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Abstract. It is well known that the set of semi-Fredholm operators is an
open semigroup in the set of all bounded linear operators on Banach spaces [3].
Perturbations theorems for semi-Fredholm operators are of great interest (see e.g.
[3], [4], [6], [9], [13], [14], [15] and [20]). The main results is a general perturbation
theorem for semi-Fredholm operators. Then as a corollary we get some well known
results of [6] and [7].

1. Introduction and preliminaries

In this paper X and Y are complex Banach spaces, B(X,Y) (K(X,Y))
the set of all bounded (compact) linear operators from X into Y. We shall write
B(X) (K (X)) instead of B(X,X) (K(X, X)).

An operator T € B(X,Y) is in & (X,Y) (®_(X,Y)) if the range R(T) is
closed in Y and the dimension «(T') of the null space N(T') of T is finite (the
codimension S(T) of R(T') in Y is finite). Operators in &4 (X,Y)U ®_(X,Y) are
called semi-Fredholm operators. For such operators the index is defined by ¢(7") =
a(T)—B(T). Weset &(X,Y) =@, (X,Y)NP®_(X,Y). The operators in ®(X,Y)
are called Fredholm operators. We shall write ® (X) (resp. _(X), ®(X) ) instead
of &, (X, X) (resp. B_(X,X), B(X,X)).

Since index is locally constant (see [3, Theorems (4.2.1), (4.2.2), (4.4.1)]) we
have

LEMMA 1. Let A, B € & (X, Y)U®_(X,Y) and f be a continuous map
from [0,1] into B(X,Y) such that f(0) = A, f(1) = B and f([0,1]) C ®4(X,Y) U
O_(X,Y); then i(A) = i(B).

Let U denote the closed unit ball of X. Let T € B(X,Y") and
m(T) = nf{[|Tz[| : [jz]| = 1}
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be the minimum modulus of T, and let
n(T) =sup{e >0 : eU CTU}

be the surjection modulus of T.

Obviously m(T') > 0 if and only if there is a number ¢ > 0 such that ¢||z|| <
|ITz||,z € X, and in this case we say that operator T is a bounded below. It is well
known that m(T") > 0 if and only if the null space of T is zero and the range of T
is closed, and n(T") > 0 if and only if T is surjective.

Further, for T', S € B(X,Y) we have
m(T +S) <m(T) + S]]

and analogously
n(T +8) <n(T) +||S]].

It is well known that if an operator T is bounded below (surjective) and the norm
of a perturbation S is smaller than m(T) (n(T)), then T + S is bounded below
(surjective). Namely,

m(T)=m(T+S—-5)<m(T+S)+||S|| <m(T +S) +m(T)
=m(T +S) > 0.

Obviously a bounded below operator is ®; and a surjective operator is ®_.

An operator T € B(X,Y) is strictly singular (T € S(X,Y)) if, for every
infinite dimensional (closed) subspace M of X, the restriction of T' to M, T'|ur,
is not a homeomorphism, i.e., m(T|ap) = 0. An operator T' € B(X,Y) is strictly
cosingular (T € CS(X,Y)) if, for every infinite codimensional closed subspace V
of Y the composition QT is not surjective, where )y is the quotient map from
Y onto Y/V, ie., n(QvT) = 0. It is well known that K(X,Y) C S(X,Y) and
K(X,Y) C CS(X,Y).

Let S be a subset of a Banach space A. The perturbation class associ-
ated with S is denoted P(S) and P(S) = {a € A : a+s € Sforalls €
S}. The perturbation class associated with @, (X,Y) (resp. ®,(X), ®_(X,Y),
®_(X)) is denoted by P(®4(X,Y)) (resp. P(®, (X)), P(®_(X,Y)), P(®_(X))).

For T € B(X,Y), we set (see [18], [19])

Me (T) = dISt(Ta B(X7 Y)\(I)-i- (Xv Y))
for the essential minimum modulus and
no(T) = dist(T, B(Y,Y)\&_(X,Y))

for the essential surjection modulus.
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For T € B(X), the quantities

sy (T)=sup{e>0: [A|<e= AN -Te€?,.(X)}
s_(T)=sup{e>0: N <e= AN -T € ®_(X)}

are semi-Fredholm radii of the operator T' (see [18], [19]).

We shall use 7 to denote the natural homomorphism of B(X) onto the Calkin
algebra C(X) = B(X)/K(X). C(X) is itself a Banach algebra in the quotient
algebra norm

Im(T)ll = inf{|IT + K| : K € K(X)},
Let r.(T") denote spectral radius of the element 7(7') in C(X), T € B(X), i.e.,
re(T) = lLim (||=(T™)|)* and it is called essential spectral radius of T. Recall that
n—o0
re(T) = sup{|A| : A =T ¢ ®(X)} (see [3]). An operator T' € B(X) is Riesz
operator if and only if r.(T) = 0 [3, Theorem 3.3.1]. Let R(X) denote the set of
Riesz operators in B(X).

2. Results

If f:B(X,Y)— [0,00),set N(f) ={T € B(X,Y) : f(T) = 0}. The main
result in this paper is the following perturbation theorem.

THEOREM 1. Let f be a seminorm on B(X,Y), and h: B(X,Y) — [0,00) a
function such that for A, B € B(X,Y)

(1) h(A) >0 << Aed, (X,)Y),

(2) h(A+ B) < h(A) + f(B),

(3) K(X,Y) C N(f) and f(A) < [|Al;

then

(@) h(A+C)=h(A) for all C € N(f);

() If f(B) < h(A), then A, A+ Be€ ®,(X,Y) and i(A) =i(A+ B);
(¢) N(f) is closed subspace of B(X,Y) and N(f) C P(®+(X,Y));
(d) If||B|| < h(A), then A, A+ Be€ ®,(X,Y) and i(A+ B) =i(A);
() me(A) = h(A).

For A € B(X) we have
(f)  s+(A) > h(A);
(9) s+(4) > hm( (A™))=
(h) If f(A) < h(I), then I — A € B(X) and i(I — A) = 0;
(t) If f(A™) < h(I) for somen > 1, then [ — A€ ®(X) and i(I — A) =
(j) re(A) = lim (f(A™))x;

n—oo
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(k) If AB—BA € P(®,(X)) and ro(B) < lim,_ o (R(A")) 7,
then A, A+ B € ®,(X) and i(A + B) =i(A).
Proof: (a) Let C € N(f). By (2) we have
h(A+C) < h(A) + f(C) = h(A),
h(A) =h(A+C+ (-C)) <h(A+C)+ f(-C)=h(A+C)
and hence h(A4) = h(A + C).
(b) Let f(B) < h(A) and X € [0,1]. By (2) we have
h(A) = h(A+ AB + (=AB)) < h(A+ AB) + f(=AB) = h(A+ AB) + A\f(B) <
< h(A+ AB) + h(A4),

and hence h(A + AB) > 0. Further, by (1) it follows that A + AB € ®,(X,Y) and
hence A, A+ B € &,(X,Y). Now by Lemma 1 we have i(4 + B) = i(4).

(c) Let A, B € N(f) and A\, u € C. Since f is a seminorm on B(X,Y") it follows
that

0 <f(AA+puB) < f(AA) + f(uB) = [A|f(A) + |p|f(B) =0 =
FFOA+uB) =0 => A + uB € N(f).

So N(f) is a subspace of B(X,Y).

Let A, € N(f),n € Nand A € B(X,Y) such that ||A, — A|| — 0 when
n — co. Then

0< f(A) = f(A— Ay + A,) < f(A = A,) + f(A,) = F(A— A,) < || 4, — Al

It follows that f(A) =0, so A € N(f). Hence N(f) is closed.

Let A€ ®,.(X,Y) and B € N(f). By (1) it follows that f(B) = 0 < h(4).
Now by (b) we have A+ B € ®,(X,Y). Hence B € P(®.(X,Y)), and (c) is
proved.

) Let ||B]| < h(A). By (3) f(B) < ||B]| and this implies f(B) < h(A). Now by
)weget A, A+ Be @, (X,Y) and i(A + B) =i(A).
)
)

e) Since m.(A) =max{e >0 : ||B||<e= A+ B € &, (X,Y)}, (d) implies (e).

g) It is known that s+(A”) = [s+(A)]", n € N. Hence by (f) we have s4(A) =

(d
(b
(
(f) Obviously sy (A) > m.(A) and hence (f) follows from (e).
(
(s4(A™))w > (h(A™))w for all n € N. Tt implies (g).

(h

) Let f(A) < h(I). Now (b) implies I — A € &, (X) and i(I — A) = i(I) = 0.
Hence I — A € ®(X).



Semi-Fredholm operators and perturbations 77

(i) Let f(A™) < h(I) for some n > 1, and let A € [0,1]. Then f((AA)") =
A" f(A™) < f(A™) < h(I) and by (h) it follows that I — (AA)™ € &(X). Since

T—(AA)" =T = AA)T+A+  + A 1am
=(T+AA+ . +A"7 AT (I = 2A)

by [3, Corollary 1.3.6] we have I — AA € ®(X). Hence I — A € ®(X). Further, by
Lemma 1 we get i(I — A) =i(I) =0.

(j) Let A € C and |A| > (h(I))~# (f(A™))* for somen € N. Then h(I) > f((A/A)™)
and by (i) it follows I — A/A € ®(X), i.e., \ — A € ®(X). Hence r.(4) <
(W(I))~% (f(A™))# for all n € N. This implies

re(4) < lim (A(1))™= lim (f(A™)= = lim (f(A"))~.

n—00 n—oo n—oo

From (3) it follows that for all ' € B(X) and K € K(X)

[T+ K) < f(T) + f(K) = f(T),
M) =fT+K+(-K)) <f(T+K)+ f(-K)=f(T +K),

so that f(T') = f(T + K) < ||T + K]||. Thus
(1) <inf{[|T + K| - K € K(X)} = [l=(T)]l.
Hence

re(4) < lim (f(A™)* < Tm (f(A")* < lim (lr(A"))F = re(4),

n—oo n—o0

and we get (j). (k) Let AB — BA € P(®,(X)) and r.(B) < Lim (h(A"))w. Let
n—o0
e be such that r.(B) < € < Iim (h(A™))=. By (j) we have lim (f(B")» <€ <
n—o0 n—o0

li_>_m (h(A™))w. Hence there exists n € N such that (f(B"))= < e < (h(A"))7, i.e.,
n o0

f(B™) < h(A™). From (b) it follows A™ — B™ € &, (X). Since P(®4(X)) is a two
sided ideal of B(X) (see [3, Lemma 5.5.5]), from AB — BA € P(®,(X)) we get
A"—B" = C(A-B)+P, where C' = A" '+ BA"24...+B" ' and P € P(%, (X)).
Thus, C(A — B) € ®,(X), and by [3, Corollary 1.3.4] we get A— B € &, (X). Let
us remark that from our proof, it follows that A + AB € &, (X) for 0 < A < 1.
Now by Lemma 1, we have i(A + B) =i(A). O

Remark 1. Let us remark that we can get (g) as a consequence of (k).
If 11_>_m (h(A™))% = 0, then the inequality (g) obviously holds. Suppose that
n o0

lim (h(A™))» > 0. For A € C, let || < lim (h(A™))# and B = M. Then we have

r.(B) = |A\| < lim (h(A"))» and AB = BA. By (k) we have A\l — A € &, (X).
n—o0

1

Therefore s, (A) > lim (h(A™))w.
n—o0
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The next theorem is a dual part of Theorem 1. We omit the proof.

THEOREM 1’. Let f be a seminorm on B(X,Y), and h : B(X,Y) — [0, c0)
a function such that for A, B € B(X,Y)

(1) h(A) >0 <= Aed_(X)Y),

(2) h(A+ B) <h(A) + f(B),

(3) K(X,Y) C N(f) and f(A) < [|A]],

then

(@) h(A+C)=h(A) for all C € N(f);

() If f(B) < h(A), then A, A+ Be ®_(X,Y) andi(A) =i(A+ B);
(¢) N(f) is closed subspace of B(X,Y) and N(f) C P(®_(X,Y));
(d) If||B|| < h(A), then A, A+ B€ ®_(X,Y) and i(A+ B) =i(A);
() mn.(4) > h(A).

For A € B(X) we have
(f)  s-(A) > h(4);
(9 s (4)> Fm (h(A)};
(h) If f(A) < h(I), then I — A € ®(X) and i(I — A) =0;
(i) If f(A™) < h(I) for somen > 1, then I — A€ ®(X) and i(I — A) =0;
() reld) = lim (F(A™)7;
(k) IfAB—BAe P(® (X)) and ro(B) < Iim, o (h(A"))%,
then A, A+ B€ ®_(X) andi(A+ B) =i(A).

Set

QI(X)Y) = {T € (§+(X)Y) : Z(T) < 0};
dT(X,)Y)={T € d (X,Y) :i(T) >0}

We shall write @ (X) (27 (X)) instead of ®, (X, X) (¥ (X, X))
For A € B(X,Y), set
Mg (A) =dist(A4, B(X,Y)\® (X,Y)),
ng+ (A) = dist(4, B(X,Y)\@* (X,Y)),

and

s7(A)=sup{e>0: |A|<e=A-Ac® (X)},
st(A) =sup{e>0: |A\|<e= A - A€ dT(X)}.
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Let us remark that m.(4) > s (4) (ne(A) > ng+(A)) and if m‘bl(A) > 0
(ng+(A) > 0), then m.(A) = Mg (A) (ne(A) = ng+(A4)) (because index is locally
constant). Also si(A4) > sy (A) (s (A) > st (4)) and if s7(A4) >0 (st(4) > 0),
then s (4) = s, (4) (s—(4) = sL(4)).

Let us remark that @ (X,Y) (®7(X,Y)) is an open subset of ®,(X,Y)
(®_(X,Y)) and that ¢, (X,Y) (?_(X,Y)) does not contain any boundary point
of 1 (X,Y) (¥ (X,Y)) (because index is locally constant). By [3, Lemma 5.5.4]
it follows that P(®4(X,Y)) C P(®7(X,Y)) (P(®_(X,Y)) C P(2T(X,Y))).
Rakotevi¢ proved in [10] that P(®4 (X)) = P(®3 (X)) (P(®_(X)) = P(®X(X))).
We set the following question: does the equality P(®,(X,Y)) = P(® (X,Y))
(P(®_(X,Y)) = P(®*(X,Y))) hold?

Analogously as Theorem 1 the following two theorems can be proved.

THEOREM 2. Let f be a seminorm on B(X,Y), and h: B(X,Y) — [0, c0)
a function such that for A, B € B(X,Y)

(1) h(A) >0 < Acd (X)Y),

(2) h(A+ B) < h(A) + f(B),

(3) K(X,Y) C N(f) and f(A) < [|A]],

then

(@) h(A+C)=h(A) for all C € N(f);

() If f(B) < h(A), then A, A+ Be &, (X,Y) and i(A) = i(A+ B) <0;
(¢) N(f) is closed subspace of B(X,Y) and N(f) C P(®(X,Y));

(d) If||B|| < h(A), then A, A+ B e ®,(X,Y) and i(A+ B) =i(4) <0;
(e) My~ (A) > h(A).

For A € B(X) we have

f) s3(A) = h(A4);

9) 5 (4)> Tm (h(Am)#;

h) If f(A) < h(I), then I — A € ®(X) and i(I — A) =0;

i) If f(A™) < h(I) for somen > 1, then I — A€ ®(X) and i(I — A) =0

) re(4) = lim (F(A")7;

k) If AB— BA € P(®,.(X)) and re(B) < lim,,_,o (h(A"))™,
then A, A+ B€ ®,(X) andi(A+ B)=1i(A) <0.

:|>—\

THEOREM 2'. Let f be a seminorm on B(X,Y), and h : B(X,Y) — [0, c0)
a function such that for A, B € B(X,Y)

(1) h(A) >0 <= Aecd (X,Y),

(2) h(A+ B) < h(A) + f(B),
3) K(X,Y) C N(f) and f(A) < [|Al],
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then

(a) h(A+C)=h(A) for all C € N(f);

(b) If f(B) < h(A), then A, A+ Be ®_(X,Y) and i(A) =i(A+ B) >0;
() N(f) is closed subspace of B(X,Y) and N(f) C P(®,(X,Y));

(d) If||B|| < h(A), then A, A+ Be ®_(X,Y) and i(A+ B) =i(A) > 0;
(€) mgs (4) > h(A).

For A € B(X) we have
(f) sT(A) > h(A4);
(9) (4)> Tm (h(A")H;
(h) If f(A) < h(I), then I — A € ®(X) and i(I — A) =0;
(1) If f(A™) < h(I) for somen > 1, then I — A€ ®(X) and i(I — A) =0;
() re(d) = tim (FAM)3;
(k) IfAB—BA € P(®_(X)) and ro(B) < lim,_ o (h(A"))7,
then A, A+ B€ ®_(X) andi(A+ B) =1i(A) > 0.

Now we shall list several examples of known functions, which satisfy the
conditions of Theorem 1, Theorem 1°, Theorem 2 or Theorem 2’.

Examples. 1. For A € B(X,Y) set
[Alle = inf{|lA+ K[| : K € K(X,Y)},

mc(A) =sup{m(A+ K) : K€ K(X,Y)} (see|[8])
nc(A) =sup{n(A+ K) : K € K(X,Y)}.

The functions || - |¢ and m¢ (]| - ||¢ and nc¢) satisfy the conditions of Theorem 2
(Theorem 2°) (see [17]).

2. The functions || - [[c and m. (|| - [|c and n.) satisfy the conditions of
Theorem 1 (Theorem 1°) (see [19, Proposition 1]).

3. If Q is a nonempty subset of X, then the Hausdorff measure of noncompact-
ness of Q, is denoted by ¢(©2), and ¢(Q) = inf{e > 0 : Q has a finite e-net in X }.
For A € B(X,Y') the Hausdorff measure of noncompactness of A, denoted by || 4|4,
is defined by

Al = inf{k >0 : qv(AQ) < kgx (), @ C X is bounded.}
It is easy to see that
141l = sup{qy (AQ) : Q@ C X, ¢x(©?) =1}.

Set (see [7])
mgy(A4) = inf{gyv (AQ) : Q C X, ¢x(Q) =1}.
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The functions || - ||, and m, satisfy the conditions of Theorem 1 (see [7, Theorem
4.10], [1, p. 73] or [11, Posledica 2.12.12]). Fainstein [4] proved that

[|Allg = inf{]|@n~A]|| : N finite-dimensional subspace of Y},

where @y is the quotient map from Y into Y/N.
Set (see [4] and [20])

nqg(A) =sup{n(Q@nA) : N finite-dimensional subspace of Y'}.

The functions || - ||, and n, satisfy the conditions of Theorem 1’ (see [20, Theorem
4.1]).

Let us remark that Theorem 4 in [6] follows from Theorem 1 (Theorem 1°).

4. For A€ B(X,Y) set
[|All, = inf{]|A|z|| : L subspace of X, codim L < oo},

and
my(A) = sup{m(A|r) : L subspace of X, codim L < co}.

We conclude that the functions || - ||, and m,, satisfy the conditions of Theorem 1
(see [7] and [13, Lemma 2.13]). Hence Theorem 6.1 in [7] follows from Theorem 1.

5. Let l(X) be the Banach space obtained from the space of all bounded
sequences ¥ = () in X by imposing term-by-term linear combination and the
supremum norm ||z|| = sup,, ||z,|]- Let m(X) stand for the closed subspace

{(zn) € lo(X) : {z,, : n € N} relatively compact in X'}

of loo(X). Let XT denote the quotient [, /m(X). Then A € B(X,Y) induces an
operator AT : XT = YT, (z,) + m(X) = (Az,) + m(Y), (zn) € loo(X). The
function A ~ ||AT|| is a measure of noncompactness, i.e., it is a seminorm on
B(X,Y) such that ||[AT||=0<= A€ K(X,Y) (see [1] and [2]).

The functions A — [|[AT|| and A — m(A") (A — [|[AT|| and A — n(4AT))
satisfy the conditions of Theorem 1 (Theorem 1’) (see [2, Theorem 2] and [5,
Theorem 3.4]).

6. For A € B(X,Y) set

Gu(A) = inf [|A|n|l, G(A) =Gx(A4), Au(A4) = sup Gn(4), A(4) =Ax(4),
NCM NCM
where M, N denotes infinite dimensional subspaces of X

We conclude that the function A and G satisfy the conditions of Theorem 1
(see [13]).
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Weis [16] introduced for A € B(X,Y) the following functions

Ky(4) = jnf |QwAl, K(4)=K(4),

VV(A):;/%DVKW(A); V(4) = Vo (4),

where V, W denote closed infinite codimensional subspaces of Y (we use the nota-
tions from [20]). It is not difficult to show that the functions V and K satisfy the
conditions of Theorem 1.

Schechter [13] proved that A(A) < ||A4||,, and similarly it can be proved that
V(A4) <||4|lgy A € B(X,Y). Therefore, the functions || - ||, and G (|| - ||; and K)
satisfy the conditions of Theorem 1 (Theorem 1°).

7. For A € B(X,Y) set (see [9] and [10])

tu(A) = inf [|Anlly,  t(4) = tx(A),
gm(A) = Sup, tn(A),  9(4) = gx(4),

where M, N denote infinite dimensional subspaces of X.

We conclude that the functions g and t satisfy the conditions of Theorem 1.

Remark 2. From the proof of Theorem 1 it is clear that if we replace the
condition (2) of Theorem 1 ((2) of Theorem 1’) by a weaker condition:
(2') If f(B) < h(A), then A+ B € ®,(X,Y)
((2") If f(B) < h(A), then A+ B € &_(X,Y)),
then we can prove the assertions (c)—(k) of Theorem 1 (Theorem 1’). Zemdnek [20]
considered the following functions

u(A) = sup{m(A|w) : W is closed subspace of X with dim W = oo},
v(A) = sup{n(QvA) : V is closed subspace of ¥ with codim V' = oco}.

From the definition of strictly singular and strictly cosingular operators it is obvious
that u(A) = 0ifand onlyif A € S(X,Y), and v(A) =0ifand onlyif A € CS(X,Y).
Zemének denoted the quantities m, and n, with B and M, respectively and proved:
IfT, Se B(X,Y) and v(S) < M(T), then T + S is a ®_-operator, and if u(S) <
B(T), then T+ S is a @ —operator. Now it is clear that the functions v and B (v
and M) satisfy the conditions (1), (2') and (3) of Theorem 1 (Theorem 1°).

The quantities m¢, mg, my, m(-1), me, G, t, A', ¢ may be considered as
substitutes for the minimum modulus of an operator and n¢, ng, n(-%), ne, K, v
as substitutes for the surjection modulus. Also we can say that measures of non-
compactness || - [lc, ||+ llgs I+ llu, || -7 || generalize norm. Further, the quantities
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A, g, u and V, v generalize measures of noncompactness in the same way as
strictly singular and strictly cosingular operators generalize compact operators.

Let us introduce the following functions for T' € B(X,Y):

ITl|pe, =nf{[|T - B|| : B€ P(®(X,Y))},
ITllpe_ =inf{|IT = B|| : B e P(®_(X,Y))}.

Clearly ||||pe, (||/||po_) is seminorm on B(X,Y’) with property ||T||ps, < ||T|
(ITlpe_ < |IT]),T € B(X,Y). Since P(®4(X,Y)) (P(®_(X,Y))) is a closed
set [3, Lemma 5.5.3] the function ||-|[ps, (||-||ps_) disappears on P(®(X,Y))
(P(®_(X,Y))). Since K(X,Y) C P(®+(X,Y)) (P(®_(X,Y))) [3, Corollary 1.3.7]
we conclude that the functions ||-||pe, (||||pe_) satisfy the condition (3) of The-
orem 1 (Theorem 1°).

LEMMA 2. Let T € B(X,Y). Then

(a) me(T):me(T+A)7 fOTAEP((I>+(X,Y)),
(b) ne(T) =ne(T + A), for A€ P(®_(X,Y)).

Proof. (a) Let A € P(®,(X,Y)). Since P(®4(X,Y)) is a linear subspace of
B(X,Y) (see [3, Lemma 5.5.3]) it follows that —A € P(®,(X,Y)). It implies that
B € ®,.(X,Y)if and only if B+ A € ®,.(X,Y), i.e,, B € B(X,Y)\®,(X,Y) if
and only if B € —A + B(X,Y)\®,(X,Y). Hence

me(T) = f{||T - B|| : B € B(X,Y)\&(X,Y)}
= inf{||T — (—A + O)|| : C € B(X,Y)\®,(X,Y)}
= inf{[|(T + 4) - C|| : C € B(X,Y)\&4(X,Y)}

=m.(T + A).

(b) can be proved analogously. O

LEMMA 3. Let T, S € B(X,Y). Then

(a) me(T + S) < me(T) + IS po, ,
(b) ne(T +5) <ne(T) + [|S]lpe-.

Proof. Recall that
(4) me(A+ B) <m.(A) +[B||, A, BeB(X,Y).
For each A € P(®,(X,Y)), by Lemma 2 (a) and (4) we have

me(T +S)=me(T+ S+ A) <m(T)+||S + 4],
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hence
me(T + S) < mo(T) +inf{||S+ A|| : A€ P(®(X,Y))} =mo(T) + [|S|pa, -

(b) can be proved analogously. O

We conclude that the functions [|-||pe, and m. (||-||pe_ and n.) satisfy the
conditions of Theorem 1 (Theorem 1°).

Let us introduce the following functions for A € B(X,Y):

4]l = inf{]A + €] : C € S(X,1)},
Alles = inf{JA+C|| : € € CS(X,Y)},

and

mg(A) =sup{m(4+C) : C € S(X,Y)},
ncs(A) =sup{n(4+C) : C e CS(X,Y)}.

It is clear that
(5) mg(A+ P)=m(4) for Pe S(X,Y),
ncs(A-l-P):ncs(A) fOI“PECS(X,Y).
LEMMA 4. Let A, B € B(X,Y). Then

(a) ms(A+ B) <ms(A4) + ||1B]|s,
(b) nes(A + B) < nes(A) +[|Blles-

Proof. For each C € S(X,Y) we have
m(T+S+C)<m(T+C)+ |||
It implies that
sup{m(T+S+C) : C e S(X,Y)} <sup{m(T+C) : CeSX,Y)}+ S]],
ie.,
(6) ms(A+ B) <ms(4) + |B].

Now as in the proof of Lemma 3, (a) follows from (5) and (6).
(b) can be proved analogously. O
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LEMMA 5. For A € B(X,Y)

(a) ms(A) >0 A€ ® (X,Y),
(b) nes(A) >0« AcdF(X,Y).

Proof. (a) (=) Let mg(A) > 0. This implies that there is C € S(X,Y)
such that m(A + C) > 0. Hence A+ C € &,(X,Y) and i(A+ C) < 0. Since
S(X,Y) C P(®:(X,Y)), then A\C € P(®,(X,Y)) for A € [0,1] and we get A +
AC € ¢, (X,Y). It implies that A € ®,(X,Y), and from Lemma 1 it follows that
i(A) =i(A+C)<0. Thus A e & (X,Y).

(<) Assume A € & (X,Y). Obviously mg(A) > mc(A). Since (see [17])

mg(A) > 0= A€ (X,Y),

it follows that mg(A4) > 0.
(b) can be proved analogously. O

Now we see that the functions || - ||s and ms (]| - ||cs and ncs) satisfy the
conditions of Theorem 2 (Theorem 2°).

Let us introduce the following functions for T' € B(X,Y):
mpg, (T) =sup{m(T' 4+ C) : C € P(®,(X,Y))},
npe_(T) =sup{n(T +C) : C € P(®_(X,Y))}.

Similarly as above we get
mpe, (T) >0 T € & (X,Y),
npe (T) >0+ T e dF(X,Y).

and
mpa, (T +S) <mps, (T) +|S||pa,,
np¢7(T+S) Snpq>7(T)+||S||Pq>7 T, SEB(X,Y)
Thus, the functions || - ||pe, and mpe, (||-||pe_ and npe_) satisfy the conditions

of Theorem 2 (Theorem 27).
Since the sets ®(X,Y) and ®*(X,Y’) are open, for A € B(X,Y) we have
mq);(A) >0 Acd (X,Y),
ng+(4) >0+= A€ o (X,Y).
Set
1Al pg- = nf{[[A+C| : € € P(®L(X,Y))},
[4llpg+ = inf{|A +C|| - C € P(BL(X,Y))}.
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Using the same metod as in Lemma 2 and Lemma 3, we conclude

mq); (A+ B) < mcpl (4) + ||B||P<I>_T_7
ng+ (A + B) <ng+(A) +[|Bll pg+-

Now we see that the functions || - ||P¢; and Mg (I - ||P¢; and ng+) satisfy the

conditions of Theorem 2 (Theorem 2°).
For A € B(X) recall that

si(A) = lim (m.(A™)* = lim (my(A™)* = lim (m,(A"))"

" = I:rrz (m((A™)))» 1:;& (G(A™) =§;O (H(A™)

and

. s—(4) = lim (ne(A"))f = lim (ny(A™)" = lim (n((4")"))"
= lim (K(4™)"

(see [19], [4], [15], [20], [19]). Set (see [20])
Moo(A) =sup{m(A+ F) : dim R(F) < oo},
Noo(A) = sup{n(A+ F) : dim R(F) < co}.

From the inequalities

Theorem 2 (g), Theorem 2’ (g) and by [20, Theorem 8.3] we get
s7(A) = lim (meo(A™)™ = lim (mc(A™)7 = lim (ms(A™)=
n—o0 n—o0 n—o0

= Jim (mpa (A")F = lim (my (A7),

and

1

sT(A) = lim (neo(A™)* = lim (nc(A™) = lim (nos(A™)

n—
= lim (npe (A")% = lim (ngs (A")%

By Theorem 1(k), Theorem 1’(k), (7) and (8) we get:
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COROLLARY 1. Let A, B € B(X).

(a) If AB— BA € P(®,(X)) and r.(B) < s+ (A), then A, A+ B € &,(X) and
i(A+ B) =i(4).

(b) If AB—BA € P(?_(X)) and re(B) < s_(A), then A, A+ B € ®_(X) and
i(A+ B) =i(4).
COROLLARY 2. Let A € B(X) and B € R(X).

(a) If A € ®,(X) and AB — BA € P(®,(X)), then A+ B € ®,(X) and
i(A) =i(A+ B).

(b) If A € ®_(X) and AB — BA € P(®_(X)), then A+ B € ®_(X) and
i(A) =i(A+ B).
Proof. From Corollary 1. O

We are grtefull to the referee for pointing out that Zemadnek’s result [21,
Theorem 4] is related to our results.

THEOREM 3. (Zemdnek) Let w(T) ={ A€ C: A\ =T ¢ & (X)UP_(X)}.
There exists a non-negative function x () defined on all bounded linear operators
on X and having the following properties:

(1) |Ix(T) = x(S)| < |IT = S|| for all operators T, S;

(2) x(T+C)=x(T) for every T and every compact operator C';
(3) w(T) = {A € C: (T = \) =0};
(4) for every point \g in C we have dist (Ao, w(T)) = lim,, o0 [x((T — Xo)™)]*/".

Let us recall that Zeméanek noted that the each of the four functions

=max{m.(T),n.(T)},

(T)
(T)
x3(T') = max{meo (T), noo(T)},
(T)
(T) = max{m(T"),n(T")},

satisfies Theorem 3. Let us remark that the following functions also satisfy this
theorem:

X6(T) = max{mc(T),nc(T)},
x7(T) = max{mg(T),ns(T)},
x8(T') = max{mps (T),nps_(T)},
Xo(T) = max{mq>:r (T),ne+ (T)}
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3. Abstract case

Now, we show that some of the results above can be put in an abstract form,
i.e., in general Banach algebra. Let A be a complex Banach algebra with identy
1, K two sided proper closed ideal, m the canonical homomorphism from A onto
A/K, and G the group of invertibles in A/K. We write ® to denote the semigroup
7~1(@) and P(®) to denote the perturbation class associated with ®. An (abstract)
index consist of a homomorphism i of the semigroup ® into the additive group Z
of integers such that

(a) i(z) = 0 for all invertibile elements z in A
(b) i(1+ k) =0 for all kin K.

It follows from the above definition that i(z + k) = i(z), (x € ®, k € K) and that
if x € @, then there exists € > 0 such that for each y € A with ||z — y|| < € we have
y € ® and i(y) = i(z) (see [2]).

For x € A define:

lzllpe = inf{|lz +yl| - y € P(®)},
me(z) = dist (z, A\ ®).

Let r.(z) be the spectral radius of the element w(z) in the algebra A/K, i.e.,
re(x) =sup{|A| : A—z ¢ D}

Set rg(z) = inf{|A| : A —z ¢ ®}. It is easy to see that rg(z) = sup{e >0 :
A <e= -z € ®}.

Now using the same method as above we conclude that

THEOREM 4. Let x, y € A, then
a) mae(xr) =me(x + 2) for z € P(®);
ma(z +y) <ma(z) + lyllpa;
¢) Ifllyllpe < me(x), then z, y € ® and i(x +y) = i(z);
d) re(z) >me(z);
&) 10(z) > By oo (ma(z™) ¥
) If||z|lpe < ma(l), thenl —2 € ® and i(1 —z) =0;
g) Ifl|z"||lpe < ma (1) for somen € N, then 1 —x € ® andi(l —x) =0;
h) re(z) = JLH;O(HiL’n”PcP)% forz € A;

i) Ifzy—yx e P(®) and r.(y) < Tm, a0 (me(z™)) 7,
then z, v +y € ® and i(z +y) = i(z).

Acknowledgements. I am grateful to Professor Vladimir Rakocevi¢ and
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ments and suggestions concerning the paper.



10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Semi-Fredholm operators and perturbations 89
REFERENCES

. J. J. Buoni, R. E. Harte and A. W. Wickstead, Upper and lower Fredholm spectra, Proc. Amer.
Math. Soc. 66 (1977), 309-314.

. S. R. Caradus, W. E. Pfaffenberger and B. Yood, Calkin Algebras and Algebras of Operators
on Banach Spaces, Marcel Dekker, 1974.

. A. S. Fainstein, On measures of noncompactness of linear operators and analogous of the
minimum modulus for semi-Fredholm operators, Spektral’naja Teorija Operatorov i Priloz.
Baku 6 (1985), 182-195 (Russian).

. K.-H. Foster and E.-O. Liebetrau, Semi-Fredholm operators and sequence conditions, Manu-
scripta Math. 44 (1983), 35—44.

. I. T. Gohberg, L. S. Goldenstein and A. S. Markus, Investigation of some properties of bounded
linear operators in connection with their g-norms, Uch. Zap. Kishinevsk. Un-ta 29 (1957), pp.
29-36 (russian).

. A. Lebow and M. Schechter, Semigroups of operators and measures of noncompactness, J.
Funct. Anal. 7 (1971), 1-26.

. V. Rakocevié, On one subset of M. Schechter’s essential spectrum, Mat. Vesnik 33 (1981),
389-391.

. V. Rakocevié, Measures of non-stric-singularity of operators, Mat. Vesnik 35 (1983), 79-82.

V. Rakocevi¢, Esencijalni spektar ¢ Banachove algebre, Doktorska disertacija, Univererzitet u
Beogradu, Prirodno -matematicki fakultet, 1984.

V. Rakocevié¢, Funkcionalna analiza, Naucna knjiga, Beograd, 1994.

B. N. Sadovskii, Limit-comact and condensing operators, Russian Math. Surveys 27 (1972),
85—-155.

M. Schechter, Quantities related to strictly singular operators, Indiana Univ. Math. J. 21
(1972), 1061-1071.

M. Schechter and R. Whitley, Best Fredholm perturbation theorems, Studia Math. 90 (1988),
175-190.

H.-O. Tylli, On the asymptotic behaviour of some quantities related to semifredholm operators,
J. London Math. Soc. (2) 31 (1985), 340-348.

L. Weis, Uber strikt singulare und strikt cosinguldre Operatoren in Banachrdumen, Disserta-
tion, Bonn, 1974.

B. Yood, Properties of linear transformations preserved under addition of a completely con-
tinuous transformation, Duke Math. J. 18 (1951), 599-612.

J. Zemanek, Geometric interpretation of the essential minimum modulus, in: Invariant Sub-
spaces and Other Topics (Timisoara/Herculane, 1981), Operator Theory: Adv. Appl. 6,
Birkhduser, Basel 1982, 225-227.

J. Zemének, The Semi-Fredholm Radius of a linear Operator, Bull. Polon. Acad. Sci. Math.
32 (1984), 67-76.

J. Zemanek, Geometric characteristics of semi-Fredholm operators and asymptotic behaviour,
Studia Math. 80 (1984), 219-234.

J. Zemanek, Compressions and the Weyl-Browder spectra, Proc. Roy. Irish Acad. Sect. A 86
(1986), 57-62.

Grupa za matematiku (Received 08 03 1996)
Filozofski fakultet

Cirila i Metodija 2

18000 Ni§

Jugoslavija



