x 2 �g.

Now using the same method as above we conclude that

Theorem 4. Let x; y 2 A, then

(a) m�(x) = m�(x+ z) for z 2 P (�);

(b) m�(x + y) � m�(x) + kykP�;

(c) If kykP� < m�(x), then x; y 2 � and i(x+ y) = i(x);

(d) r�(x) � m�(x);

(e) r�(x) � limn!1(m�(x
n))

1
n ;

(f) If kxkP� < m�(1), then 1� x 2 � and i(1� x) = 0;

(g) If kxnkP� < m�(1) for some n 2 N, then 1� x 2 � and i(1� x) = 0;

(h) re(x) = lim
n!1

(kxnkP�)
1
n for x 2 A;

(i) If xy � yx 2 P (�) and re(y) < limn!1(m�(x
n))

1
n ,

then x; x+ y 2 � and i(x+ y) = i(x).
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