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1. Introduction. Let C denote the set of all complex numbers. If A is a
complex Banach algebra with identity 1 and invertible group A−1 = A−1

left∩A−1
right,

intersection of the semigroups of the left and of the right invertibles, then we write

σ(a) ≡ σA(a) = {λ ∈ C : a− λ /∈ A−1}

for the spectrum of a ∈ A, and similarly for the left and the right spectrum.
For K ⊂ C, ∂K denotes the topological boundary of K. We recall

∂σ(a) ⊆ σleft(a) ∩ σright(a) ⊆ σ(a). (1.1)

If K is a compact set, K ⊆ C, we shall write ηK for the connected hull of
K, where the complement C \ ηK is the unique unbounded component of the
complement C \ K ([5]; [3], Definition 7.10.1). A hole of K is a component of
ηK \ K. Generally ([5], Theorem 1.2, Theorem 1.3; [3], Theorem 7.10.3), for
compact subsets H,K ⊆ C,

∂H ⊆ K ⊆ H =⇒ ∂H ⊆ ∂K ⊆ K ⊆ H ⊆ ηK = ηH, (1.2)

and H can be obtained from K by filling in some holes of K.
Evidently, if K ⊆ C is finite, then ηK = K.
Therefore, for compact subsets H,K ⊆ C,

ηK = ηH =⇒ (H is finite ⇐⇒ K is finite), (1.3)
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and in that case H = K.
The quasinilpotents of A form the set

QN(A) = {a ∈ A : ∥an∥1/n → 0} = {a ∈ A : σ(a) = {0}}
= {a ∈ A : 1− Ca ⊂ A−1}.

Recall that

a, b ∈ QN(A), ab = ba =⇒ a+ b ∈ QN(A), (1.4)

a ∈ QN(A), b ∈ A, ab = ba =⇒ ab ∈ QN(A). (1.5)

The radical of A is the set

Rad(A) = {d ∈ A : 1−Ad ⊆ A−1} = {d ∈ A : 1− dA ⊆ A−1}.

It is well-known that Rad(A) is a two-sided ideal.

A map T : A → B is a homomorphism if T is linear and satisfies T (xy) = TxTy,
x, y ∈ A, and T1 = 1. The homomorphism T has the Riesz property if 0 is the only
one possible point of accumulation of σ(a) for every a ∈ T−1(0), that is, if Ta = 0,
then σ(a) is either finite or a sequence converging to 0 [1]. The homomorphism T
has the strong Riesz property if

∀ a ∈ A : ∂σ(a) ⊂ σ(Ta) ∪ isoσ(a), (1.6)

where isoσ(a) denotes the set of the isolated points of σ(a). By the essential
boundary-hull theorem ([5], Theorem 4.2) the strong Riesz property can be rewritten

∀ a ∈ A : σ(a) ⊆ ησ(Ta) ∪ iso σ(a). (1.7)

From (1.7) it is clear that the strong Riesz property implies the Riesz property.
In [4], Theorem 4 it was shown that if T : A → B is bounded homomorphism
with closed range, then the Riesz property implies the strong Riesz property. For
unbounded T this was shown in [6], Corollary 7.9.

Let T : A → B be a homomorphism of complex Banach algebras which is not
necessarily bounded.

We shall describe a ∈ A as T Riesz if

T (a) ∈ QN(B).

We shall say that a ∈ A is left (right) T Fredholm if it has a left (right) invertible
image:

a ∈ T−1(B−1
left) (a ∈ T−1(B−1

right)).

An element a ∈ A is T Fredholm if it has an invertible image ([1], [3]),

a ∈ T−1(B−1),

and T Weyl if it is the sum of an invertible and one whose image is zero:

a = c+ d with c ∈ A−1, Td = 0.
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If the previous sum is commutative, then a ∈ A is T Browder:

a = c+ d with c ∈ A−1, Td = 0, cd = dc.

The induced left T Fredholm, right T Fredholm, T Fredholm, T Weyl and T
Browder spectra are given by

σleft
T (a) = σleft

B (Ta); σright
T (a) = σright

B (Ta); σT (a) = σB(Ta);

ωT (a) = {λ ∈ C : a− λ is not T Weyl};
βT (a) = {λ ∈ C : a− λ is not T Browder}.

If we say that a ∈ A is almost invertible whenever

0 ̸∈ acc σ(a),

then there is implication, for arbitrary a ∈ A

a T Fredholm and almost invertible =⇒ a T Browder.

This implication was shown in [1], Theorem 1 for bounded homomorphism and it
was extended to unbounded T in [7], Corollary 2.5.

Conversely if and only if the homomorphism T : A → B has the Riesz property,
then T Browder elements are almost invertible. This was first shown ([1]; [2]; [3],
Theorem 7.7.4) for bounded homomorphisms and extended ([7], Theorem 3.4 and
the remark following this theorem) to arbitrary homomorphisms between Banach
algebras. Therefore,

βT (a) = σT (a) ∪ acc σ(a), (1.8)

if and only if T has the Riesz property.
Commuting products of almost invertibles remain almost invertible [3], Theo-

rem 7.5.4. Products of T Fredholm elements remain T Fredholm. Therefore, if
T has the Riesz property, then commuting products of T Browder elements are
also T Browder. In [2], Theorem 3.8 it was proved for a bounded homomorphism
T with the Riesz property that if the product of two commuting elements is T
Browder, then they both are T Browder, while H. du T. Mouton, S. Mouton and
H. Raubenheimer proved that the boundedness of T can be omitted ([6], Theorem
8.10):

Theorem 1.1. Let A and B be Banach algebras, T : A → B a homomorphism
satisfying the Riesz property and a1, a2 ∈ A such that a1a2 = a2a1. If a1a2 is T
Browder, then both a1 and a2 are T Browder.

The following result ([8], Theorem 10.3) holds also for homomorphisms T which
are not necessarily bounded.

Theorem 1.2. If T : A → B has the strong Riesz property, then for d ∈ A each
of the following are equivalent:

d is T Riesz. (1.9)

(∀a) (ad = da =⇒ βT (a+ d) = βT (a)). (1.10)

βT (d) = {0}. (1.11)
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If K ⊂ C is compact, then we write f ∈ Holo(K) if f is a complex function which
is holomorphic in a neighbourhood of K. In particular we write f ∈ Holo1(K) if
f is a complex function which is holomorphic and non-constant on each connected
component of a neighbourhood U of K.

If a ∈ A, f ∈ Holo(σA(a)) and T : A → B has the Riesz property, then ([1],
Theorem 2)

βT (f(a)) = f(βT (a)). (1.12)

We note that for this assertion it is not necessary for T to be bounded.
In this paper we study polynomially quasinilpotent and polynomially Riesz

elements in Banach algebras and give some spectral characterizations and pertur-
bations properties of these elements. A Banach algebra element a ∈ A is said to
be polynomially quasinilpotent if there exists a nonzero complex polynomial p(z)
such that p(a) is quasinilpotent, and an element a ∈ A is said to be polynomially
Riesz with respect to Banach algebra homomorphism T if there exists a nonzero
complex polynomial p(z) such that Tp(a) is quasinilpotent. The assertions in the
present paper which refer to Banach algebra homomorphism T are proved without
the assumption about the boudedness of T .

The paper is divided into three sections. In Section 2 the polynomially Riesz
elements relative to some homomorphism are characterized (Theorem 2.4) in terms
of their Fredholm spectra, and, if the homomorphism has the strong Riesz property,
in terms of their Browder spectra. This second characterization is a consequence
of the fact that the connected hulls of the Fredholm and Browder spectra are equal
(and hence they are equal to the connected hull of Weyl spectrum) under the
assumption that T has the strong Riesz property (Theorem 2.3, Corollaries 2.1,
2.2). Otherwise the equality of the connected hulls of the Fredholm, Weyl and
Browder spectra is proved in [6] under the assumption that T has closed range and
the Riesz property [6, Corolaries 7.6, 7.8] which is by [6, Corollary 7.9] a stronger
assumption than the assumption that T has the strong Riesz property. In Section
3 we cosider perturbation properties of T Browder and left (right) T Fredholm
elements. From Theorem 1.2 it follows that if T : A → B has the strong Riesz
property, a, d ∈ A such that a is T Browder, d is T Riesz and ad = da, then a− d
is T Browder. This perturbation property of Browder elements is generalised in
Theorem 3.1 by replacing “a is T Browder” by “f(a) is T Browder” and “d is T
Riesz” by “f(d) is T Riesz” where f ∈ Holo(σ(a) ∪ σ(d)).

In the following sections, unless we say otherwise, T : A → B is arbitrary
Banach algebra homomorphism which is not necessarily bounded.

2. Polynomially quasinilpotent and polynomially Riesz elements. We
shall write

H +comm K = {c+ d : (c, d) ∈ H ×K, cd = dc}

for the commuting sum and

H ·comm K = {cd : (c, d) ∈ H ×K, cd = dc}

for the commuting product of subsets H,K ⊆ A.
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We say that S ⊆ A is a commutative ideal if

S +comm S ⊆ S, A ·comm S ⊆ S.

We shall write Poly = C[z] for the algebra of complex polynomials. If S ⊆ A is
an arbitrary set we shall write that a ∈ Poly−1(S) if there exists a nonzero complex
polynomial p(z) such that p(a) ∈ S. If S ⊆ A is a commutative ideal, the set

PS
a = {p ∈ Poly : p(a) ∈ S}

of polynomials p for which p(a) ∈ S will be an ideal of the algebra Poly. Since
the natural numbers are well ordered there will be a unique polynomial p of
minimal degree with leading coefficient 1 contained in PS

a which we call the minimal
polynomial of a; we shall write p = πa ≡ πS

a . Then PS
a is generated by p = πa, i.e.

PS
a = πa · Poly.
Evidently, every ideal is a commutative ideal. According to (1.4) and (1.5) we

conclude that QN(A) is a commutative ideal in the algebra A. Also, T−1(QN(B))
is a commutative ideal in the algebra A.

We shall say that an element a ∈ A is polynomially quasinilpotent and write
a ∈ Poly−1QN(A) if there exists a nonzero complex polynomial p(z) such that
p(a) ∈ QN(A).

The following theorem characterizes polynomially quasinilpotent elements of
algebra A.

Theorem 2.1. Let a ∈ A. Then a ∈ Poly−1QN(A) if and only if σ(a) is finite if
and only if σleft(a) (σright(a)) is finite and in that case

σleft(a) = σright(a) = σ(a) = π−1
a (0), (2.1)

where πa is the minimal polynomial of a.

Proof. Suppose that a ∈ Poly−1QN(A). From πa(a) ∈ QN(A) it follows that

πa(σ(a)) = σ(πa(a)) = {0}.

Therefore,
σ(a) ⊂ π−1

a (0), (2.2)

and hence, σ(a) is finite.
Conversely, suppose that σ(a) is finite and let σ(a) = {λ1, . . . , λn}. For p(z) =

(z − λ1) · · · · · (z − λn) we have {0} = p(σ(a)) = σ(p(a)), and so, p(a) ∈ QN(A).
Let a ∈ Poly−1QN(A) and let λ be a zero of the minimal polynomial πa. Then

πa(z) = (z − λ)q(z) and therefore,

πa(a) = (a− λ)q(a) = q(a)(a− λ) ∈ QN(A). (2.3)

We show that λ ∈ σ(a). If λ /∈ σ(a), then a − λ is an invertible element which
commutes with q(a) and hence (a−λ)−1 commutes with πa(a). From (2.3) and (1.5)
it follows that q(a) ∈ QN(A) which contradicts the fact that the polynomial πa is
minimal. Therefore, π−1

a (0) ⊂ σ(a), which together with (2.2) gives σ(a) = π−1
a (0).
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From (1.1), (1.2) and (1.3) it follows that σ(a) is finite if and only if σleft(a)
(σright(a)) is finite and in that case there is equality σleft(a) = σright(a) = σ(a).
This completes the proof. 2

Recall that from Jacobson’s lemma, i.e.

1− ab ∈ A−1 ⇐⇒ 1− ba ∈ A−1, a, b ∈ A,

follows that

σ(ab) ∪ {0} = σ(ba) ∪ {0}. (2.4)

Theorem 2.2. Let a, b ∈ A. Then ab ∈ Poly−1QN(A) if and only if ba ∈
Poly−1QN(A) and in that case

π−1
ab (0) ∪ {0} = π−1

ba (0) ∪ {0}.

Proof. Follows from Theorem 2.1 and (2.4). 2

If T : A → B is a homomorphism with closed range which satisfies the Riesz
property and which is not necessarily bounded, then for every a ∈ A, ηβT (a) =
ησT (a) ([6], Corollary 7.8). We can improve on this:

Theorem 2.3. Let T : A → B be a homomorphism with the strong Riesz property.
Then

∂βT (a) ⊂ ∂σT (a) ⊂ σT (a) ⊂ βT (a) ⊂ ησT (a) = ηβT (a), (2.5)

and βT (a) consists of σT (a) and possibly some holes in σT (a).

Proof. According to (1.2) it is enough to prove the inclusion

∂βT (a) ⊂ σT (a). (2.6)

From (1.8) it follows that intσ(a) = intβT (a) and hence

∂βT (a) ⊂ ∂σ(a). (2.7)

From (2.7), (1.6) and (1.8) it follows

∂βT (a) ⊂ ∂σ(a) ∩ βT (a)

⊂ (σT (a) ∪ isoσ(a)) ∩ (σT (a) ∪ accσ(a))

⊂ σT (a). 2

We remark that Theorem 2.3, as well as each of the following assertions of this
section, is true without the assumption about the boundedness of T .
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Corollary 2.1. Let T : A → B be a homomorphism with the strong Riesz
property. Then

∂βT (a) ⊂ ∂ωT (a) ⊂ ωT (a) ⊂ βT (a) ⊂ ηωT (a) = ηβT (a),

and βT (a) consists of ωT (a) and possibly some holes in ωT (a).

Proof. Since σT (a) ⊂ ωT (a) ⊂ βT (a), the assertion follows from the inclusion
(2.6) and (1.2). 2

The following corollary is an improvement of Corollary 7.6 in [6].

Corollary 2.2. Let T : A → B be a homomorphism with the strong Riesz
property. Then

ωT (a) ⊂ ησT (a) = ηωT (a) = ηβT (a).

Proof. Follows from Theorem 2.3 and Corollary 2.1. 2

Corollary 2.3. Let T : A → B be a homomorphism with the strong Riesz
property. Then βT (a) is finite if and only if ωT (a) is finite if and only if σT (a) is
finite and in that case these sets are equal.

Proof. Follows from Theorem 2.3, Corollary 2.2 and (1.3). 2

We shall say that an element a ∈ A is polynomially T Riesz and write a ∈
Poly−1T−1QN(B) if there exists a nonzero complex polynomial p(z) such that
p(a) ∈ T−1QN(B).

The following result characterizes polynomially Riesz elements and it is an
improvement of Theorem 11.1 in [8].

Theorem 2.4. Let T : A → B be a homomorphism. Then a is a polynomially T
Riesz element if and only if σT (a) is finite if and only if σleft

T (a) (σright
T (a)) is finite

and in that case
σleft
T (a) = σright

T (a) = σT (a) = π−1
a (0), (2.8)

where πa is the minimal polynomial of a.
If in particular T has the strong Riesz property, then a is a polynomially T

Riesz element if and only if βT (a) is finite, and in that case also

βT (a) = π−1
a (0). (2.9)

Proof. Since a ∈ Poly−1T−1QN(B) is equivalent to Ta ∈ Poly−1QN(B), the first
part of the assertions follows from Theorem 2.1 applied to Ta.

Suppose that T has the strong Riesz property. Then, as we have already
proved, a is a polynomially T Riesz element if and only if σT (a) is finite, and
according to Corollary 2.3 this is equivalent to finiteness of βT (a) and in that case
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βT (a) = σT (a) = π−1
a (0). 2

Let us mention that, in the case when T has the strong Riesz property, the
implication:

a ∈ Poly−1T−1QN(B) =⇒ βT (a) = π−1
a (0)

was shown in [8] (Theorem 11.1) in a different way.

Corollary 2.4. Let T : A → B be a homomorphism with the strong Riesz
property. If a ∈ Poly−1T−1QN(B), then σ(a) is at most countable.

Proof. From (1.8) it follows that the set σ(a) \ βT (a) consists of isolated points
of σ(a) and therefore it is at most countable. Since βT (a) is finite by (2.9), we
conclude that σ(a) is at most countable. 2

Corollary 2.5. Let T : A → B be a homomorphism and a, b ∈ A. Then

ab ∈ Poly−1T−1QN(B) ⇐⇒ ba ∈ Poly−1T−1QN(B),

and in that case

σT (ab) ∪ {0} = π−1
ab (0) ∪ {0} = π−1

ba (0) ∪ {0} = σT (ba) ∪ {0}.

Proof. Follows from Theorem 2.2 applied to Ta and Tb, and Theorem 2.4. 2

In [8, Theorem 12.1] it is proved that if S ⊂ A is a commutative ideal, a ∈ A
and f ∈ Holo(σ(a)), then there is implication:

a ∈ Poly−1(S) =⇒ f(a) ∈ Poly−1(S).

If in particular f ∈ Holo1(σ(a)), then there is implication:

f(a) ∈ Poly−1(S) =⇒ a ∈ Poly−1(S).

Therefore, for every f ∈ Holo1(σ(a)) it holds:

a ∈ Poly−1(S) ⇐⇒ f(a) ∈ Poly−1(S). (2.10)

The following corollary is an improvement of Theorem 12.2 in [8].

Corollary 2.6. Let T : A → B be a homomorphism, a ∈ A and f ∈ Holo1(σ(a)).

(a) Then a ∈ Poly−1(Rad(B)) if and only if f(a) ∈ Poly−1(Rad(B)).

(b) More generally, the following conditions are equivalent:

(i) a is a polynomially T Riesz element.

(ii) σT (a) (or σ
left
T (a), or σright

T (a)) is finite.
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(iii) f(a) is a polynomially T Riesz element.

(iv) σT (f(a)) (or σ
left
T (f(a)), or σright

T (f(a))) is finite,
and in that case

σleft
T (a) = σright

T (a) = σT (a) = π−1
a (0),

σleft
T (f(a)) = σright

T (a) = σT (f(a)) = f(π−1
a (0)), (2.11)

where πa is the minimal polynomial of a.

(c) If in particular T has the strong Riesz property, then the following conditions
are equivalent:

(i) a is a polynomially T Riesz element.

(ii) βT (a) is finite.

(iii) f(a) is a polynomially T Riesz element.

(iv) βT (f(a)) is finite,
and in that case also

βT (a) = π−1
a (0),

βT (f(a)) = f(π−1
a (0)). (2.12)

Proof. The assertion (a) follows from the equivalence (2.10) if we put S =
T−1(Rad(B)).

The assertions (b) and (c) follow from Theorem 2.4 and the equivalence (2.10)
if we take S = T−1(QN(B)). For the equalities (2.11) and (2.12) see [8, Theorem
12.2] ((2.11) follows also from spectral mapping theorem for Fredholm spectrum
and (2.12) follows also from (1.12)). 2

3. Perturbations. We shall say that a ∈ A is holomorphically Riesz if there
exists an f ∈ Holo(σ(a)) such that f(a) is Riesz. From the inclusions (12.3) in
Theorem 12.1 in [8] it follows that a ∈ A is a polynomially T Riesz element if and
only if there exists a function f ∈ Holo1(σ(a)) such that f(a) is T Riesz. Since
Holo1(σ(a)) ⊂ Holo(σ(a)), the concept of hollomorphically Riesz element is a little
more general than the concept of polynomially Riesz element.

From Theorem 1.2 it follows that if T : A → B has the strong Riesz property,
a, d ∈ A such that a is T Browder, d T Riesz and ad = da, then a − d is T
Browder. The following result shows that it holds more general, also for T which
is not necessarily bounded.

Theorem 3.1. Let a, d ∈ A and let T : A → B be a homomorphism with the
strong Riesz property. For f ∈ Holo(σ(a) ∪ σ(d)),

ad = da and f(d) ∈ T−1QN(B)

implies
f(a) is T Browder =⇒ a− d is T Browder.
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Proof. Let f be a nonzero holomorphic function in a neighbourhood U of σ(a) ∪
σ(d), f(d) ∈ T−1QN(B), ad = da and let f(a) be T Browder. If Ω is an open
set such that σ(a) ∪ σ(d) ⊂ Ω ⊂ Ω ⊂ U and whose boundary ∂Ω consists of
a finite numbers of simple closed rectifiable curves which do not intersect, then
f(a) = 1

2πi

∫
∂Ω

(λ−a)−1f(λ)dλ and f(d) = 1
2πi

∫
∂Ω

(λ−d)−1f(λ)dλ. Since ad = da
it follows that (λ−a)−1 and (µ−d)−1 commute for every λ, µ ∈ ∂Ω and therefore,
f(a) and f(d) commute. Hence, βT (f(a)− f(d)) = βT (f(a)) by Theorem 1.2, and
from 0 /∈ βT (f(a)) it follows that 0 /∈ βT (f(a)− f(d)), i.e.

f(a)− f(d) is T Browder. (3.1)

Since

f(a)− f(d) =
1

2πi

∫
∂Ω

((λ− a)−1 − (λ− d)−1)f(λ)dλ

and

(λ− a)−1 − (λ− d)−1 = (λ− a)−1(a− d)(λ− d)−1

= (λ− a)−1(λ− d)−1(a− d)

= (a− d)(λ− a)−1(λ− d)−1,

we have

f(a)− f(d) = a1(a− d) = (a− d)a1, (3.2)

where a1 = 1
2πi

∫
∂Ω

((λ− a)−1(λ− d)−1)f(λ)dλ ∈ A.
From (3.1), (3.2) and Theorem 1.1 we obtain that a− d is T Browder. 2

Theorem 3.2. Let a, d ∈ A and let T : A → B be a homomorphism. For
f ∈ Holo(σ(a) ∪ σ(d)),

ad = da and f(d) ∈ T−1QN(B)

implies

f(a) is left (right) T Fredholm =⇒ a− d is left (right) T Fredholm.

Proof. It is similar to the proof of Theorem 3.1 and follows from [8, Theorem
10.1] and the well-known fact that if a1 and a2 commute and a1a2 is left (right) T
Fredholm, then both a1 and a2 are left (right) T Fredholm. 2

If we add in the assumptions of the previous theorem that T : A → B is
bounded, then we can weaken the commutativity condition putting ad − da ∈
T−1(Rad(B)). Mention that the proof of the following theorem is similar to
the proof of Theorem 2.1 in [10] for bounded linear operators. For the sake of
completeness we give the proof.
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Theorem 3.3. Let a, d ∈ A and let T : A → B be a bounded homomorphism.
For f ∈ Holo(σ(a) ∪ σ(d)),

ad− da ∈ T−1(Rad(B)) and f(d) ∈ T−1QN(B)

implies

f(a) is left (right) T Fredholm =⇒ a− d is left (right) T Fredholm.

Proof. Let Ω be as in the proof of Theorem 3.1. Since T−1(Rad(B)) is a two-sided
ideal, from ad− da ∈ T−1(Rad(B)) we obtain that

(λ− a)−1(µ− d)−1 − (µ− d)−1(λ− a)−1 ∈ T−1(Rad(B)), λ, µ ∈ ∂Ω. (3.3)

Since Rad(B) is closed and T is continuous, it follows that T−1(Rad(B)) is closed,
and from (3.3) we conclude that

f(a)f(d)− f(d)f(a) ∈ T−1(Rad(B)).

By [8, Theorem10.1] we conclude that σ∗
T (f(a)−f(d)) = σ∗

T (f(a)) where σ
∗
T denotes

σleft
T (σright

T ). As f(a) is left (right) T Fredholm, it follows that f(a)− f(d) is left
(right) T Fredholm. Since T−1(Rad(B)) is a two-sided ideal, for every λ ∈ ∂Ω we
get

(λ− a)−1 − (λ− d)−1 = (λ− a)−1(a− d)(λ− d)−1

= (λ− a)−1(λ− d)−1(a− d) + p1(λ)

= (a− d)(λ− a)−1(λ− d)−1 + p2(λ),

where p1(λ), p2(λ) ∈ T−1(Rad(B)), and since T−1(Rad(B)) is closed we get

f(a)− f(d) =
1

2πi

∫
∂Ω

((λ− a)−1 − (λ− d)−1)f(λ)dλ

= a1(a− d) + b1 = (a− d)a1 + b2,

where a1 = 1
2πi

∫
∂Ω

((λ− a)−1(λ− d)−1)f(λ)dλ ∈ A and

b1 =
1

2πi

∫
∂Ω

p1(λ)f(λ)dλ ∈ T−1(Rad(B)),

b2 =
1

2πi

∫
∂Ω

p2(λ)f(λ)dλ ∈ T−1(Rad(B)).

Thus a1(a− d), (a− d)a1 is left (right) T Fredholm and hence, a− d is left (right)
T Fredholm. 2

The assertion of Theorem 3.3 was proved in [8, Theorem 12.3] in a different
way for the case when T is a homomorphism which is not necessarily bounded, but
f ∈ Holo1(σ(a) ∪ σ(d)).
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Theorem 3.4. Let a, d ∈ A and let T : A → B be a homomorphism with the
strong Riesz property. For f ∈ Holo(σ(a) ∪ σ(d)),

ad = da and f(d) ∈ T−1QN(B)

implies
βT (a) ∩ f−1(0) = ∅ =⇒ a− d is T Browder.

Proof. Let ad = da, f(d) ∈ T−1QN(B) and let βT (a) ∩ f−1(0) = ∅. Then
0 /∈ f(βT (a)) and since f(βT (a)) = βT (f(a)) by (1.12), we get f(a) is T Browder.
From Theorem 3.1 it follows that a− d is T Browder. 2

Similarly, the following assertions refer to perturbation properties of left and
right T Fredholm elements.

Theorem 3.5. Let a, d ∈ A and let T : A → B be a homomorphism.

(i) For f ∈ Holo(σ(a) ∪ σ(d)),

ad = da and f(d) ∈ T−1QN(B)

implies

σleft
T (a) ∩ f−1(0) = ∅ =⇒ a− d is T left T Fredholm, (3.4)

and

σright
T (a) ∩ f−1(0) = ∅ =⇒ a− d is T right T Fredholm. (3.5)

(ii) For f ∈ Holo1(σ(a) ∪ σ(d)),

ad− da ∈ T−1(Rad(B)) and f(d) ∈ T−1QN(B)

implies (3.4) and (3.5).

(iii) If T is a bounded homomorphism and f ∈ Holo(σ(a) ∪ σ(d)), then

ad− da ∈ T−1(Rad(B)) and f(d) ∈ T−1QN(B)

implies (3.4) and (3.5).

Proof. Similarly to the proof of Theorem 3.4, (i) follows from Theorem 3.2, (ii)
follows from [8, Theorem 12.3] and (iii) follows from Theorem 3.3. 2

Remark that the assertion (ii) in Theorem 3.5 is equivalent to Theorem 2.3 i
[9] (see the comment at the beginning of this section).

Corollary 3.1. Let a, d ∈ A and let T : A → B be a homomorphism with the
strong Riesz property. Then

ad = da and d ∈ Poly−1T−1QN(B)

implies
βT (a) ∩ π−1

d (0) = ∅ =⇒ a− d is T Browder.
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Proof. Follows from Theorem 3.4. 2

Corollary 3.2. Let a, d ∈ A and T : A → B be a homomorphism. Then

ad− da ∈ T−1(Rad(B)) and a, d ∈ Poly−1T−1QN(B)

implies

π−1
a (0) ∩ π−1

d (0) = ∅ =⇒ a− d is T Fredholm.

Particular, if T : A → B is a homomorphism with the strong Riesz property,
then

ad = da and a, d ∈ Poly−1T−1QN(B)

implies

π−1
a (0) ∩ π−1

d (0) = ∅ =⇒ a− d is T Browder.

Proof. Let a, d ∈ Poly−1T−1QN(B), ad − da ∈ T−1(Rad(B)) and π−1
a (0) ∩

π−1
d (0) = ∅. From (2.8) it follows that σT (a) ∩ π−1

d (0) = ∅, and from Theorem 3.5
(ii) we get that a− d is T Fredholm.

Similarly, if T has the strong Riesz property, ad = da and π−1
a (0)∩π−1

d (0) = ∅,
then βT (a) ∩ π−1

d (0) = ∅ according to (2.9), and from Theorem 3.4 it follows that
a− d is T Browder. 2

Corollary 3.3. Let d ∈ A and let T : A → B be a homomorphism with the
strong Riesz property. For f ∈ Holo(σ(d)) and λ ∈ C,

f(d) ∈ T−1QN(B) and f(λ) ̸= 0

implies

d− λ is T Browder.

Proof. Suppose that f(d) ∈ T−1QN(B) and f(λ) ̸= 0. From Theorem 1.2 it
follows that βT (f(d)) = {0} and hence, according to (1.12), we get

f(βT (d)) = {0}. (3.6)

Since f(λ) ̸= 0, from (3.6) it follows that λ /∈ βT (d), that is d−λ is T Browder. 2

Remark that Corollary 3.3 follows also from Theorem 3.4 for a = λ1.

Acknowledgments. The authors are grateful to the referee for helpful comments
and suggestions concerning the paper.
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