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Abstract. The “generalized Weyl” operators between two Hilbert spaces
are taken to be those with closed range for which the null space and that of
the adjoint are of equal Hilbert space dimension. We show that products of
two of these which happen to have closed range, and finite rank perturbation
of these, are also generalized Weyl.

1. Introduction

In this paper H, K and M are arbitrary Hilbert spaces. We use L(H, K)

to denote the set of all bounded operators from H into K. Let dimL denote

the orthogonal dimension of any closed subspace of a Hilbert space. We use

L⊕N to denote the orthogonal sum of closed subspaces L and N of a Hilbert

space. If T ∈ L(H,K), then R(T ) is the range and N (T ) is the kernel of

T . It is well-known that the set of Fredholm operators from H into K is

defined as ([6], [8])

Φ(H,K) = {T ∈ L(H, K) :R(T ) is closed,

dimN (T ) < ∞ and dimN (T ∗) < ∞}.

If T ∈ Φ(H, K) and S ∈ Φ(K, M), then ST ∈ Φ(H, M). For a Fredholm op-

erator T ∈ Φ(H, K) the index is defined as ind(T ) = dimN (T )−dimN (T ∗).
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The class of Weyl operators from H into K is defined as the set of Fredholm

operators of the index equal to 0, i.e.

Φ0(H, K) = {T ∈ Φ(H, K) : ind(T ) = 0}.

If T ∈ Φ(H, K) and S ∈ Φ(K, M), then the well-known index theorem states

that ind(ST ) = ind(T )+ind(S). Hence, if T ∈ Φ0(H, K) and S ∈ Φ0(K,M),

then ST ∈ Φ0(H, M) ([5], [6], [8]).

In this article we introduce the class of generalized Weyl operators in the

following way:

Φg
0(H, K) = {T ∈ L(H, K) : R(T ) is closed and dimN (T ) = dimN (T ∗)}.

If T ∈ Φg
0(H, K), thenN (T ) andN (T ∗) may be mutually isomorphic infinite

dimensional Hilbert spaces.

Recently, several papers appeared concerning the generalization of Fred-

holm and semi-Fredholm operators, index theorem etc. ([2], [3], [4], [9]).

However, the results obtained in this article seems to be unknown and should

be interesting.

It is well-known that the product of two operators with closed ranges

need not to be an operator with closed range ([1], [5], [12]). If T and S are

generalized Weyl operators and ST has closed range, we shall prove that ST

is also a generalized Weyl operator.

We use F(H, K) to denote the set of all finite-dimensional operators from

H into K. We shall prove that if T is a generalized Weyl operator, then

T + F is generalized Weyl for any F ∈ F(H, K).

2. Results

Firstly, we shall consider products of generalized Weyl operators. Recall

that a product of two Weyl operators is also an Weyl operator, but a product

of two operators with closed ranges is not necessary an operator with closed

range.
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Theorem 1. Let H, K and M be arbitrary Hilbert spaces, T ∈ Φg
0(H,K),

S ∈ Φg
0(K, M) and R(ST ) is closed. Then ST ∈ Φg

0(H,M).

Proof. Consider the following matrix form of T :

T =
[

T1 0
0 0

]
:
[R(T ∗)
N (T )

]
→

[ R(T )
N (T ∗)

]
,

where T1 : R(T ∗) → R(T ) is invertible. We conclude that S must have the

matrix form

S =
[

S1 S2

0 0

]
:
[ R(T )
N (T ∗)

]
→

[ R(S)
N (S∗)

]
.

Notice that

ST =
[

S1T1 0
0 0

]
:
[R(T ∗)
N (T )

]
→

[ R(S)
N (S∗)

]
.

Since R(ST ) = R(S1T1) = R(S1), we conclude that R(S1) is closed. We

can write R(S) = R(S1)⊕N (S∗1 ). Let N = S−1
2 (R(S1)). Then N (S2) ⊂ N

and N (T ∗) = N ⊕ N⊥. The set S2(N⊥) is the subspace of R(S) linearly

independent modulo R(S1) and R(S) = R(S1)+R(S2). Define an operator

S3 ∈ L(N (T ∗),R(S)) in the following way:

S3u =
{

0, u ∈ N

S2u, u ∈ N⊥ .

Now R(S3) = S2(N⊥), R(S3) ∩ R(S1) = {0} and R(S) = R(S1) +R(S3).

According to the well-known Kato theorem ([11]), we know that R(S3) =

S2(N⊥) is closed. We conclude S2(N⊥) ∼= R(S)/R(S1)
∼= N (S∗1 ), hence

dim N⊥ = dimN (S∗1 ).

On the other hand,

N (ST ) = N (T )⊕ {x ∈ R(T ∗) : S1T1x = 0} = N (T )⊕ T−1
1 (N (S1))

∼= N (T ∗)⊕N (S1) = N ⊕N⊥ ⊕N (S1).

Since

N ((ST )∗) = N (S∗)⊕N (S∗1 ) ∼= N (S)⊕N (S∗1 )
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and dim N⊥ = dimN (S∗1 ), we only need to prove that N (S) ∼= N ⊕N (S1).

Notice that if x ∈ R(T ) and y ∈ N (T ∗), then z =
[

x
y

]
∈ N (S) if and

only if S1x = −S2y. Hence, S1x = 0 if and only if S2y = 0, implying

N (S1) ⊕ N (S2) ⊂ N (S). Let N = N (S2) ⊕ L. If y ∈ L, then there exists

the unique x ∈ R(S∗1 ) such that S1x = −S2y. We conclude that

N (S1)⊕N = N (S1)⊕N (S2)⊕ L
∼= N (S).

Thus, the proof is completed. ¤

If S, T and ST have closed ranges, then Harte’s ghost theorem ([9]) states

that

N (T )×N (S)×M/R(ST ) ∼= N (ST )×K/R(T )×M/R(S).

Notice that our Theorem 1 does not follow from this ghost theorem. For

example, it might be possible that N (T )×N (S) and K/R(T )×M/R(S) are

mutually isomorphic infinite dimensional Hilbert spaces, but dimN (ST ) = 1

and dim M/R(ST ) = 2.

It is also interesting to consider a perturbation result for generalized Weyl

operators by a finite dimensional operator. We can prove the following

statement.

Theorem 2. Let H, K be arbitrary Hilbert spaces, T ∈ Φg
0(H, K) and

F ∈ F(H, K). Then T + F ∈ Φg
0(H,K).

Proof. The result is already known if N (T ) and N (T ∗) are mutually iso-

morphic finite dimensional subspaces. Hence, assume that N (T ) and N (T ∗)

are mutually isomorphic infinite dimensional subspaces, R(T ) is closed and

F ∈ F(H, K).

We can write H = N (F )⊕N (F )⊥, where dim H/N (F ) = dimN (F )⊥ =

dimR(F ) < ∞. Now we have

T (N (F )) ⊂ (T +F )(N (F ))+(T +F )(N (F )⊥) = R(T +F ) ⊂ R(T )+R(F ).
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Since dimR(T )/T (N (F )) < ∞, we conclude that R(T + F ) and R(T ) may

differ for a finite dimensional subspace, so we get that R(T + F ) is closed.

Since N (T ∗) is infinite dimensional, we also find

dimN (T + F )∗ = dim K/R(T + F ) = dim K/R(T ) = dimN (T ∗).

We can also write H = N (T ) ⊕ N (T )⊥ and denote W = {v ∈ N (T )⊥ :

Tv ∈ R(F )}. Let x ∈ N (T + F ) and x = u + v, where u ∈ N (T ) and v ∈
N (T )⊥. Then Tv = −Fx ∈ R(F ). We conclude N (T +F ) ⊂ N (T )+W and

dimN (T + F ) ≤ dimN (T ) + dim W = dimN (T ) + dimR(F ) = dimN (T ).

In the same way we can prove that dimN (T ) = dimN (T + F ) + (−F )) ≤
N (T + F ).

Hence, dimN (T + F ) = dimN (T + F )∗ and the proof is completed. ¤

The previous result is an extension of the well-known result concerning

the perturbation of an ordinary Weyl operator by a finite dimensional oper-

ator. However, we can not expect that the perturbation result by a compact

operator may hold. Precisely, in [5] it is shown that if R(T ) is closed, N (T )

and R(T ) are both infinite dimensional, then there exists a compact opera-

tor C, such that R(T + λC) is not closed for any λ ∈ C \ 0. It also follows

that Φg
0(H, K), in general, is not an open subset of L(H, K).

Remarks. The case H = K = M can be considered in a more general con-

text, and in this case results of this paper are already known. If A is a

Banach algebra (or, more generally, an additive category), then Harte [7]

defined relatively Weyl elements as the set of all elements a ∈ A such that

a ∈ aA−1a. Here A−1 denotes the set of all invertible elements of A. If

A = L(H), then the set of relatively Weyl elements coincides with our set

of generalized Weyl operators. In this case our Theorem 1 follows from [7,

Theorem 1], and our Theorem 2 is proved in [10, Theorem 7].

Moreover, it would be interesting to consider same problems in the case

when T is a bounded operator from a Banach space X into a Banach space Y .
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We say that T is generalized Weyl, if R(T ) is closed, and N (T ) and Y/R(T )

are mutually isomorphic Banach spaces. This case is not all covered by [7]

and [10]. It is also not clear that our proofs of Theorem 1 and Theorem 2

are valid in Banach spaces.
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