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RIGHT AND LEFT FREDHOLM OPERATOR MATRICES

Dragan S. Djordjević and Milica Z. Kolundžija

Abstract. We consider right and left Fredholm operator matrices of
the form

[

A C
T S

]

, which are linear and bounded on the Banach space
Z = X ⊕ Y .

1. Introduction

Let Z be an infinite dimensional Banach space, such that Z = X ⊕ Y for
some closed subspaces X and Y . This sum will be also denoted by [XY ]. If W
is a finite dimensional subspace of X , then dimW denotes its dimension. If
W is infinite dimensional, then we simply write dimW = ∞. However, if U
is a closed subspace of a Hilbert space, then dimH(U) denotes the orthogonal
dimension of U .

Let L(X,Y ) denote the set of all linear bounded operators from X to Y .
We abbreviate L(X) = L(X,X). The set of all finite rank operators from X to
Y is denoted by F(X,Y ). For A ∈ L(X,Y ) we use R(A) and N (A) to denote
the range and the null-space of A, respectively.

If Z = X ⊕ Y , then any M ∈ L(Z) can be decomposed as the following
operator matrix

M =

[

A C
T S

]

:

[

X
Y

]

→

[

X
Y

]

for some A ∈ L(X), C ∈ L(Y,X), T ∈ L(X,Y ) and S ∈ L(Y ). On the
other hand, any choice of A,C, T, S (linear and bounded operators on the
corresponding subspaces), produces a linear and bounded operator M on the
space Z. Moreover, M is finite rank if and only if all A,C, T, S are finite rank
operators.

If A and C are fixed, then we use the notation M(T,S) to show that M
depends on T and S. For given A and C, we are interested to find T and S,
such that M(T,S) is right or left Fredholm operator.
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For this purpose we need to review some properties of right and left Fred-
holm operators [9]. An operator A ∈ L(X,Y ) is right Fredholm, if def(A) =
dimY/R(A) < ∞, and N (A) is complemented in X . Notice that if A is right
Fredholm, then it follows that R(A) has to be a closed and complemented sub-
space of Y . The set of all right Fredholm operators from X to Y is denoted
by Φr(X,Y ). It is well-known that A ∈ Φr(X,Y ) if and only if there exist
B ∈ L(Y,X) and F ∈ F(Y ) such that AB = IY + F holds.

An operator A ∈ L(X,Y ) is left Fredholm, if nul(A) = dimN (A)
< ∞, and R(A) is closed and complemented in Y . The set of all left Fred-
holm operators from X to Y is denoted by Φl(X,Y ). It is well-known that
A ∈ Φl(X,Y ) if and only if there exist B ∈ L(Y,X) and F ∈ F(X) such that
BA = IX + F holds.

If A ∈ Φr(X,Y ) and B ∈ Φr(Y, Z), then BA ∈ Φr(X,Z). The similar
result holds for the class Φl. The set of Fredholm operators is defined as
Φ(X,Y ) = Φr(X,Y ) ∩ Φl(X,Y ).

We formulate the following well-known results.

Lemma 1.1. Let X,Y, Z be Banach spaces and let A ∈ L(X,Y ), B ∈ L(Y, Z).
If BA ∈ Φ(X,Z), then the following holds: A ∈ Φ(X,Y ) if and only if B ∈
Φ(Y, Z).

Lemma 1.2. Let X,Y be Banach spaces, and let A ∈ Φr(X,Y ), P ∈ F(X,Y ).
Then A+ P ∈ Φr(X,Y ). The analogous result holds for classes Φl and Φ.

Lemma 1.3. Let M1,M2 and N be the vector subspaces of the vector space

X. If M1 ⊆ M2, then dimM1/(M1 ∩N) ≤ dimM2/(M2 ∩N).

Properties of right (left) Fredholm and related operators can be found in
[6] and [9]. For the importance and applications of operator matrices we refer
to [1], [2], [3], [4], [5], [7], [8] and [10]. Particularly, this paper is related to
the research in [4] and [7], where the left and right invertibility of M(T,S) is
considered.

2. Right Fredholm operators

We consider right Fredholm properties of M(T,S).

Theorem 2.1. Let A ∈ L(X) and C ∈ L(Y,X) be given. The following

statements are equivalent:

(a) [A C] ∈ Φr(X ⊕ Y,X) \ Φ(X ⊕ Y,X), and there exists an operator

J ∈ Φl(Y,N ([A C]) \ Φ(Y,N ([A C])).
(b) M(T,S) ∈ Φr(X⊕Y ) \Φ(X ⊕Y ) for some T ∈ L(X,Y ) and S ∈ L(Y ).

Proof. (a) =⇒ (b): Suppose that [A C] ∈ Φr(X ⊕ Y,X) \ Φ(X ⊕ Y,X).
It follows that N ([A C]) is infinite dimensional. By the assumption, there
exists an operator J ∈ Φl(Y,N ([A C]) \ Φ(Y,N ([A C])), so N (J) is finite
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dimensional and N ([A C])/R(J) is infinite dimensional. The operator J has
the form

J =

[

E
G

]

: Y →

[

X
Y

]

.

Since R(J) is closed and complemented in N ([A C]), and N ([A C]) is
closed and complemented in X⊕Y , we obtain that there exist closed subspaces
V and W such that N [A C]) = R(J) ⊕ V and X ⊕ Y = N ([A C]) ⊕W =
R(J)⊕ V ⊕W . Notice that V is infinite dimensional.

There exists a closed subspace Y1 such that Y = N (J) ⊕ Y1. Now, the
reduction operator J : Y1 → R(J) is invertible, so let K1 : R(J) → Y1 denote
its inverse. Define the operator K ∈ L(X ⊕ Y, Y ) in the following way:

Kx =

{

K1x, x ∈ R(J),

0, x ∈ V ⊕W.

Then K ∈ L(X⊕Y, Y ) is a right Fredholm operator, such that N (K) = V ⊕W .
The operator K has the matrix form

K = [T S] :

[

X
Y

]

→ Y.

We also have

(1) KJ = [T S]

[

E
G

]

= IY − P1,

where P1 is the projection from Y onto the finite dimensional subspace N (J),
parallel to Y1.

From R(J) ⊂ N ([A C]) we get that

(2) [A C]

[

E
G

]

= 0.

Since [A C] ∈ Φr(X ⊕ Y,X), we have the following decompositions of
spaces: X ⊕ Y = N ([A C]) ⊕ W and X = R([A C]) ⊕ U , where U is
finite dimensional. Since the reduction [A C] : W → R([A C]) is invertible,
define L1 : R([A C]) → W to be its inverse. Then consider the operator
L ∈ L(X,X ⊕ Y ), which is defined as follows:

Lx =

{

L1x, x ∈ R([A C])

0, x ∈ U.

The operator L has the matrix form

L =

[

D
F

]

: X →

[

X
Y

]

.

Then L ∈ Φl(X,X ⊕ Y ), R(L) = W , and

(3) [A C]L = [A C]

[

D
F

]

= IX − P2,
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where P2 is the projection from X onto the finite dimensional subspace U ,
parallel to R([A C]). Since N ([T S]) = V ⊕W , we conclude that

(4) [T S]

[

D
F

]

= 0.

Finally, from (1), (2), (3) and (4), we get that for M = [A C
T S ], N = [D E

F G ] the
following holds:

(5) MN =

[

A C
T S

] [

D E
F G

]

=

[

IX 0
0 IY

]

+

[

−P2 0
0 −P1

]

.

Since
[

−P2 0
0 −P1

]

is finite rank, we conclude thatM is right Fredholm. Moreover,
we notice that

N (M) = N ([A C]) ∩N ([T S]) = V,

R(N) = R

([

D
F

])

+R

([

E
G

])

= W ⊕R(J),

X ⊕ Y = R(J) ⊕ V ⊕W.

Since V is infinite dimensional, we obtain that both M and N are not Fredholm
operators.

(b) =⇒ (a): Suppose that there exist some T ∈ L(X,Y ) and S ∈ L(Y ) such
that M(T,S) ∈ Φr(X⊕Y )\Φ(X,Y ). Then there exist operators N ∈ L(X⊕Y )
and P ∈ F(X ⊕ Y ) such that MN = I + P . The last equality holds in the
matrix form as follows:

[

A C
T S

] [

D E
F G

]

=

[

IX 0
0 IY

]

+

[

P11 P12

P21 P22

]

,

where all Pij are finite rank operators. It also follows that N = [D E
F G ] ∈

Φl(X ⊕ Y ).
In particular, we obtain

[A C]

[

D
F

]

= IX + P11,

so [A C] is right Fredholm. The operator IX +P11 is Fredholm. If we suppose
that [A C] is Fredholm, by Lemma 1.1 it follows that [DF ] is also Fredholm.
Since

R

([

D E
F G

])

= R

([

D
F

])

+R

([

E
G

])

⊃ R

([

D
F

])

,

it follows that [D E
F G ] belongs to Φr(X ⊕ Y ), so [D E

F G ] is Fredholm. By Lemma
1.1 again, we obtain that [A C

T S ] is Fredholm (since I + P is Fredholm from
Lemma 1.2). The last statement is not possible, so we obtain that [A C] ∈
Φr(X ⊕ Y,X) \ Φ(X ⊕ Y,X).

Denote with L = [EG ] ∈ L(Y,X ⊕ Y ). We have [T S]L = IY + P22, so
L ∈ Φl(Y,X ⊕ Y ) \Φ(Y,X ⊕ Y ). Otherwise, if L is Fredholm, then also [D E

F G ]
is Fredholm, so [A C

T S ] is Fredholm.
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Since we have the following decomposition of spaceX⊕Y = N ([A C])⊕W ,
the operator L has the matrix form

L =

[

J
K

]

: Y →

[

N ([A C])
W

]

.

From the fact that

R(P12) = R([A C]L) = R

(

[A C]

[

J
K

])

= [A C](R(K))

is a finite space and the reduction [A C] : W → R([A C]) is a bijection, we
obtain that R(K) is a finite dimensional subspace of W .

Since L ∈ Φl(Y,X⊕Y )\Φ(Y,X⊕Y ), we have the following decompositions
of spaces Y = N (L) ⊕ U and X ⊕ Y = R(L) ⊕ U1, where dimN (L) < ∞
and dimU1 = ∞. The reduction operator L : U → R(L) is invertible, so let
L1 : R(L) → U be its inverse.

As it was shown, R(K) is a finite dimensional subspace, so Y1 = L1(R(K))
have to be a finite dimensional subspace of U and there exists a closed subspace
Y2 such that U = Y1 ⊕ Y2.

Now, the operator L has the following matrix form

L =

[

J 0 0
0 K 0

]

:





Y2

Y1

N (L)



 →

[

N ([A C])
W

]

,

where Y1 is finite dimensional. We obtain that N (J) = Y1⊕N (L), so dimN (J)
< ∞.

From the fact that [T S]L = IY + P22 follows that

L1(N ([T S]) ∩R(L)) ⊆ N (IY + P22).

Since IY + P22 is a Fredholm operator, we have that L1(N ([T S]) ∩R(L)) is
finite dimensional, so N ([T S]) ∩R(L) is also a finite dimensional subspace.

Denote with V = N ([A C]) ∩ N ([T S]) ∩R(J). Further,

V ⊆ N ([T S]) ∩R(J) ⊆ N ([T S]) ∩R(L),

so it follows that dimV < ∞. Then, there exists a closed subspace V1 such that
N (M(T,S)) = N ([A C]) ∩ N ([T S]) = V ⊕ V1. Since N (M(T,S)) is infinite
dimensional, then V1 is also an infinite dimensional subspace.

Now, applying Lemma 1.3 on the spacesN ([A C])∩N ([T S]), N ([A C])
and R(J), we obtain

dim V1 = dim(N ([A C]) ∩ N ([T S]))/V ≤ dimN ([A C])/R(J).

We conclude that dimN ([A C])/R(J) = ∞.
Lastly, we proved for the operator J : Y → N ([A C]) that dimN (J) < ∞

and dimN ([A C])/R(J) = ∞.
So, there exists the operator J ∈ Φl(Y,N ([A C]) \ Φ(Y,N ([A C])). �
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3. Left Fredholm operators

Now we investigate the left Fredholm properties of M(T,S). We consider two
separate cases according to the dimension of Y .

Theorem 3.1. Let X be infinite dimensional, and let Y be finite dimensional.

For given A ∈ L(X) and C ∈ L(Y,X), the following statements are equivalent:

(a) M(T,S) ∈ Φl(X ⊕ Y ) \ Φ(X ⊕ Y ) for every T ∈ L(X,Y ) and every

operator S ∈ L(Y );
(b) A ∈ Φl(X) \ Φ(X).

Proof. Before the proof of the equivalence, note that

N

([

A 0
0 0

])

= N (A) ⊕ Y, R

([

A 0
0 0

])

= R(A) ⊕ {0}.

Since Y is finite dimensional, we have that A ∈ Φl(X) \ Φ(X) if and only if
[A 0
0 0 ] ∈ Φl(X ⊕ Y ) \ Φ(X ⊕ Y ).
(a) =⇒ (b): Suppose that M(T,S) is left Fredholm but not Fredholm, for

every T ∈ L(X,Y ) and every S ∈ L(Y ). We have that [A 0
0 0 ] = [A C

T S ]+
[

0 −C
−T −S

]

where
[

0 −C
−T −S

]

is a finite rank operator. Applying Lemma 1.2, we obtain that

[A 0
0 0 ] is a left Fredholm operator.
Suppose that [A 0

0 0 ] is Fredholm. Applying Lemma 1.2 to [A 0
0 0 ] we conclude

that M(T,S) has to be Fredholm, which does not hold. Hence, [A 0
0 0 ] is left

Fredholm but not Fredholm, so we have that A ∈ Φl(X) \ Φ(X).
(b) =⇒ (a): Suppose that A is left Fredholm but not Fredholm, so the

operator [A 0
0 0 ] is also left Fredholm but not Fredholm.

Let T ∈ L(X,Y ) and S ∈ L(Y ) be arbitrary operators. Then the operator
M(T,S) is a finite-rank perturbation of [A 0

0 0 ]. Indeed, [A C
T S ] = [A 0

0 0 ] + [ 0 C
T S ],

where [ 0 C
T S ] is a finite rank operator because Y is a finite dimensional space.

Applying Lemma 1.2 to [A 0
0 0 ] we get that M(T,S) is a left Fredholm operator.

If we suppose that M(T,S) is Fredholm, from Lemma 1.2, we conclude that

[A 0
0 0 ] have to be Fredholm, which does not hold. We obtain that M(T,S) is left

Fredholm but not Fredholm operator. �

Theorem 3.2. Let X and Y be infinite dimensional, such that Y is isomorphic

to Z = X ⊕ Y . Let A ∈ L(X) and C ∈ L(Y,X) be arbitrary. Then M(T,S) ∈
Φl(X ⊕ Y ) \ Φ(X ⊕ Y ) for some T ∈ L(X,Y ) and S ∈ L(Y ).

Proof. Since Y is isomorphic with Z, then Y = Y1⊕Y2, where X is isomorphic
to Y1, and Y is isomorphic to Y2. Let T ∈ L(X,Y1) and S ∈ L(Y, Y2) be
those isomorphisms. Then T ∈ L(X,Y ) is left invertible with a left inverse
K ∈ L(Y,X) and N (K) = Y2. Also, S ∈ L(Y, Y2) is left invertible with a left
inverse L and N (L) = Y1. Then

[

0 K
0 L

] [

A C
T S

]

=

[

IX 0
0 IY

]

,
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so M(T,S) is left invertible. It follows that M(T,S) is left Fredholm for chosen

operators T and S. Suppose that M(T,S) is Fredholm. Since
[

IX 0
0 IY

]

is Fred-
holm, from Lemma 1.1 it follows that N is also Fredholm. However, we notice
N (N) = X , which is infinite dimensional. Hence, N is not Fredholm. Then
M(T,S) is not Fredholm also, i.e., M(T,S) ∈ Φl(X ⊕ Y ) \ Φ(X ⊕ Y ). �

We formulate a corollary for Hilbert space operators.

Corollary 3.1. Let X and Y be infinite dimensional and mutually orthogonal

subspaces of a Hilbert space Z = X ⊕ Y . Suppose that dimH Y = dimH Z. Let

A ∈ L(X) and C ∈ L(Y,X) be arbitrary. Then M(T,S) ∈ Φl(X⊕Y )\Φ(X⊕Y )
for some T ∈ L(X,Y ) and S ∈ L(Y ).
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