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Abstract

We consider some geometric characteristics of bounded operators on
Banach spaces concerning the sets of upper and lower semi-Browder op-
erators and left and right Browder operators. Using various operational
quantities we give some perturbation results for upper and lower semi-
Fredholm, Weyl and semi-Browder operators as well as for left and right
Fredolm, Weyl and Browder operators.
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1 Introduction

Let C be the set of all complex numbers and let X, Y , Z be infinite dimensional
complex Banach spaces. Let B(X,Y ) be the set of all linear bounded operators
from X to Y , and denote the set of all compact (finite rank) operators from X
to Y by K(X,Y ) (F (X,Y )).

For A ∈ B(X,Y ) we use N(A) and R(A), respectively, to denote the
null-space and the range of A. Let α(A) = dimN(A) if N(A) is finite di-
mensional, and let α(A) = ∞ if N(A) is infinite dimensional. Similarly, let
β(A) = dimY/R(A) = codimR(A) if Y/R(A) is finite dimensional, and let
β(A) = ∞ if Y/R(A) is infinite dimensional.

An operator A ∈ B(X,Y ) is called upper semi-Fredholm, or A ∈
Φ+(X,Y ), if α(A) < ∞ and R(A) is closed, while A ∈ B(X,Y ) is called lower
semi-Fredholm, or A ∈ Φ−(X,Y ), if β(A) < ∞. The set of semi-Fredholm oper-
ators is defined by Φ±(X,Y ) = Φ+(X,Y )∪Φ−(X,Y ), while the set of Fredholm
operators is defined by Φ(X,Y ) = Φ+(X,Y )∩Φ−(X,Y ). If A ∈ Φ±(X,Y ), the
index is defined by i(A) = α(A)− β(A).

1The author is supported by the Ministry of Science, Republic of Serbia, grant no. 174007.
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The set of upper Weyl operators, denoted by W+(X,Y ), is the set of upper
semi-Fredholm operators with non-positive index, and the set of lower Weyl
operators, denoted by W−(X,Y ), is the set of lower semi-Fredholm operators
with non-negative index. The set of Weyl operators is defined by W(X,Y ) =
W+(X,Y ) ∩W−(X,Y ) = {A ∈ Φ(X,Y ) : i(A) = 0}.

An operator A ∈ B(X,Y ) is relatively regular (or g-invertible) if there exists
B ∈ B(Y,X) such that ABA = A. It is well-known that A is relatively regular
if and only if R(A) and N(A) are closed and complemented subspaces of Y and
X, respectively.

An operator A ∈ B(X,Y ) is called left Fredholm, or A ∈ Φl(X,Y ), if A is
relatively regular upper semi-Fredholm, i.e.

Φl(X,Y ) = {A ∈ B(X,Y ) : R(A) is a closed and complemented

subspace of Y and α(A) < ∞}.

Also, A ∈ B(X,Y ) is called right Fredholm, or A ∈ Φr(X,Y ), if A is relatively
regular lower semi-Fredholm, i.e.

Φr(X,Y ) = {A ∈ B(X,Y ) : N(A) is a complemented subspace of X

and β(A) < ∞}.

An operator A ∈ B(X,Y ) is left (right) Weyl if A is left (right) Fredholm
operator with non-positive (non-negative) index. We use Wl(X,Y ) (Wr(X,Y ))
to denote the set of all left (right) Weyl operators. Evidently, A is left (right)
Weyl iff A is upper (lower) Weyl and relatively regular.

For H = B, F, K, Φ+, Φ−, Φ±, Φ, Φl, Φr, W+, W−, W, Wl, Wr, in-
stead of H(X,X) we write H(X).

The ascent of A ∈ B(X), denoted by asc(A), is the smallest n ∈ N such that
N(An) = N(An+1). If such n does not exist, then asc(A) = ∞. The descent
of A, denoted by dsc(A), is the smallest n ∈ N such that R(An) = R(An+1).
If such n does not exist, then dsc(A) = ∞. An operator A ∈ B(X) is upper
semi-Browder if it is upper semi-Fredholm of finite ascent, and A is lower semi-
Browder if it is lower semi-Fredholm of finite descent. Let B+(X) (B−(X))
denote the set of all upper (lower) semi-Browder operators. The set of Browder
operators is defined as B(X) = B+(X) ∩ B−(X).

The operator A ∈ B(X) is left Browder if it is left Fredholm of finite ascent,
and A is right Browder if it is right Fredholm of finite descent. Let Bl(X)
(Br(X)) denote the set of all left (right) Browder operators. These classes of
operators were introduced in [47]. Evidently, A ∈ B(X) is left (right) Browder
iff A is upper (lower) semi-Browder and relatively regular.

The Calkin algebra over X is the quotient algebra C(X) = B(X)/K(X),
and π : B(X) → C(X) denotes the natural homomorphism. Let re(A) de-
note spectral radius of the element π(A) in C(X), A ∈ B(X), i.e. re(A) =

lim
n→∞

(∥π(An)∥) 1
n and it is called essential spectral radius of A. An operator

A ∈ B(X) is Riesz, or A ∈ R(X), if {λ ∈ C : A − λ ∈ Φ(X)} = C\{0}, i.e.
re(A) = 0.
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Let S be a subset of a Banach space A. The perturbation class of S, denoted
by P (S), is the set

P (S) = {a ∈ A : a+ s ∈ S for every s ∈ S}.

It is known that ([28] Theorem 3.7)

P (W+(X)) = P (Φ+(X)) and P (W−(X)) = P (Φ−(X)), (1.1)

and ([20] Theorem 2.7), ([6] (Chapter 5.2, Corollary 3)),

P (Φl(X)) = P (Φ(X)) = P (Φr(X)). (1.2)

Also, it is known that ([20], Theorems 2.7 and 2.8)

P (Wl(X)) = P (Wr(X)) = P (W(X)) = P (Φ(X)). (1.3)

and, P (Φ(X)), P (Φ+(X)) and P (Φ−(X)) are closed two-sided ideals ([20], The-
orem 2.4).

For a ∈ X we set K(a, ϵ) = {b ∈ X : ∥a − b∥ < ϵ} and K[a, ϵ] = {b ∈ X :
∥a− b∥ ≤ ϵ}.

In this paper an operational quantity a is a procedure explaining how to get a
non-negative number a(A) for every A ∈ B(X,Y ) and every infinite dimensional
Banach spaces X and Y .

We list some operational quantities.
The minimum modulus m(A) of A ∈ B(X,Y ) is defined by

m(A) = {∥Ax∥ : x ∈ X, ∥x∥ = 1},

and the surjection modulus is defined by

q(A) = {ϵ ≥ 0 : ϵK[0, 1]Y ⊂ A(K[0, 1]X)},

where K[0, 1]X (K[0, 1]Y ) denotes the closed unit ball of the space X (Y ).
An operator A ∈ B(X,Y ) is strictly singular if, for every infinite dimen-

sional (closed) subspace M of X, the restriction A|M is not an isomorphism,
i.e. m(AJM ) = 0, where JM is the natural inclusion of M into X. An operator
A ∈ B(X,Y ) is strictly cosingular if, for every infinite codimensional closed
subspace V of Y , the composition QV A is not surjective, i.e. q(QV A) = 0,
where QV is the quotient map from Y to Y/V . Let SS(X,Y ) (CS(X,Y )) de-
note the set of all strictly singular (cosingular) operators from X to Y , and
SS(X) = SS(X,X) (CS(X) = CS(X,X)).

Recall that
K(X,Y ) ⊂ SS(X,Y ) ⊂ P (Φ+(X,Y )) (1.4)

and
K(X,Y ) ⊂ CS(X,Y ) ⊂ P (Φ−(X,Y )). (1.5)
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For the first inclusion in (1.4) see [12] Theorem III.1.3 and the second inclusion
in (1.4) was proved by Kato [18]. The first inclusion in (1.5) follows from [26]
Theorem 1.10.3, and the second inclusion was proved by Vladimirskii [39].

The paper is organized as follows. In Section 2 we consider some geometric
characteristics of bounded operators on Banach spaces concerning specially sets
of upper and lower semi-Browder operators, as well as sets of left and right
Browder operators. In Section 3 we give general perturbation theorems related
to upper (lower) semi-Fredholm and Weyl operators, and also to left (right)
Fredholm and Weyl operators. We show that many pairs of known operational
quantities satisfy the conditions of those theorems. Also we construct the new
operational quantities which satisfy those conditions (Theorem 3.17). Finally
we give some perturbation results related to upper and lower semi-Browder
operators and also to left and right Browder operators.

2 Geometric characteristics

For H = Φ+,Φ−,Φl,Φr,Φ,W+,W−,Wl,Wr,W, B+,B−, ,Bl,Br,B, the corre-
sponding spectrum of A ∈ B(X) is defined by

σH(A) = {λ ∈ C : A− λ /∈ H(X)}.

We define upper, lower, left and right Fredholm, Weyl and Browder radius, as
well as Fredholm, Weyl and Browder radius of A ∈ B(X):

sH(A) = sup{ϵ ≥ 0 : |λ| < ϵ ⇒ A− λ ∈ H(X)},

whereH = Φ+, Φ−, Φl, Φr, W+, W−, Wl, Wr, B+, B−, Bl, Br, Φ,W, B. Clearly

sH(A) = max{ϵ ≥ 0 : |λ| < ϵ ⇒ A− λ ∈ H(X)}
= min{|λ| : λ ∈ σH(A)} = dist(0, σH(A)).

Theorem 2.1. If A ∈ B(X), then for each ∗ = +,−, l, r there is an implication

A ∈ B∗(X) =⇒ sB∗(A) = sW∗(A) = sΦ∗(A). (2.1)

Proof. Since B∗(X) ⊂ W∗(X) ⊂ Φ∗(X) (the first inclusion follows from [17],
Proposition 38.5 (a)), we have

sB∗(A) ≤ sW∗(A) ≤ sΦ∗(A). (2.2)

Suppose that A ∈ B+(X). For λ ∈ C, |λ| < sΦ+(A), we have A−λI ∈ Φ+(X)

and by [13], Theorem 3, the function λ → N∞(A− λI)∩R∞(A−λI) is locally
constant on the ball K(0, sΦ+(A)) ⊂ C. Since K(0, sΦ+(A)) is a path connected

set, it follows that the function λ → N∞(A− λI) ∩R∞(A− λI) is constant on
K(0, sΦ+(A)). Therefore we conclude that

N∞(A− λI) ∩R∞(A− λI) = N∞(A) ∩R∞(A), λ ∈ K(0, sΦ+(A)).
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Since asc(A) < ∞, from [41], Proposition 1.6(i) it follows thatN∞(A)∩R∞(A) =
N∞(A) ∩ R∞(A) = {0}. Therefore, for every λ ∈ K(0, sΦ+(A)) we have

N∞(A− λI)∩R∞(A−λI) = {0}, and hence N∞(A−λI)∩R∞(A−λI) = {0}
which again by [41], Proposition 1.6(i) implies asc(A−λI) < ∞. Consequently,

sΦ+(A) ≤ sB+(A). (2.3)

Now, from (2.2) and (2.3) it follows sB+(A) = sW+(A) = sΦ+(A).
If A ∈ B−(X), then the adjoint operator A′ ∈ B+(X

′). For λ ∈ K(0, sΦ−(A))
we have A′ − λI ∈ Φ+(X

′), and, as above, we conclude that asc(A′ − λI) < ∞.
Since dsc(A−λI) = asc(A′−λI), we have dsc(A−λI) < ∞ for λ ∈ K(0, sΦ−(A)),
which implies

sB−(A) ≥ sΦ−(A). (2.4)

From (2.2) and (2.4) we get sB−(A) = sW−(A) = sΦ−(A).
Analogously we can prove (2.1) for ∗ = l, r.

Therefore, for A ∈ B(X), the left (resp. right, upper, lower) Browder ra-
dius of A is either equal to 0 or coincides with the left (resp. right, upper,
lower) Fredholm radius of A. The argument can be also based on the punctured
neighbourhood theorem [25], Theorem 18.7.

To show that we shall say that an operator A ∈ B(X) is almost bounded
below if there exists δ > 0 such that A − λI is bounded below for 0 < |λ| < δ.
If A ∈ Bl(X), then by [47], Theorem 5 there exists δ > 0 such that A − λI
is injective for 0 < |λ| < δ. From the punctured neighbourhood theorem ([25],
Theorem 18.7) it follows that λ → α(A−λI) is equal to 0 everywhere in the open
ball K(0, sΦl

(A)) ⊂ C except possibly in the set whose all points are isolated.
Consequently, for all λ ∈ K(0, sΦl

(A)), A − λI ∈ Φl(X) and A − λI is almost
bounded below and hence again by [47], Theorem 5 we conclude A−λI ∈ Bl(X).
Therefore, sBl

(A) ≥ sΦl
(A), and from (2.2) it follows sBl

(A) = sWl
(A) =

sΦl
(A).
Analogously, we can prove the rest assertions for right, upper and lower

Browder radius (see [47] Theorem 6, [41] Propositions 2.6 and 2.7).

Corollary 2.2. Let A ∈ B(X). Then

sΦ+
(A) = sΦ−(A) = sΦl

(A) = sΦr (A) = sΦ(A) =

= sW+(A) = sW−(A) = sWl
(A) = sWr (A) = sW(A) = (2.5)

= sB+(A) = sB−(A) = sBl
(A) = sBr (A) = sB(A).

Proof. From A ∈ B(X), because the index is locally constant, it follows that

sΦ+(A) = sΦ−(A) = sΦ(A) = sΦl
(A) = sΦr (A).

Now from Theorem 2.1 we get (2.5).

For A ∈ B(X), the injectivity radius of A is defined by

sinj(A) = max{ϵ ≥ 0 : |λ| < ϵ =⇒ A− λ is bounded below}.
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The surjectivity radius of the operator A is defined by

ssur(A) = max{ϵ ≥ 0 : |λ| < ϵ =⇒ A− λ is onto}.

The set of all left (right) invertible operators on X is denoted by Gl(X)
(Gr(X)). For A ∈ B(X) we define the Gl-radius sGl

(A) and Gr-radius sGr (A):

sGl
(A) = max{ϵ ≥ 0 : |λ| < ϵ =⇒ A− λ ∈ Gl(X)},

sGr (A) = max{ϵ ≥ 0 : |λ| < ϵ =⇒ A− λ ∈ Gr(X)}.

Zemánek ([43], Theorem 7.1) proved the following: if A ∈ B(X) is surjective,
then

sΦ−(A) = sup
F∈F (X)

ssur(A+ F ).

From the proof of this theorem it follows that

sΦ−(A) = sup
F∈F (X)

ssur(A+ F ) = sup
F∈F (X), AF=FA

ssur(A+ F ). (2.6)

Similarly, if A ∈ B(X) is bounded below, then ([43], Theorem 7.2)

sΦ+
(A) = sup

F∈F (X)

sinj(A+ F ) = sup
F∈F (X), AF=FA

sinj(A+ F ). (2.7)

By using Zemánek’s method of removing jumping points, it can be proved
that (2.6) holds for upper semi-Browder operators, while (2.7) holds for lower
semi-Browder operators.

Theorem 2.3. Let A ∈ B(X).

(2.3.1) If A is upper semi-Browder, then

sB+(A) = sΦ+(A) = sup
F∈F (X)

sinj(A+ F )

= sup
F∈F (X), AF=FA

sinj(A+ F )

= sup
E∈R(X), AE−EA∈P (Φ+(X))

sinj(A+ E)

= sup
E∈R(X), AE=EA

sinj(A+ E).

(2.8)

(2.3.2) If A is lower semi-Browder, then

sB−(A) = sΦ−(A) = sup
F∈F (X)

ssur(A+ F )

= sup
F∈F (X), AF=FA

ssur(A+ F )

= sup
E∈R(X), AE−EA∈P (Φ−(X))

ssur(A+ E)

= sup
E∈R(X), AE=EA

ssur(A+ E).

(2.9)
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Proof. (2.3.1): Let E ∈ R(X) and AE − EA ∈ P (Φ+(X)). Then σΦ+
(A) =

σΦ+(A+ E) (the comment after Theorem 8 in [47]) and hence we have

sΦ+(A) = dist(0, σΦ+(A)) = dist(0, σΦ+(A+ E)) = sΦ+(A+ E) ≥ sinj(A+ E).

Therefore

sΦ+(A) ≥ sup
E∈R(X), AE−EA∈P (Φ+(X))

sinj(A+ E)

≥ sup
E∈R(X), AE=EA

sinj(A+ E) (2.10)

≥ sup
F∈F (X), AF=FA

sinj(A+ F ).

Suppose that A is upper semi-Browder. Analogously to the comment after
Theorem 2.1, from [41], Proposition 2.6 ([47], Theorem 3) and the punctured
neighbourhood theorem ([25], Theorem 18.7) it follows sB+(A) = sΦ+(A), and
for D = K(0, sΦ+(A)), λ → α(A − λI) is equal to 0 everywhere in D except
possibly in the set whose all points are isolated. These points are called jumping
points. Therefore, the set of jumping points is at most countable and can have
accumulation points only in the boundary of D.

If A does not have any jumping point in D, then

sΦ+(A) = sinj(A) ≤ sup
AF=FA,F∈F (X)

sinj(A+ F ). (2.11)

From (2.10) and (2.11) we get (2.8).
Suppose that A has the jumping points in D. Denote the jumping points

such that
|λ1| ≤ |λ2| ≤ . . . |λn| ≤ · · · < sΦ+(A).

Therefore, sinj(A) = |λ1|.
Since A−λ1 is upper semi-Browder, from [25], Theorem 20.10 it follows that

X is a direct sum of closed subspaces X1 and X2 in X, which are invariant for
A − λ1, i.e. they are invariant for A, dimX1 < ∞, A − λ1 is nilpotent on X1,
and for the reduction A2 = A|X2

: X2 → X2 we have A2 − λ1 is injective.
Let µ ∈ C such that |µ| > ∥A∥ + sΦ+(A) and F = µP , where P is the

projection from X onto X1 along X2. Clearly, F ∈ F (X) and AF = FA. Let
λ ∈ D. Then ∥A− λ∥ ≤ ∥A∥+ sΦ+(A) < |µ|, so A− λ+ µ is invertible. Hence
the reduction (A + µ − λ)|X1

= (A + F − λ)|X1
: X1 → X1 is invertible on X1

and for all λ ∈ D\{λ2, . . . , λn, . . . } we have

N(A+ F − λ) = N((A+ F − λ)|X1
)⊕N((A+ F − λ)|X2

)

= {0} ⊕N((A2 − λ)|X2
) = {0}.

For all λ ∈ D, A−λ ∈ Φ+(X), and so A+F −λ ∈ Φ+(X) ([25], Theorem 16.9).
Therefore, A+ F − λ is bounded below for all λ ∈ D\{λ2, . . . , λn, . . . }.

Let ϵ > 0. Then there exist only finitely many jumping points λi such that
|λi| < sΦ+(A)−ϵ. Therefore, applying the previous method finitely many times,
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we obtain the operator F1 ∈ F (X) such that AF1 = F1A and A + F1 − λ is
bounded below for |λ| < sΦ+(A)− ϵ, i.e.

sinj(A+ F1) ≥ sΦ+(A)− ϵ. (2.12)

From (2.10) and (2.12) we get (2.8).
(2.3.2) can be proved similarly.

Theorem 2.4. Let A ∈ B(X).

(2.4.1) If A is left Browder, then

sBl
(A) = sΦl

(A) = sup
F∈F (X)

sGl
(A+ F )

= sup
F∈F (X), AF=FA

sGl
(A+ F )

= sup
E∈R(X), AE−EA∈P (Φ(X))

sGl
(A+ E)

= sup
E∈R(X), AE=EA

sGl
(A+ E).

(2.13)

(2.4.2) If A is right Browder, then

sBr (A) = sΦr (A) = sup
F∈F (X)

sGr (A+ F )

= sup
F∈F (X), AF=FA

sGr (A+ F )

= sup
E∈R(X), AE−EA∈P (Φ(X))

sGr (A+ E)

= sup
E∈R(X), AE=EA

sGr (A+ E).

(2.14)

Proof. The assertions (2.4.1) and (2.4.2) follow from Theorem 2.1, [47], Theo-
rems 5, 6 and 8, and [6], Chap. 5.2, Theorem 7, analogously to the proof of
Theorem 2.3.

It is well-known that the sets Φ+(X),Φ−(X),Φl(X),Φr(X),W+(X),
W−(X), Wl(X),Wr(X) are open ([7], Theorems 4.2.1, 4.2.2), ([6], Chapter 5.2,
Theorem 6), as well B+(X) and B−(X) ([19], Satz 4) and consequently, Bl(X)
and Br(X) are also open in B(X). Therefore, for H = Φ+,Φ−,Φl,Φr,W+,W−,
Wl,Wr, B+,B−, Bl,Br, the quantities

mH(A) = dist(A,B(X)\H(X)),

show how firmly a given operator A ∈ B(X) belongs to each set H(X). Clearly,
mH(A) is the radius of the largest open ball centered at A and contained in the
set H(X) and

mH(A) > 0 ⇐⇒ A ∈ H(X). (2.15)
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We shall write
comm(A) = {B ∈ B(X) : AB = BA},

for the commutant of A ∈ B(X), and

Kcomm(A, ϵ) = K(A, ϵ) ∩ comm(A)

= {B ∈ B(X) : ∥A−B∥ < ϵ, B ∈ comm(A)}

for the ”commutative open ball” centered at A with radius ϵ.
For A ∈ B(X) set

mcomm
H (A) = sup{ϵ ≥ 0 : Kcomm(A, ϵ) ⊂ H(X)},

where H = B+,B−,Bl,Br.

The following result is proved in [31], Theorem 1.

Theorem 2.5. Suppose that A, B ∈ B(X) and AB = BA. Then

(2.5.1) A ∈ B+(X) and re(B) < sΦ+(A) =⇒ A+B ∈ B+(X),

(2.5.2) A ∈ B−(X) and re(B) < sΦ−(A) =⇒ A+B ∈ B−(X).

In the following theorem we prove, for A ∈ B(X), that the radius of the
largest ”commutative” open ball centered at A and contained in the set B+(X)
(B−(X)) is equal to the upper (lower) Browder radius of A.

Theorem 2.6. Let A ∈ B(X).

(2.6.1) If A ∈ B+(X), then

sB+(A) = sW+(A) = sΦ+(A) = mcomm
B+

(A)

≥ mW+(A) = mΦ+(A) ≥ mB+(A). (2.16)

(2.6.2) If A ∈ B−(X), then

sB−(A) = sW−(A) = sΦ−(A) = mcomm
B−

(A)

≥ mW−(A) = mΦ−(A) ≥ mB−(A). (2.17)

Proof. (2.6.1): Clearly
mcomm

B+
(A) ≤ sB+(A). (2.18)

Let A ∈ B+(X). If ∥B∥ < sΦ+(A) and B ∈ comm(A), then, since re(B) ≤
∥B∥, from (2.5.1) it follows that A+B ∈ B+(X). This implies

sΦ+(A) ≤ mcomm
B+

(A). (2.19)

Since A ∈ W+(X), and because of the local constancy of the index, we get
mW+(A) = mΦ+(A). Since sΦ+(A) ≥ mΦ+(A) ≥ mB+(A), together with (2.18),
(2.2) and (2.19) we get (2.16).

(2.6.2): Analogously to (2.6.1).

9



Let us remark that from the previous proof we also get again the implication
(2.1) for ∗ = +,−.

Corollary 2.7. Let A ∈ B(X).

(2.7.1) If A ∈ B+(X), then for every n ∈ N

sB+(A) = mcomm
B+

(A) = mcomm
B+

(An)
1
n

= limn→∞ mΦ+(A
n)

1
n . (2.20)

(2.7.2) If A ∈ B−(X), then for every n ∈ N

sB−(A) = mcomm
B−

(A) = mcomm
B−

(An)
1
n

= limn→∞ mΦ−(A
n)

1
n . (2.21)

Proof. To prove (2.7.1), recall that ([42], Theorem 1), ([8], Proposition 10),
([37], Theorem 8)

sΦ+(A) = lim
n→∞

mΦ+(A
n)

1
n . (2.22)

Therefore

sΦ+(A
n) = (sΦ+(A))

n, n ∈ N. (2.23)

From A ∈ B+(X) we have An ∈ B+(X) by [16], Theorem 7.9.2, and (2.20)
follows from (2.6.1),(2.22) and (2.23).

(2.7.2) can be proved similarly.

At the end of the third section (Corollary 3.23) we get the inequalities

sBl
(A) ≥ mcomm

Bl
(A) ≥ mΦl

(A) and sBl
(A) ≥ lim supn→∞ mcomm

Bl
(An)

1
n for

A ∈ Bl(X), and analogously for the right version.

3 Perturbations

In this section we generalize and extend some results of Abdelmoumen and
Baklouti [1], as well as some results from [2].

We shall write Poly = C[z] for the algebra of complex polynomials.

Theorem 3.1. For H = Φ+,Φl,Φ−,Φr,W+,Wl,W−,Wr, let a1 and a2 be
operational quantities such that

a1(λA) = |λ|a1(A), λ ∈ C, (3.1)

a1(P ) < a2(A) =⇒ A+ P ∈ H(X), A, P ∈ B(X). (3.2)

Then:
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(3.1.1) If a1(P ) < a2(A), then A, A+ P ∈ H(X) and i(A+ P ) = i(A).

(3.1.2) If a1(P ) < a2(I), then I − P ∈ Φ(X) and i(I − P ) = 0.

(3.1.3) If p, q ∈ Poly such that q divides p− 1, then

a1(p(P )) < a2(I) =⇒ q(P ) ∈ Φ(X).

(3.1.4) If p ∈ Poly such that p(0) = 1, then

a1(p(P )) < a2(I) =⇒ P ∈ Φ(X).

(3.1.5) If a1(P
n) < a2(I) for some n ∈ N, then I −P ∈ Φ(X) and i(I −P ) = 0.

(3.1.6) If AP − PA ∈ P (H(X)) and a1(P
n) < a2(A

n) for some n ∈ N, then
A+ P ∈ H(X) and i(A+ P ) = i(A).

Proof. (3.1.1): Let λ ∈ [0, 1] and a1(P ) < a2(A). By (3.1), a1(λP ) = λa1(P ) ≤
a1(P ) < a2(A), and by (3.2) it follows A+λP ∈ H(X). Hence A, A+P ∈ H(X)
and from the local constancy of the index we get i(A+ P ) = i(A).

(3.1.2): From (3.1.1).
(3.1.3): Let p, q ∈ Poly such that q divides p−1. Then there exists r ∈ Poly

such that p(z)−1 = q(z)r(z) = r(z)q(z). Suppose that a1(p(P )) < a2(I). From
(3.1.2) it follows that p(P )− I = q(P )r(P ) = r(P )q(P ) ∈ Φ(X), which implies
q(P ) ∈ Φ(X).

(3.1.4): Let a1(p(P )) < a2(I). If p(0) = 1, then the polynomial q(z) = z
divides p− 1 and from (3.1.3) we obtain P ∈ Φ(X).

(3.1.5): Suppose that a1(P
n) < a2(I) for some n ∈ N. Then for λ ∈ [0, 1] we

have a1((λP )n) < a2(I) by (3.1). For p(z) = zn, the polynomial q(z) = z − 1
divides p(z) − 1, and from (3.1.3) it follows that I − λP ∈ Φ(X). Because of
the local constancy of the index, we get i(I − P ) = 0.

(3.1.6): Let AP −PA ∈ P (H(X)), λ ∈ [0, 1] and a1(P
n) < a2(A

n) for some
n ∈ N. Then, a1(−(−λP )n) < a2(A

n) and by (3.2) we get An − (−λP )n ∈
H(X). Since

An − (−λP )n = (A+ λP )(An−1 +An−2(−λP ) + · · ·+ (−λP )n−1) + P1

= (An−1 +An−2(−λP ) + · · ·+ (−λP )n−1)(A+ λP ) + P2,

where P1, P2 ∈ P (H(X)), it follows that

(A+ λP )(An−1 +An−2(−λP ) + · · ·+ (−λP )n−1),

(An−1 +An−2(−λP ) + · · ·+ (−λP )n−1)(A+ λP ) ∈ H(X).
(3.3)

If H = Φ+,Φl,Φ−,Φr, then from (3.3) we get A+λP ∈ H(X), and because
of the local constancy of the index, i(A+ P ) = i(A).

Let H = Wl. From (3.3) we have A + λP ∈ Φl(X) and consequently,
i(A + P ) = i(A). As a2(A

n) > 0, it holds An ∈ Wl(X), which implies A ∈
Wl(X). Therefore, A+ P ∈ Wl(X).

The cases when H = W+,W−,Wr can be proved analogously.
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The following theorem shows that the assertion (3.1.6) extends to analytic
functions, but only for H = Φ+,Φl,Φ−,Φr.

Theorem 3.2. For H = Φ+,Φl,Φ−,Φr, let a1 and a2 be operational quantities
which satisfy the conditions (3.1) and (3.2).

For A, P ∈ B(X), if AP − PA ∈ P (H(X)) and if g is an analytic function
in a neighborhood U of σ(A) ∪ σ(P ) such that a1(g(P )) < a2(g(A)), then
A− P ∈ H(X).

Moreover, if g(A) ∈ Φ(X), then A− P ∈ Φ(X).

Proof. Suppose that g is an analytic function in a neighborhood U of σ(A) ∪
σ(P ) such that a1(g(P )) < a2(g(A)) and AP − PA ∈ P (H(X)). By (3.1),
a1(−g(P )) = a1(g(P )) < a2(g(A)) and by (3.2), g(A) − g(P ) ∈ H(X). If Ω
is an open set such that σ(A) ∪ σ(P ) ⊂ Ω ⊂ Ω ⊂ U and whose boundary ∂Ω
consists of a finite numbers of simple closed curves which do not intersect, then
the following holds

g(A)− g(P ) =
1

2πi

∫
∂Ω

((λ−A)−1 − (λ− P )−1)g(λ)dλ. (3.4)

Since P (H(X)) is a two-sided ideal and AP − PA ∈ P (H(X)), then for every
λ ∈ ∂Ω there are S1(λ), S2(λ) ∈ P (H(X)) such that

(λ−A)−1 − (λ− P )−1 = (λ−A)−1(A− P )(λ− P )−1

= (λ−A)−1(λ− P )−1(A− P ) + S1(λ) (3.5)

= (A− P )(λ−A)−1(λ− P )−1 + S2(λ).

As P (H(X)) is closed, from (3.4) and (3.5) we get

g(A)− g(P ) = A1(A− P ) + P1 = (A− P )A1 + P2, (3.6)

where A1 = 1
2πi

∫
∂Ω

((λ−A)−1(λ− P )−1)g(λ)dλ ∈ B(X) and

P1 =
1

2πi

∫
∂Ω

S1(λ)g(λ)dλ ∈ P (H(X)),

P2 =
1

2πi

∫
∂Ω

S2(λ)g(λ)dλ ∈ P (H(X)).

It follows that A1(A − P ), (A − P )A1 ∈ H(X) which implies A − P ∈ H(X).
Further, if g(A) ∈ Φ(X), then from (3.1.1) it follows that g(A)− g(P ) ∈ Φ(X).
Since P (H(X)) ⊂ P (Φ(X)), from (3.6) we obtain A1(A−P ), (A−P )A1 ∈ Φ(X),
and so A− P ∈ Φ(X).

Analogously to the terminology introduced by Schechter and Whitley in [35],
Definition 5 and Definition 16, we will say that an operational quantity a(P,A),
A, P ∈ B(X) is aH perturbation function, whereH = Φ+,Φl,Φ−,Φr,W+,W−,Wl,Wr,
if

a(λP,A) = |λ|a(P,A), λ ∈ C,
a(P,A) < 1 =⇒ A+ P ∈ H(X).
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If a H perturbation function can be written in the form

a(P,A) =
a1(P )

a2(A)
,

then we will say that a is factored.
Clearly, the quantities a1 and a2 satisfy the conditions (3.1) and (3.2) if and

only if a1(P )
a2(A) is a factored H perturbation function.

Example 1. For A ∈ B(X,Y ) set

u(A) = sup{m(AJM ) : M infinite dimensional subspace of X},
v(A) = sup{q(QV A) : V closed infinite codimensional subspace of Y }.

The quantity u was introduced by Schechter [34], and it characterizes strictly
singular operators. The quantity v was introduced by Zemánek [43], and it
characterizes strictly cosingular operators. Precisely,

u(A) = 0 ⇐⇒ A ∈ SS(X,Y ),

v(A) = 0 ⇐⇒ A ∈ CS(X,Y ).

For A ∈ B(X,Y ) set

B(A) = sup{m(AJM ) : M finite codimensional subspace of X},
M(A) = sup{q(QV A) : V finite dimensional subspace of Y }.

The quantity B was introduced in [34], and the quantity M in [43].
The quantities a1 = u and a2 = B satisfy the conditions of Theorem 3.1 and

Theorem 3.2 for the case H = Φ+ ([34], Theorem 2.14), ([43], Theorem 5.1), i.e.
u(P )
B(A) is a Φ+ perturbation function. The quantities a1 = v and a2 = M satisfy

the conditions of Theorems 3.1 and 3.2 for the case H = Φ− ([43], Theorem

5.1), i.e. v(P )
M(A) is a Φ− perturbation function.

Remark 3.3. For H = Φ+,Φ−,Φl,Φr,W+,W−,Wl,Wr, if a1 and a2 are op-
erational quantities such that (3.1) holds and

a2(T ) > 0 =⇒ T ∈ H(X) (3.7)

a2(T + S) ≤ a1(T ) + a2(S), T, S ∈ B(X), (3.8)

then they satisfy the condition (3.2).
In order to show this fact, we suppose that a1(P ) < a2(A). Then, by (3.8)

and (3.1), a2(A) = a2((−P )+A+P ) ≤ a1(−P )+ a2(A+P ) = a1(P )+ a2(A+
P ) < a2(A)+a2(A+P ). Therefore a2(A+P ) > 0 and by (3.7), A+P ∈ H(X).

Hence a1(P )
a2(A) is a H perturbation function.
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Similarly, it can be proved that if a1, a2 and a3 are operational quantities
such that (3.1) holds and

a3(T ) > 0 =⇒ T ∈ H(X) (3.9)

a2(T + S) ≤ a1(T ) + a3(S), T, S ∈ B(X), (3.10)

then the quantities a1 and a2 satisfy the condition (3.2), i.e. a1(P )
a2(A) is a H

perturbation function.

Example 2. We shall write MX for the class of all nonempty bounded
subsets of X. The Hausdorff measure of noncompactness of Ω ∈ MX , denoted
by χ(Ω), is given by

χ(Ω) = inf{ϵ > 0 : there exists a finite set F ⊂ X such that

Ω ⊂ F + ϵK[0, 1]X}.

For A ∈ B(X,Y ) the Hausdorff measure of noncopactness of A is defined by

∥A∥χ = inf{k ≥ 0 : χY (AΩ) ≤ k χX(Ω), Ω ∈ MX}.

Clearly,
∥A∥χ = sup{χY (AΩ) : Ω ∈ MX , χX(Ω) = 1},

and set (see [8], p. 185, [42], p.70)

mχ(A) = inf{χY (AΩ) : Ω ∈ MX , χX(Ω) = 1}.

Recall that ([42], Theorem 4.10)

mχ(A) > 0 ⇐⇒ A ∈ Φ+(X,Y ),

and
mχ(A+B) ≤ mχ(A) + ∥B∥χ.

According to Remark 3.3, the quantities a1 = ∥ · ∥χ and a2 = mχ satisfy the
conditions of Theorems 3.1 and 3.2 for H = Φ+ (see also [8], p. 186).

It is well known [8] that

∥A∥χ = inf{∥QV A∥ : V finite dimensional subspace of Y }.

In [43], p. 223 and [8], p. 186, the following quantity was introduced

qχ(A) = sup{q(QV A) : V finite dimensional subspace of Y }.

The quantity a1 = ∥ · ∥χ and a2 = qχ satisfy the conditions of Theorems 3.1
and 3.2 for H = Φ− ([8], p. 186).

Example 3. The Kuratowski measure of non-compactness of Ω ∈ MX ,
denoted by α(Ω), is given by

α(Ω) = inf{d > 0 : Ω ⊂ ∪n
k=1Dk, where each Dk has diametar ≤ d}.
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For A ∈ B(X,Y ) the Kuratowski measure of non-compactness of A is defined
by

∥A∥α = inf{k ≥ 0 : αY (AΩ) ≤ k αX(Ω), Ω ∈ MX}.

Obviously,
∥A∥α = sup{αY (AΩ) : Ω ∈ MX , αX(Ω) = 1},

and set
mα(A) = inf{αY (AΩ) : Ω ∈ MX , αX(Ω) = 1}.

It is known that ([1] Proposition 2.1, [10])

mα(A) > 0 ⇐⇒ A ∈ Φ+(X,Y ),

and
mα(A+B) ≤ ∥A∥α +mα(B), A, B ∈ B(X,Y ).

Now according to Remark 3.3 the quantities a1 = ∥ · ∥α and a2 = mα satisfy
the conditions of Theorems 3.1 and 3.2 for H = Φ+. So we get an improvement
of Theorem 2.2 in [1].

Since mα(I) = 1, from Theorem 3.1 ((3.1.3) and (3.1.4)) we get the following
corollaries.

Corollary 3.4. Let P ∈ B(X). If p, q ∈ Poly such that q divides p − 1, then
∥p(P )∥α < 1 implies q(P ) ∈ Φ(X).

Corollary 3.5. Let P ∈ B(X). If p ∈ Poly such that p(0) = 1, then ∥p(P )∥α <
1 implies P ∈ Φ(X).

We remark that Corollaries 3.4 and 3.5, respectively, improve Theorem 3.1
and Corollary 3.3 in [2]. From (3.1.5) we obtain Corollary 3.4 in [2].

Example 4. Let A ∈ B(X,Y ). The following quantity was introduced by
Sedaev [36] and Lebow and Schechter [20]:

∥A∥µ = inf{∥AJM∥ : M subspace of X, codimM < ∞}.

Schechter [34] introduced the following quantity:

mµ(A) = sup{m(AJM ) : M subspace of X, codimM < ∞}.

Since ([34] Lemma 2.13)

mµ(A) > 0 ⇐⇒ A ∈ Φ+(X,Y )

and ([22] Proposicion 25.8(5))

mµ(A+B) ≤ mµ(A) + ∥B∥µ, A, B ∈ B(X,Y ),

the quantities a1 = ∥ · ∥µ and a2 = mµ satisfy the conditions of Theorems 3.1
and 3.2 for H = Φ+, according to Remark 3.3.
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Example 5. Let l∞(X) denote the Banach space obtained from the space
of all bounded sequences x = (xn) in X by imposing term-by-term linear com-
bination and the supremum norm ∥x∥ = supn ∥xn∥. Let

m(X) = {(xn) ∈ l∞(X) : {xn : n ∈ N} relatively compact in X}.

m(X) is a closed subspace of l∞(X). If X+ denotes the quotient l∞(X)/m(X),
then A ∈ B(X,Y ) induces an operator A+ : X+ → Y +, (xn) + m(X) 7→
(Axn) + m(Y ), (xn) ∈ l∞(X) [4], [32], [5]. Recall that ([5] Theorem 2, [9]
Theorem 3.4)

A ∈ Φ+(X,Y ) ⇐⇒ m(A+) > 0,

A ∈ Φ−(X,Y ) ⇐⇒ q(A+) > 0,

and

m(A+ +B+) ≤ m(A+) + ∥B+∥ and q(A+ +B+) ≤ q(A+) + ∥B+∥.

Set ∥A∥s = ∥A+∥, ms(A) = m(A+) and qs(A) = q(A+). According to Remark
3.3, the quantities a1 = ∥ · ∥s and a2 = ms satisfy the conditions of Theorems
3.1 and 3.2 for H = Φ+, as well as the quantities a1 = ∥ · ∥s and a2 = qs for the
case H = Φ−.

Example 6. For A ∈ B(X,Y ) set

nF (A) = inf{∥A+ F∥ : F ∈ F (X,Y )},
nK(A) = inf{∥A+K∥ : K ∈ K(X,Y )},
nSS(A) = inf{∥A+ P∥ : P ∈ SS(X,Y )},
nCS(A) = inf{∥A+ P∥ : P ∈ CS(X,Y )},

nPΦ+(A) = inf{∥A+ P∥ : P ∈ P (Φ+(X,Y ))},
nPΦ−(A) = inf{∥A+ P∥ : P ∈ P (Φ−(X,Y ))},

and

mF (A) = sup{m(A+ F ) : F ∈ F (X,Y )},
qF (A) = sup{q(A+ F ) : F ∈ F (X,Y )},

mK(A) = sup{m(A+K) : K ∈ K(X,Y )},
qK(A) = sup{q(A+K) : K ∈ K(X,Y )},

mSS(A) = sup{m(A+ P ) : P ∈ SS(X,Y )},
qCS(A) = sup{q(A+ P ) : P ∈ CS(X,Y )},

mPΦ+(A) = sup{m(A+ P ) : P ∈ P (Φ+(X,Y ))},
qPΦ−(A) = sup{q(A+ P ) : P ∈ P (Φ−(X,Y ))}.

Recall that ([43] p. 231-232), ([27] Lemma 1), ([44] p. 84-86)

mF (A)>0 ⇔ mK(A)>0 ⇔ mSS(A)>0 ⇔ mPΦ+(A)>0 ⇔ A∈W+(X,Y ),

qF (A)>0 ⇔ qK(A)>0 ⇔ qCS(A)>0 ⇔ qPΦ−(A)>0 ⇔ A∈W−(X,Y ).
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It is easy to see that

mF (A+ P ) ≤ mF (A) + nF (P ),

qF (A+ P ) ≤ qF (A) + nF (P ),

mK(A+ P ) ≤ mK(A) + nK(P ),

qK(A+ P ) ≤ qK(A) + nK(P ),

mSS(A+ P ) ≤ mSS(A) + nSS(P ),

qCS(A+ P ) ≤ qCS(A) + nCS(P ),

mPΦ+(A+ P ) ≤ mPΦ+(A) + nPΦ+(P ),

qPΦ−(A+ P ) ≤ qPΦ−(A) + nPΦ−(P ), P ∈ B(X,Y ).

Therefore, according to Remark 3.3, nF (P )
mF (A) ,

nK(P )
mK(A) ,

nSS(P )
mSS(A) and

nPΦ+
(P )

mPΦ+
(A) are

W+ perturbation functions, and nF (P )
qF (A) ,

nK(P )
qK(A) ,

nCS(P )
qCS(A) and

nPΦ− (P )

qPΦ− (A) are W−

perturbation functions, A, P ∈ B(X).

Example 7. We use the following result ([48], Theorem 3.7):

Theorem 3.6. Let U be an open subset of Φ±(X) such that µU ⊂ U for every
µ ̸= 0. For A ∈ B(X), set

mU (A) = dist(A,B(X)\U),
∥A∥P (U) = inf{∥A+ P∥ : P ∈ P (U)},

where P (U) is the perturbation class of U .
Then, for A, B ∈ B(X), the following hold:

(3.6.1) mU (A) > 0 ⇐⇒ A ∈ U ;
(3.6.2) mU (A+B) = mU (A) for every A ∈ B(X) ⇐⇒ B ∈ P (U);
(3.6.3) mU (A+B) ≤ mU (A) + ∥B∥;
(3.6.4) mU (A+B) ≤ mU (A) + ∥B∥P (U).

We remark that Theorem 3.6 holds more generally, for B(X,Y ) instead of
B(X).

If we apply Theorem 3.6 on U = Φ+(X),Φ−(X),W+(X),W−(X), using also
(1.1), we get the following inequalities:

mΦ+(A+ P ) ≤ mΦ+(A) + nPΦ+(P ),

mΦ−(A+ P ) ≤ mΦ−(A) + nPΦ−(P ),

mW+(A+ P ) ≤ mW+(A) + nPΦ+(P ),

mW−(A+ P ) ≤ mW−(A) + nPΦ−(P ), A, P ∈ B(X).

Therefore from (2.15) and Remark 3.3 it follows that
nPΦ+

(P )

mΦ+
(A) is a Φ+ pertur-

bation function and
nPΦ+

(P )

mW+
(A) is a W+ perturbation function. Also,

nPΦ− (P )

mΦ− (A) is

a Φ− perturbation function and
nPΦ− (P )

mW− (A) is a W− perturbation function.
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For A ∈ B(X) let

nPΦ(A) = inf{∥A+ P∥ : P ∈ P (Φ(X))}.

According to (1.2), (1.3) and Theorem 3.6 applied to U = Φl(X),Φr(X), Wl(X),
Wr(X) (see also [48], Theorem 3.4(3.4.4), Theorem 3.5(3.5.4)) we obtain

mΦl
(A+ P ) ≤ mΦl

(A) + nPΦ(P ),

mΦr (A+ P ) ≤ mΦr (A) + nPΦ(P ),

mWl
(A+ P ) ≤ mWl

(A) + nPΦ(P ),

mWr (A+ P ) ≤ mWr (A) + nPΦ(P ), A, P ∈ B(X).

Consequently, we conclude that nPΦ(P )
mΦl

(A) is a Φl perturbation function and nPΦ(P )
mΦr (A)

is a Φr perturbation function. Also, nPΦ(P )
mWl

(A) is a Wl perturbation function and
nPΦ(P )
mWr (A) is a Wr perturbation function.

Let us notice that for each ∗ = +,−, l, r, if mW∗(A) > 0, i.e. if A ∈ W∗(X),
then because of the local constancy of the index it follows that mW∗(A) =
mΦ∗(A).

Example 8. Let S(X) denotes the family of all infinite dimensional sub-
space of X and let Q(Y ) denotes the family of all closed infinite codimensional
subspace of Y . Gramsch introduced the following quantity (see [34])

G(A) = inf{∥AJM∥ : M ∈ S(X)}, A ∈ B(X,Y )

which characterizes the set of upper semi-Fredholm operators ([34], Theorem
2.11):

G(A) > 0 ⇐⇒ A ∈ Φ+(X,Y ). (3.11)

The following quantity was introduced by Schechter [34]:

∆(A) = sup{G(AJM ) : M ∈ S(X)}.

∆ is a semi-norm which characterizes the strictly singular operators ([34], Corol-
lary 3.2):

∆(A) = 0 ⇐⇒ A ∈ SS(X,Y ).

Weis [40] introduced the following quantities:

K(A) = inf{∥QV A∥ : V ∈ Q(Y )},
∇(A) = sup{K(QV A) : V ∈ Q(Y )}.

The quantity K characterizes the lower semi-Fredholm operators ([40]):

K(A) > 0 ⇐⇒ A ∈ Φ−(X,Y ), (3.12)

and the quantity ∇ characterizes the strictly cosingular operators ([40]):

∇(A) = 0 ⇐⇒ A ∈ CS(X,Y ).
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The quantities a1 = ∆ and a2 = G satisfy also the condition (3.8) ([34], Theorem
2.1.) and therefore the conditions of Theorems 3.1 and 3.2 with H = Φ+

according to Remark 3.3 and (3.11).
The quantities a1 = ∇ and a2 = K satisfy the conditions (3.1) and (3.2)

with H = Φ− ([40]).
Let us mention that it holds more generally:
For an operational quantity a and A ∈ B(X,Y ) set

Ga(A) = inf{a(AJM ) : M ∈ S(X)},
∆a(A) = sup{Ga(AJM ) : M ∈ S(X)},

and

Ka,V (A) = inf
W⊃V

a(QWA), Ka(A) = Ka,{0}(A) = inf
V

a(QV A),

∇a(A) = sup
V

Ka,V (A) = sup
V

inf
W⊃V

a(QWA), V, W ∈ Q(Y ).

If the operational quantity a has the property that a(TA) = a(A) where A ∈
B(X,Y ) and T ∈ B(Y, Z) is an isometric isomorphism, then∇a(A) = infV Ka(QV A),
where V is as above (the norm, the injection modulus and the surjection mod-
ulus have this property). In order to prove that we need the following auxiliary
assertions.

Lemma 3.7. Let X1 and Y1 be vector spaces and let A : X1 → Y1 be a linear
operator. If V is a subspace of Y1, then

codimA−1(V ) ≤ codimV. (3.13)

Moreover, if A is surjective, then codimA−1(V ) = codimV .

Proof. Let T : X1/A
−1(V ) → Y1/V be the map defined by

T (x+A−1(V )) = Ax+ V, x ∈ X1.

Since T is linear and injective, it follows that dimX1/A
−1(V ) ≤ dimY1/V ,

i.e., (3.13) holds. Moreover, if A is surjective, then T is surjective and so,
dimX1/A

−1(V ) = dimY1/V , i.e. codimA−1(V ) = codimV .

Lemma 3.8. Let V ∈ Q(X). Then U ∈ Q(X/V ) if and only if there exists
W ∈ Q(X) such that W ⊃ V and U = W/V .

Proof. Suppose that U a closed infinite codimensional subspace of X/V . Then
W = Q−1

V (U) is a closed subspace of X and W ⊃ Q−1
V ({0}) = V . Since QV is

surjective, it follows that U = QV (Q
−1
V (U)) = QV (W ) = W/V and by Lemma

3.7, codimW = codimQ−1
V (U) = codimU < ∞.

Conversely, let U = W/V where W is a closed infinite codimensional sub-
space W of X such that W ⊃ V . Then W/V is complete and hence, it is a
closed subspace of Y/V . From W ⊃ V it follows that Q−1

V (QV (W )) = W +
N(QV ) = W+V = W and therefore, by Lemma 3.7, codimU = codimQV (W ) =
codimQ−1

V (QV (W )) = codimW < ∞.
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Proposition 3.9. Let a be an operational quantity such that

a(TA) = a(A), (3.14)

where A ∈ B(X,Y ) and T ∈ B(Y, Z) is an isometric isomorphism. Then for
every V ∈ Q(Y ),

Ka,V (A) = Ka(QV A) (3.15)

and
∇a(A) = sup{Ka(QV A) : V ∈ Q(Y )}. (3.16)

Proof. Let V and W be closed infinite codimensional subspaces of Y and W ⊃
V . Then the operator T : (Y/V )/(W/V ) → Y/W defined by

T ((y + V ) +W/V ) = y +W, y ∈ Y,

is an isometric isomorphism and TQW/V QV = QW . Because of the prop-
erty (3.14), we get a(QW/V QV A) = a(TQW/V QV A) = a(QWA) and hence, by
Lemma 3.8 it follows that

Ka(QV A) = inf{a(QUQV A) : U ∈ Q(Y/V )}
= inf{a(QW/V QV A) : W ∈ Q(Y ), W ⊃ V }
= inf{a(QWA) : W ∈ Q(Y ), W ⊃ V } = Ka,V (A).

(3.16) follows from (3.15).

If an operational quantity a satisfies the property (3.14), then every oper-
ational quantity derived from a, in the sense of Definitions 2.1 and 3.1 in [24],
satisfies that property. We show this in the case of the operational quantity Ka

and for the other ones the proof is analogous.

Proposition 3.10. Let a be an operational quantity with the property (3.14).
Then

Ka(TA) = Ka(A),

where A ∈ B(X,Y ) and T ∈ B(Y, Z) is an isometric isomorphism.

Proof. Let V ∈ Q(Z). From Lemma 3.7 it follows that codimT−1(V ) = codim(V ).
Define the operator T̂V : X/T−1(V ) 7→ Y/V by

T̂V (x+ T−1(V )) = Tx+ V, x ∈ X.

T̂V is well-defined, linear operator, and

T̂V QT−1(V ) = QV T.

As T is surjective, then T̂V is surjective. Since

∥T̂V (x+ T−1(V ))∥ = ∥Tx+ V ∥ = inf{∥Tx+ v∥ : v ∈ V }
= inf{∥T (x+ T−1v)∥ : v ∈ V }
= inf{∥x+ T−1v∥ : v ∈ V }
= ∥x+ T−1(V )∥,
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it follows that T̂V is an isometric isomorphism and consequently, a(QV TA) =
a(T̂V QT−1V A) = a(QT−1V A). From Lemma 3.7 it follows that V ∈ Q(Z) if and
only if T−1V ∈ Q(Y ), and hence,

Ka(TA) = inf{a(QV TA) : V ∈ Q(Z)} = inf{a(QT−1V A) : V ∈ Q(Z)}
= inf{a(QUA) : U ∈ Q(Y )} = Ka(A).

The proof of the following result can be found in [11], Theorem 6 and [46],
Theorem 2.17. For the convenience of the reader, we give the complete proof and
remark that, for a change of the formulations in [11] and [46], it is enough that
an operational quantity satisfies only two conditions, (3.1) and the following
condition (3.17).

Proposition 3.11. Let a be an operational quantity such that the condition
(3.1) holds and

a(A+K) = a(A), A ∈ K(X,Y ). (3.17)

Then if ∆a(P ) < Ga(A), it follows A+P ∈ Φ+(X,Y ). Also, if ∇a(P ) < Ka(A),
then A+ P ∈ Φ−(X,Y ).

Proof. Let ∆a(P ) < Ga(A) and suppose that A + P /∈ Φ+(X,Y ). By [33],
Theorem 23 ([7], Theorem 4.4.7), there exists an infinite dimensional subspace
M of X and a compact operator K ∈ K(X,Y ) such that

(A+ P )JM = KJM . (3.18)

From (3.18), (3.17) and (3.1) it follows

Ga(A) ≤ Ga(AJM )

= inf{a(AJN ) : N ∈ S(M)}
= inf{a(KJN − PJN ) : N ∈ S(M)}
= inf{a(PJN ) : N ∈ S(M)}
= Ga(PJM ) ≤ ∆a(P ),

which is a contradiction.
In order to prove the second assertion, suppose that ∇a(P ) < Ka(A) and

A + P /∈ Φ−(X,Y ). From [7], Theorem 4.4.10 it follows that there exists K ∈
K(X,Y ) such that codimR(A+ P −K) = ∞. Let V = R(A+ P −K) and
let W be an infinite codimensional subspace of Y such that W ⊃ V . Then
QW (A+ P −K) = 0. Hence, from (3.18), (3.17) and (3.1) it follows

Ka(A) ≤ Ka,V (A) = inf{a(QWA) : W ∈ Q(Y ), W ⊃ V }
= inf{a(QWK −QWP ) : W ∈ Q(Y ), W ⊃ V }
= inf{a(QWP ) : W ∈ Q(Y ), W ⊃ V }
= Ka,V (P ) ≤ ∇a(P ),

which is a contradiction.
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Obviously, if a satisfies the condition (3.1), then ∆a i ∇a also satisfy that
condition. Therefore, from Proposition 3.11 it follows that if a satisfies the
conditions (3.1) and (3.17), then the quantities ∆a and Ga satisfy the conditions
of Theorems 3.1 and 3.2 for H = Φ+, as well as ∇a and Ka for H = Φ−.

The quantities u and v satisfy the conditions (3.1) and (3.17) according to
[34], Theorem 3.7, (1.4), [22] Proposicion 26.13(6) and (1.5). The quantities Gu

and Kv were introduced by Martinón [21], [22] . Since ∆u = u and ∇v = v
(see [22], [23], [24], [46] Remark 2.6) we conclude that u(P )/Gu(A) is a Φ+

perturbation function, while v(P )/Kv(A) is a Φ− perturbation function. These
facts follow also from the following inequalities ([22], Proposicion 25.8(4) and
Proposicion 26.8(4)):

Gu(T + S) ≤ u(T ) +G(S),

Kv(T + S) ≤ v(T ) +K(S), T, S ∈ B(X,Y ),

and the second part of Remark 3.3, (3.11) and (3.12).
Let us mention that also from these facts, since B ≤ Gu and M ≤ Kv ([15],

Theorem 2.7 and Theorem 4.3), we get, in one more way, that the quantities
from Example 1, a1 = u and a2 = B, satisfy the conditions 3.1 and 3.2 for
H = Φ+, while a1 = v and a2 = M satisfy that conditions for H = Φ−. In

other words, the Φ+ perturbation function u(P )
Gu(A) is smaller, and therefore better

than u(P )
B(A) , and also v(P )

Kv(A) is a better Φ− perturbation function than v(P )
M(A) .

For each operational quantity a we consider the kernel of a:

ker(a) = {A : a(A) = 0}.

We say that an operational quantity a is sub-additive if

a(S + T ) ≤ a(S) + a(T ) for every T, S ∈ B(X,Y ).

An operational quantity a is a semi-norm if it is sub-additive and satisfies for
all λ ∈ C and A ∈ B(X,Y ): a(λA) = |λ|a(A).

Proposition 3.12. Suppose that a is a semi-norm such that ker(a) contains
compact operators. Then ∆a(P )/Ga(A) is a Φ+ perturbation function and
∇a(P )/Ka(A) is a Φ− perturbation function.

Proof. Let A, K ∈ K(X,Y ). Since a is sub-additive and K, −K ∈ ker(a), then

a(A+K) ≤ a(A) + a(K) = a(A),

a(A) = a(A+K + (−K)) ≤ a(A+K) + a(−K) = a(A+K),

and so, a(A+K) = a(A). From Proposition 3.11 it follows that ∆a(P )/Ga(A)
is a Φ+ perturbation function and ∇a(P )/Ka(A) is a Φ− perturbation function.

22



We shall say that an operational quantity a is s-increasing on B(X,Y ) if for
every A ∈ B(X,Y ) and every ifinite dimensional subspace N and M of X the
following implication holds

N ⊂ M =⇒ a(AJN ) ≤ a(AJM ).

An operational quantity a is s-increasing if for every X, Y , a is s-increasing on
B(X,Y ). Also we shall say that an operational quantity a is q-increasing on
B(X,Y ) if for every A ∈ B(X,Y ) and every infinite codimensional subspace V
and U of Y the following implication holds

V ⊃ U =⇒ a(QV A) ≤ a(QUA),

and a is q-increasing if for every X, Y , a is q-increasing on B(X,Y ).

The proof of the following lemma is analogous to the proof of Theorem 2.1
in [34]. For the sake of completeness we give the proof.

Lemma 3.13. Let a be a sub-additive operational quantity, A, P ∈ B(X,Y ).

(3.13.1) If a is s-increasing, then

Ga(A+ P ) ≤ ∆a(A) +Ga(P ). (3.19)

(3.13.2) If a is q-increasing, then

Ka(A+ P ) ≤ ∇a(A) +Ka(P ). (3.20)

Proof. (3.13.1) follows from [24] Proposition 4.2(1).
(3.13.2): Suppose that a is q-increasing and sub-additive. Let V be an

infinite codimensional closed subspace of Y and let ϵ > 0. There exists an
infinite codimensional closed subspace W of Y such that W ⊃ V and

a(QWA) < Ka,V (A) + ϵ.

Since a is sub-additive and q-increasing we get

a(QW (A+ P )) ≤ a(QWA) + a(QWP ) < Ka,V (A) + ϵ+ a(QV P ),

and consequently,

Ka,V (A+ P ) < Ka,V (A) + ϵ+ a(QV P ).

Since ϵ > 0 is arbitrary, we get

Ka,V (A+ P ) ≤ Ka,V (A) + a(QV P ) ≤ ∇a(A) + a(QV P ),

and therefore,

inf
V

Ka,V (A+ P ) ≤ ∇a(A) + inf
V

a(QV P ) = ∇a(A) +Ka(P ).

Since infV Ka,V (A+ P ) = Ka(A+ P ), we get (3.20).
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For T ∈ B(X,Y ), let n(T ) = ∥T∥.

Theorem 3.14. Let a be a semi-norm such that a ≤ n and let a be s-increasing
and q-increasing. Then the quantities ∆a i Ga satisfy the conditions (3.1), (3.7)
and (3.8) for H = Φ+, as well as the quantities ∇a i Ka for H = Φ−, and

therefore ∆a(P )
Ga(A) is a Φ+ perturbation function and ∇a(P )

Ka(A) is a Φ− perturbation

function.

Proof. Since a is a semi-norm, then ∆a and ∇a satisfy the condition (3.1).
From a ≤ n it follows Ga ≤ G and Ka ≤ K. Therefore, from Ga(T ) > 0 it

follows G(T ) > 0 and by (3.11) T ∈ Φ+(X,Y ). Similarly, Ka(T ) > 0 implies
T ∈ Φ−(X,Y ).

Now from Lemma 3.13 and Remark 3.3 it follows that ∆a(P )
Ga(A) is a Φ+ per-

turbation function and ∇a(P )
Ka(A) is a Φ− perturbation function.

We say that an operational quantity a is sub-multiplicative if

a(ST ) ≤ a(S)a(T ) for every T ∈ B(X,Y ) and every S ∈ B(Y,Z).

It is not difficult to see that if a is a sub-multiplicative operational quantity such
that a ≤ n, then a is s-increasing and q-increasing. Therefore, from Theorem
3.14, we obtain the following corollary.

Corollary 3.15. Let a be a sub-multiplicative semi-norm such that a ≤ n.
Then the quantities ∆a i Ga satisfy the conditions (3.1), (3.7) and (3.8) for
H = Φ+, while the quantities ∇a i Ka satisfy that conditions for H = Φ−,

and hence ∆a(P )
Ga(A) is a Φ+ perturbation function and ∇a(P )

Ka(A) is a Φ− perturbation

function..

If a = ∥ ·∥χ, ∥ ·∥α, ∥ ·∥µ, ∥ ·∥s, it is well known that a is a sub-multiplicative
semi-norm such that a ≤ n and by Corollary 3.15 it follows that ∆a(P )/Ga(A) is
a Φ+ perturbation function and ∇a(P )/Ka(A) is a Φ− perturbation function.
This also follows from Proposition 3.12 since ker(a) is equal to the set of all
compact operators. We remark that a has the property (3.14). Indeed, if
A ∈ B(X,Y ) and T ∈ B(Y,Z), then since a is sub-multiplicative and a ≤ n,

a(TA) ≤ a(T )a(A) ≤ n(T )a(A) = a(A), a(A) = a(T−1TA) ≤ a(TA),

and so, a(TA) = a(A).
If a = nF , nK , nSS , nCS , then a is a semi-norm, s-increasing and q-increasing

([24] Example 5.2), ([46] Examples 2.2 and 2.12) and a ≤ n, and, according to

Theorem 3.14, it follows that ∆a(P )
Ga(A) is a Φ+ perturbation function and ∇a(P )

Ka(A) is

a Φ− perturbation function.
Since B(Y, Z)H(X,Y ) ⊂ H(X,Z) for H = F,K, SS,CS, it follows that

nH(BA) ≤ ∥B∥nH(A), A ∈ B(X,Y ), B ∈ B(Y,Z). It follows that the quantity
nH has the property (3.14).

Let us mention that if a = ∥ · ∥µ, nK , nSS , then Ga = G and ∆a = ∆, and if
a = ∥ · ∥χ, nK , nCS , then Ka = K and ∇a = ∇ ([38], Summary and discussion,
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Remark 2), ([46], p. 81 and p. 87), ([24], p. 482). Since nK ≤ nF ≤ n, it
follows that G = GnK

≤ GnF
≤ G, K = KnK

≤ KnF
≤ K and so, GnF

= G,
∆nF

= ∆, KnF
= K and ∇nF

= ∇.
In [45] the operational quantities ∆nPΦ+

and ∇nPΦ−
were considered and

the following equivalences were proved for A ∈ B(X,Y ):

∆nPΦ+
(A) = 0 ⇐⇒ A ∈ SS(X,Y ), (3.21)

∇nPΦ−
(A) = 0 ⇐⇒ A ∈ CS(X,Y ). (3.22)

Proposition 3.16. (3.16.1) The operational quantity nPΦ+ is s-increasing on
B(X,Y ) if and only if SS(X,Y ) = P (Φ+(X,Y )).

(3.16.2) The operational quantity nPΦ− is q-increasing on B(X,Y ) if and only
if CS(X,Y ) = P (Φ−(X,Y )).

Proof. (3.16.1): Suppose that nPΦ+ is s-increasing on B(X,Y ). Then

∆nPΦ+
≤ nPΦ+ . (3.23)

Let A ∈ P (Φ+(X,Y )). Then nPΦ+(A) = 0 and from (3.23) it follows that
∆nPΦ+

(A) = 0. By (3.21) we obtain A ∈ SS(X,Y ). Thus P (Φ+(X,Y )) ⊂
SS(X,Y ). According to (1.4) we get SS(X,Y ) = P (Φ+(X,Y )).

To prove opposite suppose that SS(X,Y ) = P (Φ+(X,Y )). Then nPΦ+ =
nSS and since nSS is s-increasing it follows that nPΦ+ is s-increasing.

(3.16.2) can be proved similarly.

Theorem 3.17. ∆nCS (P )/GnCS (A), ∆nPΦ+
(P )/GnPΦ+

(A) and

∆nPΦ−
(P )/GnPΦ−

(A) are Φ+ perturbation functions.

∇nSS (P )/KnSS (A),∇nPΦ+
(P )/KnPΦ+

(A) and∇nPΦ−
(P )/KnPΦ−

(A) are Φ−
perturbation functions.

Proof. The assertions follow from Proposition 3.12, since nSS , nCS , nPΦ+ and
nPΦ− are semi-norms and their kernels contain compact operators according to
(1.4) and (1.5).

We remark that if A ∈ P (Φ+(X,Y )) and T ∈ B(Y,Z) is an isomorphism,
then TA ∈ P (Φ+(X,Z)). Indeed, if B ∈ Φ+(X,Y ), then TA + B = T (A +
T−1B) ∈ Φ+(X), and hence TA ∈ P (Φ+(X,Z)).

Therefore,

nPΦ+
(TA) = inf{∥TA− P∥ : P ∈ P (Φ+(X,Z))}

≤ inf{∥TA− TS∥ : S ∈ P (Φ+(X,Y ))}
≤ ∥T∥nPΦ+(A),

and now, it is easy to see that nPΦ+ has the property (3.14) and so, for A ∈
B(X,Y ),

∇nPΦ+
(A) = sup

V ∈Q(Y )

inf
W⊃V

W∈Q(Y )

nPΦ+(QWA) = sup
V ∈Q(Y )

KnPΦ+
(QV A).

Analogously, nPΦ− also has the property (3.14).
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Theorem 3.18. For H = Φ+,Φl,W+,Wl, let a1 and a2 be operational quan-
tities which satisfy the conditions (3.1) and (3.2). Then if A, P ∈ B(X) and

AP = PA and a1(P
n) < a2(A

n) for some n ∈ N,

there is implication

asc(A) < ∞ =⇒ asc(A+ P ) < ∞.

Proof. Let AP = PA, asc(A) < ∞ and a1(P
n) < a2(A

n) for some n ∈ N and
λ ∈ [0, 1]. Then a1((λP )n) < a2(A

n) and from Theorem 3.1 it follows that
A + λP ∈ H(X) and hence A + λP ∈ Φ+(X). Since A and P commute, from
[13], Theorem 3 it follows that the function λ → N∞(A+ λP )∩R∞(A+λP ) is a
locally constant function on the set [0, 1] and therefore this function is constant
on [0, 1]. As asc(A) < ∞, from [41], Proposition 1.6(i) it follows N∞(A) ∩
R∞(A) = N∞(A) ∩R∞(A) = {0} and hence N∞(A+ P ) ∩R∞(A+ P ) = {0}.
It implies N∞(A+P )∩R∞(A+P ) = {0}, and again by [41], Proposition 1.6(i),
we get asc(A+ P ) < ∞.

The next theorem is a dual part of Theorem 3.4.

Theorem 3.19. For H = Φ−,Φr,W−,Wr, let a1 and a2 be operational quan-
tities which satisfy the conditions (3.1) and (3.2). Then if A, P ∈ B(X) and

AP = PA and a1(P
n) < a2(A

n) for some n ∈ N,

there is implication

dsc(A) < ∞ =⇒ dsc(A+ P ) < ∞.

Proof. From AP = PA, and a1(P
n) < a2(A

n) for some n ∈ N, it follows
A+ λP ∈ H(X), λ ∈ [0, 1], by Theorem 3.1. Therefore, A+ λP ∈ Φ−(X) and
so A′+λP ′ ∈ Φ+(X

′). Since asc(A′) = dsc(A) < ∞, from the proof of Theorem
3.18 it follows asc(A′ + P ′) < ∞, i.e. dsc(A+ P ) < ∞.

Theorem 3.20. For H = Φ+,Φl,W+,Wl,Φ−,Φr,W−,Wr, let a1 and a2 be
operational quantities which satisfy the conditions (3.1) and (3.2). If A, P ∈
B(X) and

AP = PA and a1(P
n) < a2(A

n) for some n ∈ N,

there is implication
A ∈ B(X) =⇒ A+ P ∈ B(X).

Proof. Suppose that a1 and a2 satisfy the conditions (3.1) and (3.2) withH = Φl

(the rest of the cases for H can be proved similarly). Let a1(P
n) < a2(A

n) for
some n ∈ N, AP = PA and A ∈ B(X). From Theorem 3.18 it follows asc(A+
P ) < ∞ and from Theorem 3.1 we get A+P ∈ Φl(X) and i(A+P ) = i(A). Since
i(A) = 0, we have β(A+P ) = α(A+P ) < ∞. It follows dsc(A+P ) < ∞ ([17],
Proposition 38.6 (b)), ([3], Theorem 3.4. (iv)) and therefore, A+P ∈ B(X).
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Corollary 3.21. Let A, P ∈ B(X), AP = PA and nPΦ(P
n) < mΦl

(An) for
some n ∈ N. Then:
(3.21.1) If A ∈ Bl(X), then A+ P ∈ Bl(X).

(3.21.2) If A ∈ B(X), then A+ P ∈ B(X).

Proof. Since nPΦ(P )/mΦl
(A) is a Φl perturbation function, (3.21.1) follows

from Theorem 3.18 and (3.21.2) follows from Theorem 3.20.

Corollary 3.22. Let A, P ∈ B(X), AP = PA and nPΦ(P
n) < mΦr (A

n) for
some n ∈ N. Then:
(3.22.1) If A ∈ Br(X), then A+ P ∈ Br(X).

(3.22.2) If A ∈ B(X), then A+ P ∈ B(X).

Proof. Since nPΦ(P )/mΦr (A) is a Φr perturbation function, (3.22.1) follows
from Theorem 3.19 and (3.22.2) follows from Theorem 3.20.

Corollary 3.23. Let A ∈ B(X).

(3.23.1) If A ∈ Bl(X), then

sBl
(A) ≥ mcomm

Bl
(A) ≥ mWl

(A) = mΦl
(A) ≥ mBl

(A) (3.24)

and
sBl

(A) ≥ lim sup
n→∞

mcomm
Bl

(An)
1
n ≥ lim sup

n→∞
mΦl

(An)
1
n . (3.25)

(3.23.2) If A ∈ Br(X), then

sBr (A) ≥ mcomm
Br

(A) ≥ mWr (A) = mΦr (A) ≥ mBr (A) (3.26)

and
sBr (A) ≥ lim sup

n→∞
mcomm

Br
(An)

1
n ≥ lim sup

n→∞
mΦr (A

n)
1
n . (3.27)

Proof. (3.23.1): Clearly sBl
(A) ≥ mcomm

Bl
(A). Let A ∈ Bl(X), let ∥P∥ <

mΦl
(A) and AP = PA. By Theorem 3.6, the quantities a1 = ∥ · ∥ and a2 = mΦl

satisfy the conditions (3.1), (3.7) and (3.8) with H = Φl, and hence, from Re-
mark 3.3 and Theorem 3.18 we get A+ P ∈ Bl(X). It implies that

mcomm
Bl

(A) ≥ mΦl
(A). (3.28)

Obviously, mΦl
(A) ≥ mBl

(A) and since A ∈ Wl(X), because of the local con-
stancy of the index, it holds mWl

(A) = mΦl
(A). These, together with (3.28),

imply (3.24).
To prove (3.25), recall that f(σBl

(A)) = σBl
(f(A)) for every analytic func-

tion f defined in a neighborhood of σ(A) ([48], Theorem 3.6). Putting f(z) = zn,
n ∈ N, we conclude

sBl
(An) = (sBl

(A))n. (3.29)

From A ∈ Bl(X) it follows An ∈ Bl(X), n ∈ N ([48], Lemma 2.5), and so from
(3.24) and (3.29) we get (3.25).

(3.23.2) can be proved similarly.
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Finally, we set several questions:

If A ∈ Bl(X), does the following hold:

sBl
(A) = mcomm

Bl
(A)?

If A ∈ Br(X), does the following hold:

sBr (A) = mcomm
Br

(A)?

If A ∈ Bl(X), does the following hold:

sBl
(A) = lim

n→∞
mcomm

Bl
(An)

1
n = lim

n→∞
mΦl

(An)
1
n ?

If A ∈ Br(X), does the following hold:

sBr (A) = lim
n→∞

mcomm
Br

(An)
1
n = lim

n→∞
mΦr (A

n)
1
n ?
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University of Nǐs
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