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ON LEFT AND RIGHT BROWDER OPERATORS

Snežana Č. Živković-Zlatanović, Dragan S. Djordjević,
and Robin E. Harte

Abstract. We discuss the perturbation theory of “left” and “right”
Browder operators, which come somewhere between Browder operators

and semi Browder operators.

0. Introduction

Let X and Y be infinite dimensional Banach spaces, and let BL(X,Y ) be
the set of all linear bounded operators from X to Y . Recall [4, 11] that T ∈
BL(X,Y ) is Fredholm if and only if it has finite dimensional null space and
closed range of finite codimension, in which case

(0.1) index(T ) = nul(T )− def(T ) = dim T−1(0)− dim(Y/TX).

When index(T ) = 0 we say that T ∈ BL(X,Y ) is Weyl. Necessary and suffi-
cient for T ∈ BL(X,Y ) to be Fredholm is that it be essentially invertible, in
the sense that there are T ′, T ′′ in BL(Y,X) for which

(0.2) I − T ′T ∈ J(X), I − TT ′′ ∈ J(Y ),

where J can be either the finite rank operators or the compact operators or
indeed the inessential operators - all three conditions are equivalent. Since
everything in the finite rank operators has generalized inverses it follows that

(0.3) T Fredholm =⇒ T relatively regular.

It then follows that if (0.2) holds it can be arranged that T ′ = T ′′ is a gener-
alized inverse for T .

The Weyl operators can be distinguished among the Fredholm operators as
those for which

(0.4) T ∈ BL(X,Y )−1 + J(X,Y ),

where again J can be finite rank, compact or inessential; it is also necessary
and sufficient that T is Fredholm and has an invertible generalized inverse.
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More general than the Fredholm operators are the left and right Fredholm
operators, in which only half the condition (0.2) holds; more general still are
the upper and lower semi Fredholm operators, in which either the null space or
the quotient of the range are finite dimensional. We shall also describe as upper
semi Weyl, or left Weyl, an upper semi Fredholm, or left Fredholm, operator
of non-positive index, and as lower semi Weyl, or right Weyl, a lower semi
Fredholm, or right Fredholm, operator of non-negative index. The set of all
upper (lower) semi Fredholm operators on X is denoted by Φ+(X) (Φ−(X)).
Let P (Φ+(X)) denote the perturbation class of Φ+(X), i.e., P (Φ+(X)) =
{A ∈ BL(X) : A+ T ∈ Φ+(X) for every T ∈ Φ+(X)}. Analogously we define
P (Φ−(X)).

When in particular Y = X we meet Browder operators, which are Fredholm
of finite ascent and descent: there is n ∈ N for which

(0.5) T−n−1(0) ⊆ T−n(0) and TnX ⊆ Tn+1(X);

necessarily such operators are of index zero, therefore “Weyl”. In this note we
look at left, right and semi Browder operators:

Definition 1. T ∈ BL(X) ≡ BL(X,X) will be called upper semi Browder if
and only if it is upper semi Fredholm of finite ascent, and lower semi Browder
if and only if it is lower semi Fredholm of finite descent. We shall say that
T ∈ BL(X) is left Browder if and only if it is left Fredholm of finite ascent,
and right Browder if and only if it is right Fredholm of finite descent.

Each of these four sets of operators is open; evidently

(1.1) T left Browder ⇐⇒ T upper semi Browder and relatively regular,

(1.2) T right Browder ⇐⇒ T lower semi Browder and relatively regular,

and we have ([9, Proposition 38.5])

(1.3) T left Browder =⇒ T left Weyl =⇒ T left Fredholm

and

(1.4) T right Browder =⇒ T right Weyl =⇒ T right Fredholm.

An operator which is both upper and lower semi Browder is Browder. It is also
true, for each of these four “non singularities”, that

(1.5) ST = TS =⇒
(
S, T non singular ⇐⇒ ST non singular

)
.

It follows in particular that if T ∈ BL(X) is in one of these classes, then so are
all powers Tn. Since semi Browder operators have closed range it follows that
for semi Browder operators

(1.6) T∞(X) ≡
∞∩

n=1

Tn(X) is closed.
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Fixing the operator T ∈ BL(X), we shall write S∼ ∈ BL(T∞(X)) for the
restriction of an operator S ∈ BL(X) which leaves the hyperrange invariant,
in particular for S ∈ comm(T ).

The perturbation theory of upper and lower semi Browder operators has
been worked out. We shall write

(1.7) comm(T ) = {S ∈ BL(X) : ST = TS}
for the commutant of T ∈ BL(X),

(1.8) comm−1(T ) = comm(T )∩BL(X)−1

for the “invertible commutant” of T , and if δ > 0

(1.9) comm−1
δ (T ) = {S ∈ comm−1(T ) : ∥S∥ < δ}.

We write Nil BL(X) and QNil BL(X) for the nilpotent and the quasinilpo-
tent operators in BL(X), we write B00(X), B0(X) and B∼

00(X) for the finite
rank, compact and inessential operators on X, and finally BL(X)+, BL(X)−,
BL(X)−1

left and BL(X)−1
right for the bounded below, the onto, the left and the

right invertible operators on X. We also recall the “Kato decomposition”:

Definition 2. We shall say that an operator T ∈ BL(X) is almost invertible
provided

(2.1) ∃ δ > 0 : 0 < |λ| < δ =⇒ T − λI ∈ BL(X)−1,

that it is a Kato operator provided

(2.2) T−1(0) ⊆ T∞(X) and TX = cl(TX),

and that it is essentially Kato provided there is a projection P = P 2 ∈ comm(T )
for which, with X1 = P−1(0), X0 = P (X) and Tj : Xj → Xj the restrictions,

(2.3) P ∈ B00(X) ; T0 ∈ Nil BL(X0) ; T1 Kato on X1.

(2.3) is also known as a Kato decomposition for T . Kato operators are
sometimes said [5] to be Kato non singular; a Kato operator with a generalized
inverse is known as a Saphar operator, or alternatively [5] said to be Kato
invertible. We shall extend the terminology of (2.1) to other relevant non
singularities such as bounded below and onto. With a little bit of gap theory,
Müller shows ([11, Theorem 12.11]) that if T ∈ BL(X), then T is almost
invertible Kato if and only if it is invertible, and more generally ([11, Corollary
12.4])

(2.4) T almost bounded below Kato =⇒ T bounded below,

and

(2.5) T almost onto Kato =⇒ T onto.

Kato operators satisfy ([11, Theorem 12.2]) the condition (1.6), and ([11, The-
orem 12.15]) also

(2.6) TT∞(X) = T∞(X),
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We recall ([14, Theorem 2.1]; [11, Theorem 16.21]) that semi Fredholm oper-
ators are essentially Kato. We remark also that if P = P 2 commutes with
T ∈ BL(X), then, with again X1 = P−1(0) , X0 = P (X) and Tj : Xj → Xj

the restrictions,

(2.7) T ∈ T BL(X)T ⇐⇒
(
T1 ∈ T1 BL(X1)T1 and T0 ∈ T0 BL(X0)T0

)
,

and that

(2.8) T (X) = cl T (X) ⇐⇒
(
T1(X1) = cl T1(X1) and T0(X0) = cl T0(X0)

)
:

this is easily checked by writing out 2× 2 operator matrices.

Theorem 3. If T ∈ BL(X), then the following are equivalent:

(3.1) T upper semi Browder;

(3.2) T upper semi Fredholm and ∃ δ > 0 : T − comm−1
δ (T ) ⊆ BL(X)+;

(3.3) T upper semi Fredholm and almost bounded below;

(3.4) ∃ P = P 2 ∈ B00(X)∩comm(T ) : T0 ∈ Nil BL(X0), T1 ∈ BL(X1)
+;

(3.5) ∃ P = P 2 ∈ B00(X)∩comm(T ) : TP ∈ Nil BL(X), T +P ∈ BL(X)+;

(3.6) ∃ K ∈ B00(X)∩comm(T ) : T −K ∈ BL(X)+;

(3.7) ∃ K ∈ B0(X)∩comm(T ) : T −K ∈ BL(X)+.

Proof. If S ∈ comm−1(T ) is invertible and commutes with T , then

(T − S)∼−1(0) = (T − S)−1(0) ⊆ T∞(X).

If dimT−1(0) < ∞, then, as in (2.6),

T (T∞X) = T∞(X).

There is therefore δ > 0 for which ([5, Theorem 5]), if S ∈ comm−1
δ (T ),

dim(T − S)−1(0) = dim(T − S)∼−1(0) = index(T − S)∼

= index(T∼) = dimT∼−1(0) < ∞ :

the second equality is because (T − S)∼ is onto for small ∥S∥, and the third
is index continuity for lower semi Fredholm operators ([11, Theorem 16.17,
Corollary 20.2]) on T∞(X). Now ([4, Theorem 7.8.2])

asc(T ) < ∞ =⇒ T−1(0)∩T
∞(X) = {0} ⇐⇒ T∼−1(0) = {0}.

It follows that T − S is upper semi Fredholm and one one, therefore bounded
below: (3.1)=⇒(3.2)=⇒(3.3). Towards implication (3.3)=⇒(3.4) take the pro-
jection P = P 2 from the Kato decomposition (2.1). Since T1 is Kato and
almost bounded below it follows from (2.4) that T1 is bounded below, while
T0 is nilpotent. Implication (3.4)=⇒(3.5) is 2 × 2 matrices again ([10, The-
orem 4.2]). For implication (3.5)=⇒(3.6)=⇒(3.7) define K = −P . Finally if
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K ∈ B0(X) is compact and commutes with bounded below T − K, then ([4,
Theorem 7.9.2]) asc((T −K) +K) < ∞. □

We shall see below (Theorem 7) that the condition (3.6) can be improved
([15, Corollary 2]) to inessential, and indeed Riesz, perturbations:

(3.8) ∃ K ∈ B∼
00(X)∩comm(T ) : T −K ∈ BL(X)+.

Theorem 4. If T ∈ BL(X), then the following are equivalent:

(4.1) T lower semi Browder;

(4.2) T lower semi Fredholm and ∃ δ > 0 : T − comm−1
δ (T ) ⊆ BL(X)−;

(4.3) T lower semi Fredholm and almost onto;

(4.4) ∃ P = P 2 ∈ B00(X)∩comm(T ) : T0 ∈ Nil BL(X0), T1 ∈ BL(X1)
−;

(4.5) ∃ P = P 2 ∈ B00(X)∩comm(T ) : TP ∈ Nil BL(X), T +P ∈ BL(X)−;

(4.6) ∃ K ∈ B00(X)∩comm(T ) : T −K ∈ BL(X)−;

(4.7) ∃ K ∈ B0(X)∩comm(T ) : T −K ∈ BL(X)−.

Proof. Implication (4.1)=⇒(4.2)=⇒(4.3) follows from the same punctured nei-
ghbourhood argument as for Theorem 3, and then (4.4) is again the Kato
decomposition: since T1 is Kato and almost onto it follows from (2.5) that T1

is onto, while T0 is again nilpotent. Finally if K ∈ B0(X) is compact and
commutes with onto T − K, then ([4, Theorem 7.9.2]) dsc((T − K) + K) <
∞. □

Theorem 5. If T ∈ BL(X), then the following are equivalent:

(5.1) T left Browder;

(5.2) T left Fredholm and ∃ δ > 0 : T − comm−1
δ (T ) ⊆ BL(X)−1

left;

(5.3) T left Fredholm and almost left invertible;

(5.4) T left Fredholm and almost bounded below;

(5.5) ∃ P = P 2 ∈ B00(X)∩comm(T ) : T0 ∈ Nil BL(X0), T1 ∈ BL(X1)
−1
left;

(5.6)
∃ P = P 2 ∈ B00(X)∩comm(T ) : TP ∈ Nil BL(X), T + P ∈ BL(X)−1

left;

(5.7) ∃ K ∈ B00(X)∩comm(T ) : T −K ∈ BL(X)−1
left;

(5.8) ∃ K ∈ B0(X)∩comm(T ) : T −K ∈ BL(X)−1
left.
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Proof. Much of Theorem 5 is a consequence of Theorem 3: if T ∈ BL(X) is
left Browder, then (3.2) holds, and hence also (5.2), since now each T − S is
both left Fredholm and one one. A similar comment applies to (5.5): T1 is by
(3.4) bounded below and by (2.7) relatively regular. Finally if K ∈ B0(X) is
compact and commutes with left invertible T −K, then T = (T −K) +K is
left Fredholm of finite ascent. □

Theorem 6. If T ∈ BL(X), then the following are equivalent:

(6.1) T right Browder;

(6.2) T right Fredholm and ∃ δ > 0 : T − comm−1
δ (T ) ⊆ BL(X)−1

right;

(6.3) T right Fredholm and almost right invertible;

(6.4) T right Fredholm and almost onto;

(6.5) ∃ P = P 2 ∈ B00(X)∩comm(T ) : T0 ∈ Nil BL(X0), T1 ∈ BL(X1)
−1
right;

(6.6)
∃ P = P 2 ∈ B00(X)∩comm(T ) : TP ∈ Nil BL(X), T + P ∈ BL(X)−1

right;

(6.7) ∃ K ∈ B00(X)∩comm(T ) : T −K ∈ BL(X)−1
right;

(6.8) ∃ K ∈ B0(X)∩comm(T ) : T −K ∈ BL(X)−1
right.

Proof. Much of Theorem 6 is a consequence of Theorem 4: if T ∈ BL(X) is
right Browder, then (4.2) holds, and hence also (6.2), since now each T − S is
both right Fredholm and onto. A similar comment applies to (6.5): T1 is by
(4.4) onto and by (2.7) relatively regular. Finally if K ∈ B0(X) is compact
and commutes with right invertible T − K, then T = (T − K) + K is right
Fredholm of finite descent. □

If we introduce Fredholm, Weyl and Browder spectra ω ∈ {σe, σw, σb} in the
obvious way, we shall also write

ω+, ω−, ωleft, ωright

for the corresponding upper, lower, left and right versions. We recall ([4, The-
orem 9.8.3]; [11, Corollary 20.20])

(6.8) σe(T ) ⊆ σw(T ) ⊆ σb(T ) = σe(T )∪acc σ(T ).

This has upper, lower, left and right versions: the conditions (3.3)-(6.3) guar-
antee respectively the upper semi, lower semi, left and right analogues of (6.8).
Each of the semi Browder conditions of Definition 1 are, more generally, stable
under commuting Riesz perturbations:

김현선
강조

김현선
강조
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Theorem 7. If T ∈ BL(X) and K ∈ BL(X) is Riesz, then

(7.1) TK = KT =⇒ σ+
b (T +K) = σ+

b (T ),

(7.2) TK = KT =⇒ σ−
b (T +K) = σ−

b (T ),

(7.3) TK = KT =⇒ σleft
b (T +K) = σleft

b (T )

and

(7.4) TK = KT =⇒ σright
b (T +K) = σright

b (T ).

Proof. Towards (7.3) we claim that if λ ∈ C is arbitrary

(7.5) σleft
e (T + λK) = σleft

e (T )

and

(7.6) acc σleft(T + λK) = acc σleft(T ).

For (7.5) combine the two variable spectral mapping theorem for the left spec-
trum ([3]; [4]; [11, Theorem 8.8]) with the fact that in the Calkin algebra
BL(X)/B0(X) the coset k = K +B0(X) is quasinilpotent:
(7.7)
σleft(t+λk) = {α+λβ : (α, β) ∈ σleft(t, k)} ⊆ σleft(t)+λ σleft(k) = σleft(t),

since σ(k) = {0}, and the reverse inclusion follows from t = (t+k)+(−k). To-
wards (7.6) we have, using this time the two variable spectral mapping theorem
in the algebra of operators,

(7.8) σleft(T+λK) = {α+λβ : (α, β) ∈ σleft(T,K)} ⊆ σleft(T )+λ σleft(K),

and ([6, Theorem 6]) simple properties of accumulation points,

(7.9)
acc σleft(T + λK) ⊆ acc(σleft(T ) + λ σleft(K))

⊆ acc σleft(T ) + λ acc σleft(K) = acc σleft(T ).

This gives (7.3). For (7.4) replace the left spectrum by the right. For (7.1)
and (7.2) pass to the “essential enlargement” [1], and ([11, Theorem 17.6,
Theorem 17.9]) replace the left spectrum by the approximate point and the
defect spectrum of the essential enlargements of T , K and (T,K). □

We remark that it is sufficient for (7.5) that the cosets t, k commute in the
Calkin algebra BL(X)/B0(X), and that this remains sufficient if the Calkin
algebra is replaced by the quotient BL(X)/B∼

00(X). As we remarked above
(3.8), Theorem 7 has the effect of extending each of the conditions (3.7), (4.7),
(5.8) and (6.8) from compact to Riesz operators; the proof we have given for it
also tells us something about left and right Weyl operators:

김현선
강조
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Theorem 8. If K ∈ BL(X), then the following are equivalent:

(8.1) K Riesz;

(8.2) TK −KT ∈ B∼
00(X) =⇒ σleft

e (T ) = σleft
e (T +K);

(8.3) TK −KT ∈ B∼
00(X) =⇒ σright

e (T ) = σright
e (T +K);

(8.4) TK −KT ∈ B∼
00(X) =⇒ σleft

w (T ) = σleft
w (T +K);

(8.5) TK −KT ∈ B∼
00(X) =⇒ σright

w (T ) = σright
w (T +K);

(8.6) T ∈ comm(K) =⇒ σleft
e (T ) = σleft

e (T +K);

(8.7) T ∈ comm(K) =⇒ σright
e (T ) = σright

e (T +K);

(8.8) T ∈ comm(K) =⇒ σleft
w (T ) = σleft

w (T +K);

(8.9) T ∈ comm(K) =⇒ σright
w (T ) = σright

w (T +K).

Proof. If (8.1) holds, then (8.2), and hence also (8.6), follows from (7.7) with
λ = 1, and similarly (8.3) and (8.7); now the continuity of the index gives also
(8.4) and (8.5), and hence also (8.8) and (8.9). Conversely taking T = O shows
that each of (8.6)-(8.9) imply that K ∈ BL(X) is Riesz. □

From Theorem 8 it follows that if TK−KT is “inessential” and K is Riesz,
then the left and right Fredholm and Weyl properties are transmitted from T
to T +K. It also follows from Theorem 7 and Theorem 8 that if K is Riesz and
commutes with T and if “Browder’s theorem holds” for T , then it also holds
for T +K. This is the common generalization of the two parts of Theorem 11
of [7].

It is possible to use [16, Theorem 30] to prove the following: if K is Riesz
and TK = KT , then σ+

w (T + K) = σ+
w (T ) and σ−

w (T + K) = σ−
w (T ). This

is the method applied in [2, Theorem 4.1]. A generalization of that result
from [16] is presented in [17, Corollary 1]. Precisely, the condition “TK −KT
is compact” in [16] is replaced with “TK − KT is in the perturbation class
of the set of all upper semi-Fredholm operators” in [17]. Therefore, if K is
Riesz, then for every T which is upper (lower) semi Fredholm and satisfies that
TK −KT ∈ P (Φ+(X)) (or P (Φ−(X))) it follows that T +K is upper (lower)
semi Fredholm and index(T + K) = index(T) ([17, Corollary 2]). Thus the
following statements are equivalent:

K is Riesz;
TK −KT ∈ P (Φ+(X)) =⇒ σ+

e (T ) = σ+
e (T +K);

TK −KT ∈ P (Φ−(X)) =⇒ σ−
e (T ) = σ−

e (T +K);
TK −KT ∈ P (Φ+(X)) =⇒ σ+

w (T ) = σ+
w (T +K);

TK −KT ∈ P (Φ−(X)) =⇒ σ−
w (T ) = σ−

w (T +K);
T ∈ comm(K) =⇒ σ+

e (T ) = σ+
e (T +K);
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T ∈ comm(K) =⇒ σ−
e (T ) = σ−

e (T +K);
T ∈ comm(K) =⇒ σ+

w (T ) = σ+
w (T +K);

T ∈ comm(K) =⇒ σ−
w (T ) = σ−

w (T +K).

It is familiar that the Weyl and the Browder spectrum of an operator can be
written as the intersection of the spectrums of its compact, and its commuting
compact, perturbations. Theorem 8 extends this to upper and lower, and left
and right spectra, and Riesz perturbations:

Theorem 9. If T ∈ BL(X), then, for each ∗ = left, right, and J(X) any non
zero ideal of Riesz operators,

(9.1) σ∗
w(T ) =

∩
{σ∗(T +K) : K Riesz, TK −KT ∈ J(X)}

and, for each for each ∗ = +,−, left, right,

(9.2) σ∗
b (T ) =

∩
{σ∗(T +K) : K Riesz commutes with T}.

Also, for each ∗ = left, right,

(9.3) σ∗
b (T ) = σ∗

w(T )∪
∩

{π∗(T +K) : K Riesz commutes with T},

where πleft and πright are the point spectrum and the point spectrum of the
dual.

Proof. Inclusion one way in (9.1) follows from (8.4) and (8.5), and in (9.2)
follows from Theorem 7. In the other direction ([11, Theorem 19.7])

(9.4) σ∗
w(T ) =

∩
{σ∗(T +K) : K ∈ J(X)}

and ([11, Theorem 20.21])

(9.5) σ∗
b (T ) =

∩
{σ∗(T +K) : K ∈ J(X)∩comm(T )}.

For (9.3), combine these with equality

(9.6) σ∗(T ) = σ∗
w(T )∪π

∗(T ). □

Rakočević ([12, Corollary 3.2]) proved the analogue of (9.3) for the Browder
and the Weyl spectrum. The boundary of the Browder spectrum is a subset of
the essential spectrum:

Theorem 10. If T ∈ BL(X), then for each ∗ = +,−, left, right there is
inclusion

(10.1) ∂σb(T ) ⊆ ∂σ∗
b (T ) ⊆ ∂σ∗

w(T ) ⊆ ∂σ∗
e(T ) ⊆ σ∗

b (T ) ⊆ σb(T )

and hence also

(10.2) σ∗
e(T ) ⊆ σ∗

w(T ) ⊆ σ∗
b (T ) ⊆ σb(T ) ⊆ ησ∗

e(T ).
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Proof. Here ηK is ([8]; [4, Definition 7.10.1]) the connected hull of a compact
set K ⊆ C, and generally ([8, Lemma 1.2, Theorem 1.3]; [4, Theorem 7.10.3]),
for compact subsets H,K ⊆ C,

(10.3) ∂H ⊆ K ⊆ H =⇒ ∂H ⊆ ∂K ⊆ K ⊆ H ⊆ ηK = ηH.

The analogues

(10.4) σ∗
b (T ) = σ∗

e(T )∪acc σ∗(T )

of (6.8) give equality int σ∗(T ) = int σ∗
b (T ) and hence

(10.5) ∂σ∗
b (T ) ⊆ ∂σ∗(T ),

and also

(10.6) σ∗
b (T )∩iso σ∗(T ) ⊆ σ∗

e(T ),

which together with the punctured neighbourhood theorems ([11, Theorem
18.7])

(10.7) ∂σ∗(T ) ⊆ σ∗
e(T )∪iso σ∗(T )

give

(10.8) ∂σ∗
b (T ) ⊆ ∂σ∗(T )∩σ

∗
b (T ) ⊆ σ∗

e(T )∪(σ
∗
b (T )∩iso σ∗(T )) = σ∗

e(T ).

By index continuity the sets σ∗
w(T ) \ σ∗

e(T ) are all open, so that also

(10.9) ∂σ∗
w(T ) ⊆ σ∗

e(T ) ⊆ σ∗
w(T ).

Together (10.8) and (10.9) give (10.1), and hence also (10.2). □
The conditions of (8.2)-(8.5) apply to inessential operators K ∈ B∼

00(X)
without further commutivity assumption, which cannot more generally be re-
laxed, even for nilpotent operators K ∈ Nil BL(X):

Example 11. If S, T and K in BL(X) are defined by taking

(11.1) X =

(
E
E

)
, S =

(
v 0
0 u

)
, T =

(
u 0
0 v

)
, K =

(
0 1
0 0

)
,

where u ∈ BL(E) and v ∈ BL(E) are the forward and the backward shifts on
E = ℓ2, then S and T are both Weyl, while T +K is not right Weyl and S−K
is not left Weyl.

Proof. Notice
(11.2)

(S −K)(T +K) = I −
(
0 0
0 1− uv

)
; (T +K)(S −K) = I −

(
1− uv 0

0 0

)
:

both products are Fredholm of index zero, that is Weyl, and we can check that
T +K is one one and S −K onto, with

(11.3) index(S −K) = 1 = −index(T +K). □
Acknowledgement. We are grateful to the referee for his/her helpful com-
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