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Abstract

The objective of this paper is to derive formulae for the generalized

Drazin inverse of a block matrix in a Banach algebra A under different

conditions. Let x = i Z } € A relative to the idempotent p € A

and a € pAp be generalized Drazin invertible. The formulae for the
generalized Drazin inverse are obtained under the more general case
that the generalized Schur complement s = d — ca® is generalized
Drazin invertible, which covers the cases that s is Drazin invertible,
s is group invertible or s is equal to zero. Thus, recent results on
the Drazin inverse of block matrices and block—operator matrices are
extended to more general setting.
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1 Introduction

Let A be a complex unital Banach algebra with unit 1 and let a € A. Denote
the spectrum, the spectral radius and the resolvent set of a by o(a), r(a)
and p(a), respectively. The sets of all invertible, nilpotent and quasinilpotent
elements (o(a) = {0}) will be denoted by A~!, A" and A, respectively.
The generalized Drazin inverse of a € A is the element b € A which satisfies

bab = b, ab = ba, a—a’b e AT

If b exists, it is unique and will be denoted by a¢. The set A¢ consists of all
a € A such that a? exists. Koliha [16] studied the generalized Drazin inverse
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in Banach algebras. Harte gave an alternative definition of a generalized
Drazin inverse in a ring [13]. The Drazin inverse is a special case of the
generalized Drazin inverse for which a — a?b € A™. The group inverse is a
special case of the Drazin inverse for which a — a2b € A" is replaced with
a = aba. By a” will be denoted the group inverse of a.

An element p = p? € A is a spectral idempotent of a if

ap = pa € AT at+pe AL

Such an element is unique if it exists and will be denoted by a™ [12, 14, 16,
17]. Recall that a™ = 1 — aa®. For the theory of generalized inverses and its
applications, we refer the reader to [2, 4]. Cline’s formula for the generalized
Drazin inverse can be found in [18].

Let p = p? € A be an idempotent. Then we can represent element a € A

a1l ai12
a = s
a1 Q22

where a11 = pap, a12 = pa(l — p), as1 = (1 — p)ap, aze = (1 — p)a(l — p).

as

Lemma 1.1. [21][22, Theorem 1.6.15] Let A be a complex unital Banach
algebra with unit 1, and let p be an idempotent of A. If x € pAp, then
opap(x)U{0} = o.4(x), where o 4(x) denotes the spectrum of x in the algebra
A, and opap(x) denotes the spectrum of x in the algebra pAp.

Lemma 1.2. [5, Lemma 2.4] Let b,q € A% such that ¢gb = 0. Then
g+be Ami,

Lemma 1.3. Let b € A% and a € AT,

(i) [5, Corollary 3.4] Ifab = 0, then a+b € A% and (a+b)? = Y (bd)"Ham.

n=0

an<bd)n+1 .
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(ii) Ifba =0, then a+b € A% and (a+ b)¢ =

n=0

Specializing [5, Corollary 3.4] (with multiplication reversed) to bounded
linear operators Castro-Gonzélez and Koliha [5] recovered [11, Theorem 2.2]
which is a special case of Lemma 1.3(ii).

The Drazin inverse is very important in various applied mathematical
fields like iterative methods, singular differential equations, singular differ-
ence equations, Markov chains and so on. Under specific conditions many
authors have studied representations for the Drazin inverse [6, 7, 10, 15, 24,
25].



Hartwig et al. [15] gave expressions for the Drazin inverse of a 2 x 2 block
matrix in the cases when the generalized Schur complement is nonsingular
and it is equal to zero. These results are generalized in [19] under different
conditions and the hypothesis the Schur complement is either nonsingular
Or ZE€ro.

In [6], Castro-Gonzalez and Martinez-Serrano developed conditions un-
der which the Drazin inverse of a block matrix having generalized Schur
complement group invertible, can be expressed in terms of a matrix in the
Banachiewicz-Schur form and its powers.

Deng and Wei [9] introduced several explicit representations for the
Drazin inverse of a block—operator matrix with Drazin invertible Schur com-
plement under different conditions.

Let

x:{ZZ]EA (1)

relative to the idempotent p € A, a € (pAp)? and let s = d — cab €
((1 — p)A(1 — p))? be the generalized Schur complement of a in z.

We present explicit formulae for the generalized Drazin inverse of z in
(1) in terms of the generalized Drazin inverse of a and the generalized Drazin
inverse of s. Necessary and sufficient conditions for the existence and the
expressions for the group inverse are obtained too. Thus, we study the
more general case that s is generalized Drazin invertible, which covers the
cases that s is Drazin invertible for linear bounded operators [9], s is group
invertible for complex matrices [6] or s is equal to zero for complex matrices
[15].

The following results will be used in the rest of the paper.

Lemma 1.4. Let x be defined as in (1) and assume that wo = p + a%bs™ca®

is invertible. Then woa?a® is group invertible, (woa’a®)? = a,dwo_1 and

(wa?a®)™ = a™.

Proof. Let us prove that adwg Lis group inverse of wy La2ad. Indeed,

d 1

(woa’a®)(a%wyt) = woaatwy! = (p + a%bs"ca)aa

= (a%a+ a%aa’bs™ca®)wy ! = a®awowy ! = a’a

a%a®a? = (awy ) (woa’a?),

Wo

(woa?a®) (a%wy ) (woa’a®) = woa’a®a?a®a® = woa?a?,

(a%wy ) (woa*a®) (a®wy ) = a%a?ala’wyt = awy?t



implies that (wpa?a?)” = adwo_ ! Spectral idempotent of woa2a® is equal to

(woa?a®)™ = p — (woaa®)(a®wy ') = p — aa = a”. O

d

Lemma 1.5. Let z € A% and u € A be an invertible element. Then u tzu €
A% and (ulzu)? = utadu.

2 Results

In this section, when we say that x is defined as in (1), we assume that z
has a representation as in (1) relative to the idempotent p € A, a € (pAp)?
and s = d — ca®b € ((1 — p)A(1 — p))<.

The following lemma will extend to the generalized Drazin inverse of
Banach algebra elements a well known result concerning the Drazin inverse
of Hilbert space operators, see [8, Theorem 1]. Observe that condition (ii)
of the next lemma which appear in [8, Theorem 1] can be replaced with
equivalent condition (iii).

Lemma 2.1. Let z be defined as in (1). Then the following statements are
equivalent:

(i) = € A? and x% = r, where

d,..d d

a® + a%bstcat —adbs?
r= :
—s%ca s ’

aa”™ a"b ;
(ii) a™bs? = a%bs™, s"ca® = slca™ and y = sTeq™ ss™ | € Al ;
aa™ bs™ ;
(iii) a™b=bs", s"c=ca™ and y= [ oo ] € Amil,
ca™  ss

Proof. (i) < (ii): We can verify that rar = 7. Since a™bs? = a?bs™ and

s"ca® = sca™ imply a"bs?ca? = a%bs?ca™, by elementary computations,
we observe that zr = rz if and only if a™bs? = a%bs™ and s"ca® = s%ca™.
. 9 p —ab p a% 9
Now, we can obtain z —x“r = Y and r(x —x°r) =
0 1—-p 0 1-p

0 1-p 0 1—-p
to y € AL,

(ii) <> (iii): First, we check that a™bs? = a?bs™ is equivalent to a™b = bs™.
If we multiply the equality a™bs? = a®bs™ from the right side by s and from

d _.d .
A[p " Hp - b]w:r(y). Hence,  — 2% € A™ is equivalent



the left side by a, respectively, we get a"bs%s = 0 and aabs™ = 0. So,
bsts = aa®bs?s = aa®b and

a™b=b— aah=b— bs?s = bs™.

On the other hand, a™ = bs™ gives (a™b)s? = bs"s? = 0 and a?(bs™) =
a%a™b = 0. Hence, a™bs? = a%bs™.

Similarly, we can prove that s"ca® = s%ca™ is equivalent to s™c = ca™.
Thus, we deduce that (ii) < (iii). O

Remark. Using Lemma 2.1, if z is defined as in (1) and r is defined as
in (2), then z € A* and 27 = r if and only if a € (pAp)*, s € (1 —p)A(1—
p))#, a™ = 0 = bs™ and s"c = 0 = ca”™. This results is well-known for a
complex matrix [3, Theorem 2] (see also [6, Corollary 2.3]). The expression
(2) is called the generalized Banachiewicz—Schur form of z. For more details
see [1, 3, 6, 8, 15, 23].

Now we present a formula for the generalized Drazin inverse of block
matrix z in (1) in terms of the generalized Drazin invertible Schur comple-
ment s. We extend [9, Theorem 7] concerning the Drazin inverse of 2 x 2
block-operator matrix to more general setting.

Theorem 2.1. Let x be defined as in (1). If

ca™bss? = 0, aa™bss? = 0, s8¢ =0, a™bs™c = bs"caa® = 0,

3)

then x € A? and

d__ 0 a™b = nt1| O bsT aa™ bs™ "
v <[ s"c s"d r+l)r 1+n§:0r ca™ ds™ ca™ ds” ’
where 1 is defined as in (2).

Proof. Notice that, by a™ + aa® = p and s™ 4+ ss? =1 — p,
[ aa™ bs™ ] [ a’a®  bss?
Tr =

ca™ ds™ caa® dss?

} =Y+ =z

From a%a™ = 0 = s7s%, d = s + ca’b, bs"ca® = (bs"caa®)a® = 0 and (3), we
get yz = 0.
To prove that y € A% we observe that

_ aa™ a"bs™ + 0 0 N 0 aa®bs™
vy = 0 ss™ sTca™  s"cabs™ sstca™  ssdds™
= Y1t Y2+ ys.



. o ai 0 o )\p —a 0
Recall that if u = [ e by } , then \1 —u = e A1-p)— b
and
A € ppap(a1) N pa—p)aa—p)(b1) = A€ p(u),
ie.

o(u) C opap(ar) Uoa_p)aa—p)(b1)-

Since aa™ € (pAp)?™ and ss™ € ((1 — p)A(1 — p))®™ we deduce that
y1 € AT By r(s"ca®bs™) = r(bs"ca?) = r(0) = 0 and o 4(s"ca%bs™) =
o(1—pyA(1—p) (sTca’ds™) U {0} (Lemma 1.1), yo € A We can check that
y1y2 = 0 which gives that y; + y» € A?, by Lemma 1.2. Also, by Lemma
1.2, y2 =0 (i.e. y3 € A™) and (y1 + y2)y3 = 0 imply y € AL,

In order to show that z € A%, we write

L aq® aa®bss? 0 a™bss® — o 42
T | ss%caa  ss@dss? sTcaa® sTdss? | T LT
3 — 2 _ _ AZl le
We can verify that 21290 = 0 and 25 = 0. If 2; = , we note
C, DZ1

that A., = a2a? € (pAp)#, (a2a®)# = a?, S., = D., — C., AZB., = s?s ¢
(1 —p)AQ — p))* and (s2s9)# = s%. Using Lemma 2. 1 we have z; € A?
and 2¢ = r. Further, by Lemma 1.3, z € A% and 2% = 2¢ + 25(2¢)%.
Applying again Lemma 1.3, we conclude that = € A% and

xd _ Z(Zd)n+1yn _ (1 + Z2Z1 (1 + Z n+1 n—l—l) )

n=0

d
Then, observe that z{ =7 =r [ @ Od } = [ 0 S(S)d } T
d __ 0 a™b _
221 = | e g7d 0 | sTc s’rd

and

yield (4). O

The condition of Theorem 2.1 are cumbersome and complicated, but the
theorem itself have a number of useful consequences.

By Theorem 2.1, we obtain the following corollary which recovers [6,
Theorem 2.5] for the Drazin inverse of complex matrices.



Corollary 2.1. Let x be defined as in (1), a € (pAp)* and let s € ((1 —
p)A(l —p))*. If ca™ =0 and bs™ = 0, then x € A% and

gl | P a"bs*ca®  a"bs? a” + a*bs*ca® —a?bs”
a s"ca# 1—p —s#ca® s

If we assume that the generalized Schur complement s is invertible in
Theorem 2.1, then s™ = 0 and the next corollary which covers [15, Theorem
3.1] follows.

Corollary 2.2. Let x be defined as in (1), and let s € ((1 —p)A(1 —p))~L.
If ca™b =0 and aa™ = 0, then x € A? and

d_ 0 a™b > n+1 0 0
x —<[0 0 ri+1]7r 1—1—27’1 caa™ 0 ,

n=0

a® + a%bstca® —abs!
—s e s1 ’

where r1 = [

In the following result we introduce the other expression for the gen-

eralized Drazin inverse of x which include an invertible element wg = p +

abs™cal.

Theorem 2.2. Let x be defined as in (1). If

ad™—a"bs%ca™ =0, sTca™ =0, ca™b=0, a"bs" =0, ss"c=0=bss"

(5)

and wy = p + a®bs™ca® is invertible, then x € A and
d_ 0 a™b 0 bs™
% = <[ e s7d | 7T Twrw | 1+7r ca™  dsT , (6)

wyt 0
where r is defined as in (2) and w = { 0 } .
p
d

ab
sle (1 —p)+ sleadd
1_ [ p+absic —adb ]

Proof. First, we observe that u = [ ] is invertible in

A and its inverse is u™" = d
—s% 1—p



1

Let us denote X = uxu™", so we have

[ A B _ -1

X = ¢ D ] = uTu
_ [ p a a b p+ a®bslc —adb
| st (1—p)+scad d —sc (1—p)
T a —a™bstc + a%bs™c a™b + abs
| s"e+ ste(a— a™bs¥e + a%bs™c) s+ slc(a™b + adbs)

The first and the third conditions from (5) give us equations caa™ = 0

and aa™b = 0. The second condition implies s™caa® = s™c.

Applying these equations along with a = aa™ + a?a?, we have
= a—a"bs?c+ a%bsTc = woa’al + aa™ — a"bs’e,

a™b 4+ abs,

s™c+ stc(a — a"bs?c + albs™c) = s™c + stcwga’al,
s + s%c(a™b + a%bs) = s + s?cabs.

TaQawm e
I

From Lemma 1.4, we have woaa? € (pAp)#, (woa’a®)# = a%wy' and

(wa?a®)™ = a™. Further,

(aa™ — a™bs%c)? = (aa™ — a™bs%ca™)a — aa"bs?c + a"bs?ca™bslc = 0
implies (aa™ — a"bs’c) € (pAp)™ C (pAp)®™¥ and it holds
woa’a’(aa™ — a™bs’c) = 0.

Applying Lemma 1.3 (ii), we conclude that A € (pAp)¢ and

A = (woa?a®)? + (aa™ — a™bs’c)((woaat)?)?
= (p—a"bs%cawyatwy !
Since wpaa? = aa%wg implies (wpa’a?)(a%wy') = aa? and it holds
a%wy ta™ = (woa?a®)# (woa?a®)™ = 0, we have

A™ = p— AAY
d., d

= p— (woa’a® + aa™ — a’rbsdc) (p — a"bs%ca®wy ) atwy

= p— woaQadadw —aa”a? wy L4 a™bstea wol

+ wpa adawbsdcadw 1adwo +aa“bsdcadw0 1adwo

— a"bs ca”bsdcadwo ladwo

= a" +a"bs cadw

1



Notice that AA™ = 0. Therefore, Al = A,

Now,

S = D—CA#*B = s+ s%as

— (8¢ + stcwpaa®)(p — a™bs ca®wy M) a%wy (@b 4 albs)

= s+ stcalbs — (s"c+ s cw0a2ad)adw Ladbs

= s+ s%a’bs — s cadwo Laps — sdcwoa2adadw0 Ladps

= s—3s5 cadwo Laps.
Since
€((1-p A1 —p))? (sTca’wyabs)? =0, s(s"ca’wya%bs) =0,
applying Lemma 1.3 (ii), we have that S € ((1 — p)A(1 — p))¢ and
54 =515 cadw Ladbsd,

Then,
S™ = (1—p)— SS% = 5" + s"ca’wy *a¥bss’.

The following equations hold
CA™ =0, BS™=0, AA™ =0, SS™C =0,

which implies that X satisfies the conditions (3) from Theorem 2.1. Using
this Theorem, we conclude X € A% and

x4 — ([ SSC ‘;Wg]RJrl) R,

R A#* + A BSICA* —A#BS?
- —SdCA# 54

where

Then, applying Lemma 1.5 on z = v~ ' Xu we have

d_ , —1yd _ -1 0 A™B
' =u " Xu=u <[Sﬂc ST R+1) Ru.



Observe that

|

|

T — A#* 0 p+ BSICA# —BS¢ P a’b
o0 s —~CA* (1-p) sle (1 —p)+ slcadd |
Since
p+ BSYCA* —BS4 D a’b _
—~CA* (1—-p) sle (1—p)+sla®d |
P+ a”b(sd)Qcaad + a%bs?caa? —a™bs? — a¥bss? D a’b
—s"ca%wyt — stcaal (I1-p) sl (1 —p)+ slca®d
[ p—a"b(s?)?ca™ — dbsdca” a®bs™ — a™bs?
N —s"calwy !t + stca™ (1 —p) — s™cawyta®d |
we have
[ A* 0 ] a™b(s%)%ca™ — albsica™ abs™ — 7Tbs
Ru =
0 S| —s"calwy ! + sca™ (1 —p) — s™cawy 'adb
_ A#* 0 V[ p—a®bsica™ a%bs™
o st slca™ (1-p)
n [ A% 0 ][ —a"b(s%)2ca™ —a”bs
0 S| —s"calwyt —s"ca%wy ta®d
A% 0] 14 —a%bslca™ albs™
10 S | slca™ 0
L (p — a™bs?ca%wy M) atwy ! 0
| 0 (1 —p) — s™cawy *alb)s?
y —a™b(s%)?c —a™bs?
| —s cadw -5 cadw Yadp
- a® + a%bs?ca®  —abs? 0 bs™ n 0 0
N O —s%ca? 54 ca™ ds” 0 0
STI'
-1 } (1 ool a )
We can write
A#* 0 [ p- cfrbsdcadwo_1 0
0 9 - 0 (1 —p) — s™catwy *adbss?
[a? 0 1 [wy' 0
X
0 s 0 (1-p)
_ [ p— afrbsdca"lwo_1 0 a® 0 w
N 0 (1 —p) — s"ca%wy 'a?bss? 0 s? '




Therefore,

Ry — p— a”bsdcadwo 0
0 (1 —p) — s™ca%wy tadbss? 0 s

o« 14 0 bs™
" ca™ ds™

0  bs” : a 0][a 0
DenoteM—w<1+r[ca7T ds™ ]).Notlcer[o 8][0 d]—r-

s
Using the equation a%wy * (p+a?bs?ca’a) = a®wy ' (a + a%bs?ca?)a, we have

. 0 A™B
z¢ = u <[S“C S“D]R+1>

p—a”bs cadw 0 a® 0
M
8 [ 0 (1 —p) — s™ca%wy tadbss? 0 s4
_ p— ATBSICA#* ATBSY
N STC A* (1-p)
[ p— a’rbsdcadw 0 a® 0
M
8 I 0 (1 —p) — s™ca%wy tadbss? 0 s¢
= u_l
" [ p—a™b(s%)2caa® — a"bs?ca®wy tatbsicaad  a™bs? + a"bsdcatwy tatbss?
I sca%wy H(a? + atbstcat)a (1—p)
[ p— a"bsca’ wy, . 0 a® 0
M
% I 0 (1 —p) — s™ca%wy ta¥bss? 0 s
= u_l
" [ p—a™b(s%)2caa® — a™bs¥ca%wy (a? + atbsica®)a  a™bs? + a"bs?cal wo Ladpsst
s™ca%wy H(a? + a%bsicat)a (1 —p) — sca%wy ta¥bss?
o -
a® 0
X - 0 Sd ] M
_ w14 [ —a”bsdcadwo a™bs? (a? + a%bsca)a  —abss
N i s”cadwo ! 0 —slcala sls
J -
a® 0
X [ 0 s | M
[ Thed,qd Thed —1
— w14 absdca a"bs w 0 . a 0
| sTca 0 0 (1-p) 0 s
J -
a® 0
X [ 0 s | M

11



. p+absic  —adb a® 0
N —slc (1-p) 0 s¢
[ 0 a™ we' 0 a 0][a® 0
o {s’rc s’rd]r[ 0 (1-p) "lo s 0 s? M

p+a®bslc —a 0 a™b
T { —sc (1-p) st¢ smd | M

[ wy 0 a%bs?e —adb 0 a™b
| 0 (1—p)}+<[ —slc 0 1 st s7d | wrM

(
(
N T ) M U ey
(
(

| 0 (I-p 0 0

r Al T Apd AT ad T
p+a(;)sca <1Ep)]+[ a®bs™ca 0}4_[2 ab]r)wrM

1+{2 aﬂb]r)wrM.
s"c s™d

Replacing M, we get (6). O

0 0

If s € ((1 —p)A(1 —p))* in Theorem 2.3, then ss™ = 0 and we recover
as a special case [9, Theorem 9]. If s € ((1 —p).A(1 —p))~! in Theorem 2.3,
we get the following consequence.

Corollary 2.3. Let z be defined as in (1), and let s € ((1—p)A(1—p))~L.
If aa™ — a™bs 'ca™ = 0 and ca™b = 0, then x € A% and

d_ 0 a™b 0 O
T —([0 0 ri+1)ri(1+m ca™ 0 ,

where 11 is defined as in Corollary 2.2.

We give a representation of 2¢ in the next theorem under conditions
a™ =0 and s"caa® = 0.

Theorem 2.3. Let x be defined as in (1). If a™b =0 and s™caa® = 0, then
z € A? and

> dpod,. © dpm 7 n
d _ ntl —a®bs%ca™ a%bs aa 0
SV O I | P

where r is defined as in (2).

12



Proof. By the assumption a™ = 0 and s™caa®? = 0, s™ca? = 0 and we can
write

S aa™ a”"b n a?a aad ] [ aa™ 0 n a’a? aalb
- sTc s™d sste ssid |~ | sT¢ sTs sste  sstd
= y+z

Now, we obtain that yz = 0 and y € A% because aa™ € (pAp)?™" and
ss™ € ((1—p)A(L - p)).
To prove that z € A%, we observe that

d d dcafr SdeSﬂ-

aq® aa®bss? 0 aa®bs™
ss@eaa®  sstdsst ss

} = z1 + 29.
From Lemma 2.1, we have z; € A% and z‘f = r. Since z9z1 = 0 and z% =0,
by Lemma 1.3(i), z € A? and 2% = 2§ + (2§)%20 = r + 122,.
o0
Therefore, using Lemma 1.3(i), € A% and 2¢ = Y v (1 + rzo)y”
n=0

which gives (7). O

Also we can obtain the following expression for the generalized Drazin
inverse of block matrix x.

Theorem 2.4. Let x be defined as in (1). Ifa™b = 0 = bs™ and s™scaa® = 0,
then z € A? and

d _ 0 0 > n+1 0 0
z —<[Sﬂc Sﬂd]r+1>r<1+§%r caa™ 0 , (8)

where r is defined as in (2).

Proof. In the similar way as in the proof of Theorem 2.1, using the following
decomposition

_— aa™ O n a?a?  bss? =yt 2
- G ™ caad dss? | T YTA

we verify this result. O

Using Theorem 2.3, we get necessary and sufficient conditions for the
existence and the expression of the group inverse of . The following result
recovers [9, Theorem 12] and [6, Theorem 2.2].

13



Theorem 2.5. Let x be defined as in (1). Suppose that a™b = 0 and
s"caa® = 0. Then

x € A" if and only if a € (pAp)*, s € ((1—p)A(1l—p)* and s"ca™ = 0.

Furthermore, if a € (pAp)*, s € (1 — p)A(1 —p))*, a™b =0 and s™c = 0,
then

o a? + a*bstca® —a¥bs? p — a#bs#ca™  a¥bsT ()
- —s*ca® s# s#eca”™ 1—p |~

Proof. If x € A%, by Theorem 2.3, ™ is equal to the right hand side of (7).

d
Since zr? = (xr)r = [ ag sgd } r =1, then
dped T dp T
0 # 2 —a®bs®ca™  a“bs
z°x 1:1“<1+[ g™ 0 })

n aa® 0 14 —a%stca™  abs™ aa™ 0
0 ss? slea™ 0 sTc SsTs
et di,.d . T d1, T n
n_1 —abs%ca™ a%bs aa 0
+ X;T <1+ [ stea™ 0 }) [ s"c s"s ]
n=

= L+ L+1s.

By the equality 2 — 2227 = 0, we obtain Is = 2 — I} — I,. Now, notice that
dyod . T
# _ —a®bs®ca
T T <1+ [ dpgm })
_ db d
e G Il N PR R
s"c s"s

s%ca™
_dp.d,.,T
= r<1+[ adbs;:a })+r2xh
sca

_ (14 —a%bsiea™
stea™
Hence,
2 4 a’a® 4+ a"bs%ca™  aa’bs™ + bss?
Tir® =
caa® + sstea™ ca’b + s2s?
_ aa® bs™ + bss? _ a2q® b
o ssbcaa® + ss@ca™ d—s+s2s¢ | T | sstc d— s+ s2sd
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and z227 = x imply a?a? = a, s?s? = s and ss? = c. So, a € (pAp)”

s€ ((1-p)A(l —p))¥ and s"ca™ = ca™ — ca™ = 0.

Assume that a € (pAp)*, s € ((1 — p)A(1 — p))* and s"ca™ = 0.
Then s"c = s™ca™ + s"caa™ = 0. Denote by u the right hand side of
(9). Using Theorem 2.3, we get that 2 € A% and 2% = u. We can show that
zz%r = zuxr = x which implies that z € A# and 2% = u. ]

Applying Theorem 2.4, we prove the next result related to the group
inverse % which is an extension of [9, Theorem 13].

Theorem 2.6. Let x be defined as in (1). Ifa™b = 0 = bs™ and s™scaa® = 0.
Then

z e A" if and only if a € (pAp)?, s e (1—p)A(1l—p)* and s"ca™ = 0.

Furthermore, if a € (pAp)*, s € (1 — p)A(1 — p))#, a™b = 0 = bs™ and
s"ca™ =0, then

m#:([sgc Sgd]r+1>r<1+r[cgﬂ 8]), (10)

where 1 is defined as in (2).

Proof. Let x € A#. Using Theorem 2.4, z# is equal to the right hand side
0 0 0 0

of (8). From [ caa™ 0 } x = [ ca g™ 0 }, we get

e = (| 0 SSd:rH)r(szﬂ[mnE” gD

([ 2 2]r) <m+z il gD

3 2L )
(L2 Sl (ot 2] Lot b))
( ([

+Zrn+1[ g])

_|_

r

r+1
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ca
d (o]
2 H# # aa 0 n+1 0 0
r=x"x" =zxx x—x{ 0 Ssd}—i-xgor [Canaﬂ 0
n=
x, 0 0 aa 0 a0
n+1 — _ = i
So xngor [ca”a“ O}x x[ 0 ssd} x[ 0 SW].Bythls

equality and the equation rxr = r, we obtain

#o_ 0 0 ] n+1 0
z? = ( $Te s“d_r+1 r(l—l—Zr [ 0])

Il
S/ N 7 N /N
3 O
(@]
<
+
—

implying

aa 0 —abstca™ 0
-7 [ scad  ss? } <1 + [ stea™ 0 })
[ a%a® bss? ] dbs ca™ 0
- caa® dss? | <1 { stea™ 0 ])
n [ —aa®bsca™ + bs?ca™ 0 ]

o caa®  dss? ] —ca®bsca™ + dstca™ 0

_ [ a2ad bssd_+ 0 0] a2a® b
- caa®  dss? ] ssea™ 0| | c—sTca™ d—ss™ |’

Because z2z# = z, we deduce that a?a? = a, ss™ = 0 and s"ca™ = 0 which

yield a € (pAp)#, s € (1 — p)A(1 — p))# and s™ca™ = 0.

Suppose that a € (pAp)*, s € (1 — p)A(1 —p))* and s7ca™ = 0. Thus
a™a™ = 0 for all n > 1. If we denote by v the right hand side of (10), by

16



Theorem 2.4, z € A? and 2% = v. Since zz

dy = zraz =z, then z € A# and

¥ = . O

In the recent past EP Banach algebra elements were studied, in other
words, elements of an algebra such that they commute with their Moore-
Penrose inverse, see [20]. It seems as a nice problem finding representations
of EP block matrices.
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