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Abstract. In this paper we investigate general representations of various
classes of generalized inverses of bounded operators over Hilbert spaces, based
on the full-rank factorization of operators. Using these general representa-
tions we introduce a generalization of the Groetch representation theorem for
the Moore-Penrose inverse. As corollaries, we derive a few iterative methods
for computing reflexive g-inverses. In a particular case we get the main result
from [9]. The present method is compared with [6].

1. Introduction

Let X1 and X2 denote arbitrary Banach spaces and B(X1,X2) denote the

set of all bounded operators from X1 into X2. For an arbitrary operator

A ∈ B(X1,X2), we use N (A) to denote its kernel, and R(A) to denote its

image. An operator A ∈ B(X1,X2) is g-invertible, provided that there exists

some X ∈ B(X2,X1), such that AXA = A. In this case X is called a g-

inverse of A. If X satisfies both of the equations AXA = A and XAX = X,

then X is called a reflexive g-inverse of A. It is well–known that an operator

A ∈ B(X1,X2) has a g-inverse if and only if R(A) is closed, and N (A) and

R(A) are complemented subspaces of X1 and X2 respectively. An arbitrary

right inverse and an arbitrary left inverse of A are denoted by A−1
r and A−1

l ,

respectively.
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We say that A ∈ B(X ) has the Drazin inverse, if there exists an operator

AD ∈ B(X ), such that AD satisfies the equation (2) and the equations

(1k) Ak+1AD = Ak, (5) ADA = AAD,

for some non-negative integer k. Let us mention that the Drazin inverse, if

it exists, is unique. The smallest k in the previous definition is called the

index of A and denoted by ind(A). In the case ind(A) = 1 the Drazin inverse

is known as the group inverse of A, denoted by A#.

The full rank factorization of matrices is well-known and frequently used

in representations of pseudoinverses [1, 7, 8, 10]. The following analogy of

the full rank factorization for matrices is established in [2], [3]:

Let A ∈ B(X1,X2). If there exist a Banach space X3 and operators

Q ∈ B(X1,X3) and P ∈ B(X3,X2), such that P is left invertible, Q is right

invertible and

(1.1) A = PQ,

then we say that (1.1) is the full-rank decomposition of A.

It is well-known that an operator A ∈ B(X1,X2) has the full-rank decom-

position, if and only if A is g-invertible. In this case X3 is isomorphic to

R(A), and R(A) = R(P ) [3].

In the case when H1 and H2 are Hilbert spaces, it is well-known that an

operator A ∈B(H1,H2) has a g-inverse if and only if R(A) is closed. We

consider the following equations in X:

(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (4) (XA)∗ = XA.

For a subset S of the set {1, 2, 3, 4}, the set of operators obeying the condi-

tions contained in S is denoted by A{S}. An operator in A{S} is called an

S-inverse of A and is denoted by A(S). If R(A) is closed, the set A{1, 2, 3, 4}
consists of a single element, the Moore-Penrose inverse of A, denoted by A†.
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A basic tool used in this paper is the following general representation

theorem for the Moore-Penrose inverse of a bounded linear operator [3], [4],

[5]:

Theorem 1.1. Let T ∈ B(H1,H2) has closed range. Then [5, p. 45]

(1.2) T † = T̃−1T ∗, where T̃ = T ∗T |R(T∗) .

Moreover, if Ω is an open set with σ(T̃ ) ⊂ Ω ⊂ (0,∞), and {Sβ(x)}β is

a family of continuous real valued functions on Ω, with lim
β

Sβ(x) = 1
x uni-

formly on σ(T̃ ), then [3, p. 42], [4], [5, p. 57]

(1.3) T † = lim
β

Sβ(T̃ )T ∗,

where the convergence is in the uniform topology for B(H2,H1). Further-

more,

‖Sβ(T̃ )T ∗ − T †‖ ≤ sup
x∈σ(T̃ )

|xSβ(x)− 1| · ‖T †‖.

We investigate general representations of bounded operators on Hilbert

spaces, based on the full-rank factorization (1.1). These representations are

extensions of known results from [2], [7], [8] and [10].

Using these general representations together with the Groetch representa-

tion theorem for the Moore-Penrose inverse of a bounded operator on Hilbert

spaces, we introduce representations for various subsets of the set of all re-

flexive g-inverses of a bounded operator. Using this extension of the Groetch

representation theorem, as particular cases, we derive a few iterative meth-

ods for computing g-inverses. As a partial result we get an improvement of

the hyper-power iterative method, which is investigated in [9] for operators

acting on finite dimensional complex Hilbert spaces. This method is not

known for matrices before.
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2. Results

Firstly we state the following general representations based on the full-

rank factorization of operators. These representations are known for matri-

ces (see [7], [8] and [10]). For bounded operators between Hilbert spaces it

is known a representation of the Moore-Penrose inverse, introduced in [2].

Lemma 2.1. Let A = PQ be a full–rank decomposition of A ∈ B(H1,H2)

according to (1.1). Then:

(a) X ∈ A{1, 2} if and only if there exist operators W1 ∈ B(H3,H1) and

W2 ∈ B(H2,H3), such that QW1 and W2P are invertible in B(H3).

In such a case, X possesses the following general representation

(2.1) X = Q−1
r P−1

l , Q−1
r = W1(QW1)−1, P−1

l = (W2P )−1W2.

(b) X∈A{1, 2, 3} if and only if there exists an operator W1∈B(H3,H1),

such that QW1 is invertible in B(H3). In the case when it exists, a

general representation for X is as follows:

(2.2) X = W1(QW1)−1(P ∗P )−1P ∗.

(c) X∈A{1, 2, 4} if and only if there exists an operator W2∈B(H2,H3),

such that W2P is invertible in B(H3). In this case

X = Q∗(QQ∗)−1(W2P )−1W2.

(d) A† = Q†P † = Q∗(QQ∗)−1(P ∗P )−1P ∗ =Q∗(P ∗AQ∗)−1P ∗ [2].

(e) Let A : H1 → H2 and X : H2 → H1. Then X ∈ A{2} if and only if

there exist operators

C ∈ B(H4,H1), D ∈ B(H2,H3), W1 ∈ B(H5,H4), W2 ∈ B(H3,H5),

such that DAC is g-invertible and W2DACW1 is invertible and X

posseses the following general form:

(2.3) X = CW1(W2DACW1)−1W2D.
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Proof. (a) This statement can be proved as in [8, Theorem 2.1.1 and Lemma

2.5.2].

(b) If X has the form (2.2), then it is easy to verify X ∈ A{1, 2, 3}.
We need to prove that the form (2.2) holds for all {1, 2, 3} inverses of A.

Indeed, if X ∈ A{1, 2, 3}, then X = Q−1
r P−1

l , and from the equation (3) it

follows that (PP−1
l )∗ = PP−1

l . Thus P ∗PP−1
l = P ∗. The operator P ∗P

is invertible, so that P−1
l = (P ∗P )−1P ∗. The right inverse of Q retains the

general form Q−1
r = W1(QW1)−1 given in (2.1). Consequently,

X = W1(QW1)−1(P ∗P )−1P ∗.

(c) This part of the proof can be proved in the same way as (b).

(d) Follows from (b) and (c) (also, this fact is proved in [2]).

(e) If X possesses the form (2.3), it is not difficult to verify X ∈ A{2}.
On the other hand, using the method from [8, Theorem 3.4.1], it is easy to

verify that X ∈ A{2} if and only if there exist operators C and D, such that

DAC is g-invertible and

X = C(DAC)(1,2)D, C ∈ B(H4,H1), D ∈ B(H2,H3).

According to part (a), X ∈ A{2} if and only if there exist operators W1 ∈
B(H5,H4) and W2 ∈ B(H3,H5), such that W2DACW1 is invertible, and X

possesses the form (2.3). ¤

Lemma 2.2. Let X be a Banach space. If A ∈ B(X ), l ≥ k = asc(A) =

des(A) < ∞ and Al = PAlQAl is the full-rank decomposition of Al, then

AD = PAl(QAlAPAl)−1QAl .

Proof. If asc(A) = des(A) = k < ∞, then it is well-known that N (Al) =

N (Ak) and R(Al) = R(Ak) for all l ≥ k,

(2.4) X = X1 ⊕X2,
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where X1 = N (Al) and X2 = R(Al), A(Xi) ⊂ Xi for i = 1, 2, A1 = A|X1 is

nilpotent and A2 = A|X2 is invertible (A is not nilpotent) [3], [4]. We can

write

A =
[

A1 0
0 A2

]
, AD =

[
0 0
0 A−1

2

]

with respect to the decomposition (2.4) (see [3]). Since N (Al) and R(Al)

are complementary and closed subspaces of X , it follows that Al is g-

invertible, so there exists the full-rank decomposition Al = PAlQAl , where

PAl ∈ B(Z,X ) is left invertible and QAl ∈ B(X ,Z) is right invertible, for

some Banach space Z. By the isomorphism theorem [3], we can take that

Z = X2. We conclude that PAl and QAl have the following representations

with respect to (2.4):

PAl =
[

M
P̃

]
and QAl = [ N Q̃ ] ,

where P̃ , Q̃ ∈ B(X2), M ∈ B(X2,X1), N ∈ B(X1,X2). Now, PAl is left

invertible and QAl is right invertible, so PAl and QAl are g-invertible opera-

tors, N (PAl) = {0} andR(QAl) = X2. It follows thatR(PAl) = R(Al) = X2

and N (QAl) = N (Al) = X1, so M = 0, N = 0 and

PAl =
[

0
P̃

]
and QAl = [ 0 Q̃ ] .

It is easy to verify that P̃ is left invertible and Q̃ is right invertible in B(X2).

But

[
0 0
0 Al

2

]
= Al = PAlQAl =

[
0 0
0 P̃ Q̃

]
,

so Al
2 = P̃ Q̃. Since Al

2 is invertible, it follows that P̃ and Q̃ are invertible

in B(X2).

Now, QAlAPAl = Q̃A2P̃ is invertible in B(X2), so

AD =
[

0 0
0 A−1

2

]
=

[
0 0
0 P̃ (Q̃A2P̃ )−1Q̃

]
=PAl(QAlAPAl)−1Q. ¤
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Remark 2.1. The result of part (e) of Lemma 2.1 is an extension of the anal-

ogous result, introduced in [10, Theorem 2.1], stated for the set of complex

matrices. Also, the result of Lemma 2.2 is an extension of an analogous

result [10, Theorem 2.2], which is derived for complex matrices.

Our main aim is an application of considered general representations in a

generalization of the Groetch representation theorem.

We begin with the result which enable us to get various reflexive general-

ized inverses of the considered operator, changing initial operators W1 and

W2.

Theorem 2.1. Let A ∈ B(H1,H2) has closed range, A = PQ be the full–

rank decomposition of A and W1 ∈ B(H3,H1), W2 ∈ B(H2,H3). Suppose

that QW1 is right invertible, W2P is left invertible, W = W2AW1 and W̃ =

W ∗W |R(W∗) . If Ω is an open set with σ(W̃ ) ⊂ Ω ⊂ (0,∞), and {Sβ(x)}β

is a family of continuous real valued functions on Ω, with lim
β

Sβ(x) = 1
x

uniformly on σ(W̃ ), then:

X = lim
β

W1

[
Sβ(W̃ )

]
W ∗W2 ∈ A{1, 2},

where the convergence is in the uniform topology for B(H2,H1).

Furthermore,

‖W1Sβ(W̃ )W ∗W2 −X‖ ≤ ‖W1‖ sup
x∈σ(W̃ )

|xSβ(x)− 1| · ‖W †‖‖W2‖.

Proof. Since W = (W2P )(QW1), QW1 is onto, W2P is one-to-one and

R(W2P ) is closed, it follows that R(W )=R(W2P ), so we may apply Theo-

rem 1.1 for W instead of T . We conclude

X =lim
β

W1

[
Sβ(W̃ )

]
W ∗W2 =W1(W2AW1)†W2 =W1((W2P )(QW1))†W2.

Operators W2P and QW1 form the full-rank decomposition for W , and ap-

plying the part (d) of Lemma 2.1 we immediately obtain ((W2P )(QW1))† =
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(QW1)†(W2P )†. Since (QW1)† is the right inverse of QW1 and (W2P )† is

the left inverse for W2P , we easily conclude that

X = W1(QW1)†(W2P )†W2 ∈ A{1, 2}. ¤

Using Lemma 2.1, similar results can be stated for {i, j, k} generalized

inverses. For example, if W1 = Q∗ then X ∈ A{1, 2, 3}. Also, if W2 = P ∗

then X ∈ A{1, 2, 4}. To avoid repetition we omit the proof.

Applying Lemma 2.1, Lemma 2.2 and the method from Theorem 2.1, we

get the following representations of {2}, {1, 2}, {1, 2, 3}, {1, 2, 4} inverses,

the Moore-Penrose inverse and the Drazin inverse.

Corollary 2.1. Let A ∈ B(H1,H2) has closed range and A = PQ be the

full–rank decomposition of A according to (1.1). Let {Sβ(x)}β be a family of

continuous real valued functions on (0, +∞), with lim
β

Sβ(x) = 1
x uniformly

on all compact subsets of (0, +∞). Then:

(a) X ∈ A{1, 2} if and only if there exist operators W1 ∈ B(H3,H1),

W2 ∈ B(H2,H3), such that QW1 and W2P are invertible, and

X = lim
β

W1

[
Sβ(W̃ )

]
W ∗W2 = W1W̃

−1W ∗W2, W = W2AW1.

(b) X ∈ A{1, 2, 3} if and only if there exists W2 ∈ B(H2,H3) such that

W2P is invertible and

X=lim
β

Q∗
[
Sβ(W̃2AQ∗)

]
(W2AQ∗)∗W2 =Q∗(W̃2AQ∗)−1(W2AQ∗)∗W2.

(c) X ∈ A{1, 2, 4} if and only if there exists W1 ∈ B(H3,H1) such that

QW1 is left invertible and

X=lim
β

W1

[
Sβ(P̃ ∗AW1)

]
(P ∗AW1)∗P ∗=W1(P̃ ∗AW1)−1(P ∗AW1)∗P ∗.

(d)A†=lim
β

Q∗
[
Sβ(P̃ ∗AQ∗)

]
(P ∗AQ∗)∗P ∗=Q∗(P̃ ∗AQ∗)−1(P ∗AQ∗)∗P ∗.
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(e) X ∈ A{2} if and only if there exist operators

C ∈ B(H4,H1), D ∈ B(H2,H3), W1 ∈ B(H5,H4), W2 ∈ B(H3,H5),

such that DAC is g-invertible, W2DACW1 is invertible and

X = lim
β

CW1

[
Sβ( ˜W2DACW1)

]
(W2DACW1)∗W2D.

(f) If l ≥ k = ind(A) and QAlAPAl is nonsingular, then

AD = lim
β

PAl

[
Sβ( ˜QAlAPAl)

]
(QAlAPAl)∗Q;

The convergence is in the uniform topology for B(H2,H1).

Our aim is to use various initial conditions for W1 and W2, so we need

the next result.

Theorem 2.2. Let T ∈ B(H1,H2) has closed range, let Ω be an open set

with σ(T ∗T |R(T∗))∪σ(TT ∗|R(T )) ⊂ Ω ⊂ (0,∞), and let {Sβ(x)}β be a family

of continuous real valued functions on Ω, with lim
β

Sβ(x) = 1
x uniformly on

σ(T ∗T |R(T∗)) ∪ σ(TT ∗|R(T )). Then

lim
β

T ∗
[
Sβ(TT ∗|R(T ))

]
=lim

β

[
Sβ(T ∗T |R(T∗))

]
T ∗= T †.

Proof. Using the Weierstrass Approximation Theorem, we get that the op-

erator Sβ(T ∗T |R(T∗)) is selfadjoint on R(T ∗) and Sβ(TT ∗|R(T )) is selfadjoint

on R(T ). By Theorem 1.1 we get

lim
β

T ∗
[
Sβ(TT ∗|R(T ))

]
= lim

β

([
Sβ(TT ∗|R(T ))

]
T

)∗=
(
(T ∗)†

)∗
= T †

= lim
β

[
Sβ(T ∗T |R(T∗))

]
T ∗. ¤

In the following theorem we obtain a few additional initial conditions

for the operators W1 and W2, which produce various subsets of {i, j, k}
generalized inverses.
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Theorem 2.3. Let A ∈ B(H1,H2) has closed range, A = PQ be a full-rank

decomposition of A, W1 ∈ B(H3,H1), W2 ∈ B(H2,H3) and W = W2AW1 ∈
B(H3).

(a) If W2 is unitary, QW1 is right invertible and Sβ is a family possessing

the properties from Theorem 1.1 with T = AW1, then

lim
β

W1

[
Sβ(W̃ )

]
W ∗W2 = W1(AW1)† ∈ A{1, 2, 3}.

(b) If W1 is unitary, W2P is left invertible and Sβ is a family which

satisfies conditions of Theorem 1.1 for the operator T = A∗W ∗
2 , then

lim
β

W1W
∗
[
Sβ(W̃ )

]
W2 = (W2A)†W2 ∈ A{1, 2, 4}.

(c) If both W1 and W2 are unitary and Sβ has the properties from (a)

and (b), then

A† = lim
β

W1

[
Sβ(W̃ )

]
W ∗W2 = W1(AW1)†

= lim
β

W1W
∗
[
Sβ(W̃ )

]
W2 = (W2A)†W2.

(d) If (a) is valid and W1 = Q∗, then

lim
β

W1

[
Sβ(W̃ )

]
W ∗W2 = Q∗(AQ∗)† = A†.

(e) If (b) is valid and W2 = P ∗, then

lim
β

W1W
∗
[
Sβ(W̃ )

]
W2 = (P ∗A)†P ∗ = A†.

Proof. (a) The operator W2 is unitary, which implies

W ∗W = (AW1)∗AW1, W ∗W2 = (AW1)∗.

Since W ∗ = (AW1)∗W ∗
2 and W2 is invertible, it follows that R(W ∗) =

R((AW1)∗). Using Theorem 1.1 we obtain

X = lim
β

W1

[
Sβ(W̃ )

]
W ∗W2 = W1(AW1)† ∈ A{2, 3}.
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We need to prove W1(AW1)† ∈A{1}. Note that X = W1[P (QW1)]†. Now,

P is left invertible, and QW1 is right invertible, so P (QW1) is given as the

full-rank factorization. Using the result from Lemma 2.1 (d) or [2], we get

X = W1(QW1)†P †. Now, the equation (1) can be easily verified.

(b) We use (a) with: A∗ instead of A, W ∗
2 instead of W1 and W ∗

1 instead

of W2. Note that W ∗
1 is unitary and (W2P )∗ = P ∗W ∗

2 is right invertible. In

this case we have

W1W
∗ = A∗W ∗

2 , WW ∗ = W2A(W2A)∗, R(W2A) = R(W )

which implies W̃ ∗ = ˜(W2A)∗. Using the Weierstrass Approximation Theo-

rem, we get that Sβ(W2A(W2A)∗|R(W2A)) is selfadjoint, so

lim
β

(A∗W ∗
2 )

[
Sβ(W2A(W2A)∗|R(W2A))

]
W2 =

=lim
β

{
W ∗

2

[
Sβ((A∗W ∗

2 )∗A∗W ∗
2 |R[(A∗W∗

2 )∗])
]
(A∗W ∗

2 )∗
}∗

=(W ∗
2 (A∗W ∗

2 )†)∗.

By (a) we know that W ∗
2 (A∗W ∗

2 )†∈A∗{1, 2, 3}, so

(W ∗
2 (A∗W ∗

2 )†)∗ = (W2A)†W2 ∈ A{1, 2, 4}.

(c) It is enough to prove that the limits from (a) and (b) are equal. If

W2 is unitary, from the proof of (a) we get W̃ = ÃW1. If W1 is unitary,

from the proof of (b) we get W̃ ∗ = ˜(W2A)∗. Now, by Theorem 2.4, and

using the parts (a) and (b) of this proof, we get:

W1(AW1)†= lim
β

W1

[
Sβ((AW1)∗AW1|R[(AW1)∗])

]
(AW1)∗W ∗

2 W2

= lim
β

W1

[
Sβ(W ∗W |R(W∗))

]
W ∗W2 = W1W

†W2

=lim
β

W1W
∗[Sβ(WW ∗|R(W ))

]
W2 =lim

β
A∗W ∗

2

[
Sβ(WW ∗|R(W ))

]
W2

=lim
β

A∗W ∗
2 Sβ(W2A(W2A)∗|R(W2A))W2 = (W2A)†W2. ¤

Finally, as corollaries, we introduce a few iterative methods for computing

reflexive g-inverses.
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Corollary 2.2. Let A ∈ B(H1,H2) has closed range, A = PQ is the full–

rank decomposition of A and let W1 ∈ B(H3,H1), W2 ∈ B(H2,H3) be two

operators, such that QW1 is right invertible and W2P is left invertible. Let

W = W2AW1 and W̃ = W ∗W |R(W∗) . Then the following representations of

the reflexive g-inverses are convergent in the uniform topology for B(H2,H1):

(a) A(1,2) = W1

[∞∫
0

e−W∗WuW ∗du

]
W2;

(b) A(1,2) = αW1

∞∑
k=0

(I − αW ∗W )k
W ∗W2, where 0 < α < 2‖W‖−2;

(c) A(1,2) = W1 lim
t→0+

(tI + W ∗W )−1
W ∗W2;

(d) A(1,2) = W1

∞∑
k=0

1
k + 1

(
k−1∏
j=0

(
I − 1

j + 1
W ∗W

))
W ∗W2;

(e) A(1,2) = W1 lim
t→0+

∞∑
k=0

1
Γ(1 + tk)

[I −W ∗W ]k W ∗W2;

(f) A(1,2) = W1

(
W ∗ + lim

t→0+

∞∑
k=1

e−tk log k [I −W ∗W ]k W ∗
)

W2;

(g) A(1,2) = W1 lim
t→0+

∞∑
k=0

Γ(1 + (1− t)k)
Γ(1 + k)

[I −W ∗W ] W ∗W2.

Also, as a corollary, we get the next generalization of the main result form

[9].

Corollary 2.3 ([9, Lemma 2.1, Theorem 2.1]). Let A ∈ B(H1,H2) has

closed range, A = PQ is the full–rank decomposition of A and let W1 ∈
B(H3,H1), W2 ∈ B(H2,H3) be two operators, such that QW1 is invertible

and W2P is invertible. Let W = W2AW1. Then the class of {1, 2} inverses

of A can be generated by changing the values of the operators W1, W2 in the

following two iterative processes:

Y0 = Y ′
0 = α(W2AW1)∗, 0 < α ≤ 2‖W‖−2,
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



Tk = IX − YkW,

Yk+1 = (IX + Tk + · · ·+ T q−1
k )Yk,

Xk+1 = W1Yk+1W2





T ′k = IY −WY ′
k,

Y ′
k+1 = Y ′

k(IY + T ′k + · · ·+ T ′k
q−1),

X ′
k+1 = W1Y

′
k+1W2 k = 0, 1, . . .

Moreover, the following statements are valid:

(a) If W2 is unitary, then Xk → X = W1(AW1)† ∈ A{1, 2, 3} as k →∞.

(b) If W1 is unitary then X ′
k → X = (W2A)†W2 ∈ A{1, 2, 4} as k →∞.

(c) If (a) and (b) are valid, then Xk → A†.

(d) If (a) is valid and W1 = Q∗, then Xk → X = A†.

(e) If (b) is valid and W2 = P ∗, then X ′
k → X = A†.

Remark 2.1. In [6] it is also introduced a modification of the hyper-power

method, which generates the class of all {1, 2}-inverses for operators on Ba-

nach spaces. Using the method from [6] for Hilbert spaces operators, it is

not clear how to choose the initial values to get {1, 2, 3}, {1, 2, 4}-inverses.

Also, our method is applicable for various classes of {Sβ} families.
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