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Abstract. A Hilbert space operator A is called the EP operator, if the range
of A is equal with the range of its adjoint A∗. In this article necessary and
sufficient conditions are given for a product of two EP operators with closed
ranges to be an EP operator with a closed range. Thus, a generalization of
the well-known result of Hartwig and Katz ([5], Linear Algebra Appl. 252
(1997), 339–345) is given.

1. Introduction and preliminaries

Let H, H1,H2 be arbitrary Hilbert spaces, L(H1,H2) be the set of all

bounded operators from H1 into H2 and L(H,H) = L(H). For A ∈
L(H1,H2) we use A∗, R(A) and N (A) respectively to denote the adjoint

operator, range and kernel of A.

If R(A) is closed, then A† ∈ L(H2,H1) is defined as the unique operator

in L(H2,H1) which satisfies the equations:

AA†A = A, A†AA† = A†, (AA†)∗ = AA†, (A†A)∗ = A†A.

A† is known as the Moore-Penrose inverse of A [2],[4].

For A ∈ L(H) consider the following inclusions: {0} ⊂ N (A) ⊂ N (A2) ⊂
· · · and H ⊃ R(A) ⊃ R(A2) ⊃ · · · . The ascent of A is defined as the least

k (if it exists) for which the following holds: N (Ak) = N (Ak+1). If such k

does not exist, we say that the ascent of A is equal to infinity. The descent
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of A is defined as the least k (if it exists) for which the following is satisfied:

R(Ak) = R(Ak+1). If such k does not exist, we say that the descent of A is

equal to infinity. If the ascent and the descent of A are finite, then they are

equal, and this common value is known as the Drazin index of A, denoted

by ind(A). If ind(A) = k, then there exists the unique operator AD ∈ L(H),

which satisfies

Ak+1AD = Ak, ADAAD = AD, AAD = ADA.

AD is known as the Drazin inverse of A. If ind(A) = 0, then A is invertible.

If ind(A) ≤ 1, then AD is known as the group inverse of A, denoted by A#

[2],[4].

In this article we shall consider operators which satisfy AD = A†. Notice

that the last condition implies ind(A) ≤ 1, hence we shall consider operators

which satisfy A# = A†.

Recall that an operator A ∈ L(H) is called the EP operator, if R(A) =

R(A∗) [1], [5], [6].

If A ∈ L(H) has a closed range, then it is easy to see that A is an

EP operator if and only if A† = A#. Also, if A is an EP operator, then

N (A) = N (A∗).

If A and B are two EP operators, it is a question when AB is the EP

operator. This problem for complex square matrices was open for twenty-five

years (see [1], [5]). In [5] Hartwig and Katz found necessary and sufficient

conditions for a product of two square EP matrices to be the EP matrix

also. Their method can not be applied to arbitrary Hilbert space operators.

In this paper we give necessary and sufficient conditions for a product of

two EP operators with closed ranges to be the EP operator with a closed

range. Thus, using a different method, we generalize the result from [5].

We shall mention the matrix decompositions of A† and A#. If M and N

are subspaces of H, then M
•
+N denotes the direct (not necessary orthogonal)
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sum of M and N . However, M ⊕ N denote the orthogonal sum of M and

N .

If A ∈ L(H) has the group inverse, then H = R(A)
•
+ N (A) and A has

the following matrix decomposition

(1) A =
[

A1 0
0 0

]
:
[R(A)
N (A)

]
→

[R(A)
N (A)

]
,

where A1 = A|R(A) : R(A) → R(A) is invertible. In this case the group

inverse of A has the form

A# =
[

A−1
1 0
0 0

]
.

If A ∈ L(H1,H2) and R(A) is closed, then A has the following matrix

decomposition with respect to the orthogonal sums of subspaces of H1 and

H2:

A =
[

A 0
0 0

]
: H1 =

[R(A∗)
N (A)

]
→

[ R(A)
N (A∗)

]
= H2,

where A = A|R(A∗) : R(A∗) → R(A) is invertible. The Moore-Penrose

inverse of A is given as

A† =
[

A−1 0
0 0

]
:
[ R(A)
N (A∗)

]
→

[R(A∗)
N (A)

]
.

If A ∈ L(H) is an EP operator with a closed range, then (1) becomes the

decomposition of A with respect to the orthogonal sum of subspaces.

2. Results

Now, we state the main result of this paper.

Theorem 1. Let A,B ∈ L(H) be EP operators with closed ranges. Then

the following statements are equivalent.

(a) AB is an EP operator with a closed range.

(b) R(AB) = R(A) ∩R(B) and N (AB) = N (A) +N (B).

(c) R(AB) = R(A) ∩R(B) and N (AB) = N (A) +N (B).
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Proof. (a) =⇒ (b): Suppose that AB is an EP operator with a closed range.

Since A is an EP operator, we get that the following decomposition of A

A =
[

A1 0
0 0

]
:
[R(A)
N (A)

]
→

[R(A)
N (A)

]

is a decomposition with respect to the orthogonal sum of subspaces. Since

B is an EP operator, it follows that B has the following orthogonal decom-

position

B =
[

B1 0
B2 0

]
:
[R(B)
N (B)

]
→

[R(A)
N (A)

]
.

We can write R(B) = N (B1)⊕N (B1)⊥. It is easy to see N (AB) = N (B)⊕
N (B1), so

R((AB)∗) = N (AB)⊥ = N (B1)⊥ ⊂ R(B).

Also, R(AB) = R(A1B1) = A1(R(B1)). Since AB is an EP operator we get

N (B1)⊥ = R(AB).

Firstly, we prove R(AB) = R(A) ∩ R(B). From R(AB) = N (B1)⊥ ⊂
R(B) and R(AB) ⊂ R(A), it follows that N (B1)⊥ = R(AB) ⊂ R(A) ∩
R(B) ⊂ R(B1).

Let Q be a projection from H onto R(A) parallel to N (A) and let P

be a projection from H onto R(B). By [4, Theorem 1, p. 127], we know

that R(QP ) is closed if and only if R(AB) is closed. Hence, R(QP ) =

Q(R(B)) = R(B1) is closed.

Suppose that there exists a closed subspace S of R(B1), such that

N (B1)⊥ ⊕ S = R(B1).

We conclude S ⊂ N (B1)⊕N (B).

Define an operator B1 ∈ L(H) in the following way: B1|R(B) = B1 and

B1|N (B) = 0. Then R(B1) = R(B1) and N (B1) = N (B)⊕N (B1).

Notice the following

R(B1
2
) = B1(R(B1)) = B1(N (B1)⊥) = R(B1) = R(B1)
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and

N (B1
2
) = [N (B)⊕N (B1)] + S = N (B1).

It follows that the Drazin index of B1 is equal to zero or one, hence

H = N (B1)
•
+R(B1) = [N (B)⊕N (B1)]

•
+R(B1).

From the other hand, since S ⊂ [N (B)⊕N (B1)] ∩R(B1) we conclude S =

{0}. Finally, N (B1)⊥ = R(A)∩R(B) = R(B1) and R(AB) = R(A)∩R(B).

To prove N (AB) = N (A)+N (B), consider the following decompositions:

(2) H = N (B1)⊥ ⊕N (B1)⊕N (B) = R(B1)⊕R(B1)⊥ ⊕N (A).

We conclude

N (AB) = N (B)⊕N (B1) = N (A)⊕R(B1)⊥.

From R(B) ⊂ R(B1) ⊕ R(B2) we get R(B1)⊥ ⊂ N (B), and it follows

N (AB) = N (A) +N (B).

(b) =⇒ (c): This part of the proof is obvious.

(c) =⇒ (a): Suppose that R(AB) = R(A) ∩ R(B) and N (AB) =

N (A) +N (B). Immediately we get R(AB) is closed. If M and N are

subspaces of H, then (M ∩N)⊥ = M⊥ + N⊥. Now we find

R(AB) = (R(A) ∩R(B))⊥⊥ = ((R(A)⊥ +R(B)⊥)
⊥

= (N (A) +N (B))⊥ = N (AB)⊥ = R(AB)∗,

and finally, AB is an EP operator with a closed range. ¤

Our Theorem 1 is a generalization of the main result of Hartwig and Katz

[5].

Remark 2. The statements (b) and (c) of Theorem 1 illustrate the difference

between the finite and infinite dimensional Hilbert spaces. If H is a finite
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dimensional Hilbert space, then the statement (b) is the same as the state-

ment (c) of Theorem 1. In general Hilbert spaces, the statement (b) is a

stronger condition than the statement (c) of Theorem 1.

It is well-known that the product of two selfadjoint operators A,B is a

selfadjoint operator if and only if AB = BA. In [6] it is shown that the

product of two commuting EP matrices is again the EP matrix. For EP

operators on an arbitrary Hilbert space the following result holds.

Theorem 3. If A,B ∈ L(H) are EP operators with closed ranges and AB =

BA, then AB is the EP operator with a closed range also.

Proof. It is well-known that the group inverse A# of A commutes with

every operator that commutes with A [4], so we conclude that operators

A,B, A#, B# mutually commute. Obviously, (AB)# = B#A# = B†A†.

Notice also

(ABB#A#)∗ = (BB#AA#)∗ = (BB†AA†)∗ = (AA†)∗(BB†)∗ = AA†BB†

= ABB#A#.

The equality (B#A#AB)∗ = B#A#AB can be proved analogously. We

have just proved

(AB)# = B#A# = B†A† = (AB)†,

hence AB is an EP operator with a closed range. ¤

We can construct two noncommuting EP operators whose product is also

an EP operator. Let P be any orthogonal projection and A be any invertible

operator which satisfies A(N (P )) = N (P ) and A(R(P )) * R(P ). Then

P = P † = P# and A−1 = A† = A#. Also,

R(P ) ∩R(A) = R(P ) = R(PA), N (P ) +N (A) = N (P ) = N (PA).

By Theorem 1 it follows that PA is an EP operator. From the other hand,

A and P commute if and only if the decomposition H = R(P ) ⊕ N (P )
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reduces A, i.e. A(R(P )) ⊂ R(P ) and A(N (P )) ⊂ N (P ). According to our

construction we get AP 6= PA.

For a concrete realization of the preceding situation, consider the following

example.

Example 4. Let us take H = C2, P =
[

1 0
0 0

]
and A =

[
1 0
1 1

]
. Then

P = P † = P# and A−1 = A† = A# =
[

1 0
−1 1

]
, hence P and A are EP

operators. Notice

PA = P 6=
[

1 0
1 0

]
= AP.

Now, P , A and PA are EP operators, but AP 6= PA. ¤

If R(A), R(B) and R(AB) are closed, then the rule (AB)† = B†A† is

called the reverse order rule for the Moore-Penrose inverse (and it does not

hold in general). In [3] it is shown that ifR(A), R(B) andR(AB) are closed,

then the following statements are equivalent:

(a) (AB)† = B†A†;

(b) R(A∗AB) ⊂ R(B) and R(BB∗A∗) ⊂ R(A∗).

In [1] Baskett and Katz considered the connection between the EP ma-

trices and the reverse order rule for the Moore-Penrose inverse of matrices.

To illustrate this connection, we formulate the following result.

Theorem 5. If A, B ∈ L(H) are EP operators with closed ranges and

R(A) = R(B), then (AB)† = B†A†.

Proof. From R(A∗) = R(A) = R(B) = R(B∗) we get

R(A∗AB) = A∗A(R(A∗)) = A∗(R(A)) = R(A∗) = R(B)

and

R(BB∗A∗) = BB∗(R(B) = R(B) = R(A∗).

Hence, the reverse order rule (AB)† = B†A† holds. ¤

Some other similar and interesting results can be found in [1].
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