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Abstract

We define and characterize inner generalized inverses with pre-
scribed idempotents. These classes of generalized inverses are natural
algebraic extension of generalized inverses of linear operators with pre-
scribed range and kernel. We consider the reverse order rule for inner
generalized inverses of elements of a ring, some perturbation bounds
and we construct an iterative method for computing a (p, q)−inner
inverse in Banach algebras.
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1 Introduction

In this paper we investigate generalized inverses in rings with respect to pre-
scribed idempotents, and we are particulary interested in inner generalized
inverses. We find the motivation for this paper in [10], [12] and [20].

Let R be an associative ring with the unit 1. An element p ∈ R is an
idempotent if p2 = p. The set of all idempotents in R is denoted by R•. An
element a ∈ R is inner generalized invertible (inner regular) if there exists
an element a− ∈ R such that aa−a = a holds. In this case a− is an inner
generalized inverse of a. If a−aa− = a− holds then a− is an outer generalized
inverse of a, and a is outer generalized invertible (outer regular). If a− is
either inner or outer generalized inverse of a, then the elements a−a and
1 − aa− are idempotents corresponding to a and a−. This is the approach
taken in [10], where outer generalized inverses with prescribed idempotents
are considered. See [9] for a general overview of problems on generalized
inverses in rings, and many recent results on this topic. If a− is both inner
and outer generalized inverse of a, then it is a reflexive generalized inverse
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of a. If a− is an inner generalized inverse of a, then a−aa− is a reflexive
generalized inverse of a. Thus, inner regularity implies outer regularity of
a. In general, an element a ∈ R need not to be outer or inner invertible,
even in Banach algebras. If an inner generalized inverse with prescribed
idempotents exists, it is not necessarily unique. On the other hand, the
outer generalized inverse with prescribed idempotents is unique in the case
when it exists [10].

The motivation for defining generalized inverses with prescribed idem-
potents arise from the definition of the Moore-Penrose inverse of an element
in a ring with involution.

If R is a ring with involution, then the (unique, if it exists) Moore-
Penrose inverse of a, denoted by a†, satisfies

aa†a = a a†aa† = a† (aa†)∗ = aa† (a†a)∗ = a†a. (1)

The set of all Moore-Penrose invertible elements of R is denoted by R†.
In the case a ∈ A and A is a C∗-algebra, the element a† exists if and

only if a is inner invertible [14].
Further, we are interested in the reverse order law for inner invertible

elements. If a, b ∈ R are invertible, then the rule (ab)−1 = b−1a−1 is called
the reverse order law for the ordinary inverse. The same rule does not hold
in general for the generalized inverse, even in the case of the Moore-Penrose
inverse of complex matrices. There are many equivalent (or sufficient) con-
ditions such that the reverse order rule holds for some generalized inverses
(see [1, 2, 3, 13, 15, 21]). In this paper we prove some results related to the
reverse order rule for inner generalized inverses.

The paper is organized as follows. In Section 2 we define and investigate
conditions on the existence of an inner generalized inverse with prescribed
idempotents in rings and in rings with involution. We define the proper
splitting of a. Also, we prove some results concerning the reverse order law
for inner invertible elements. In Section 3 a generalization of the condition
number in a normed algebra is given. Also, we construct an iterative method
for computing an inner (p, q)-inverse.

2 Inner generalized inverses in rings

Let a ∈ R and let p, q ∈ R• be given. Following [20] and [10], consider the
following equations in R:
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(1) axa = a, (2) xax = x,

(3p) xa = p, (4q) ax = 1− q.

Let η ⊂ {1, 2, 3p, 4q}. If x ∈ R satisfies equations (i) for all i ∈ η, then
x is called an η-inverse of a, frequently denoted as aη. The set of all such x
is denoted by aη.

Notice that if x ∈ a{2, 3p, 4q}, then x is unique, known as the outer
inverse of a with prescribed idempotents p and q (see [10],[9]).

For an inner invertible element a ∈ R we have

a{1} = {a− ∈ R | aa−a = a} (2)

and as its special subclass

a{1, 3p, 4q} = {a− | a− ∈ a{1}, a−a = p, 1− aa− = q}. (3)

R− denotes the set of all inner invertible elements in R, and R−1 denotes
the set of all invertible elements in R. In general, R−1 ⊂ R−, and if R is a
ring with involution then R−1 ⊂ R† ⊂ R−.

Definition 2.1. Let a ∈ R and let p, q ∈ R•. An element c ∈ R satisfying

aca = a, ca = p, ac = 1− q,

is called a (p, q)−inner inverse of a (or an inner inverse of a with prescribed
idempotents p and q). That is, c ∈ a{1, 3p, 4q}.

In general, if an inner inverse of a with prescribed idempotents exists, it
is not necessarily unique (see [11] for the case of linear bounded operators on
Banach spaces). In order to establish the uniqueness, we consider an extra
equation in R: if r ∈ R is given, then we require that c ∈ R satisfies

(5r) r = c− cac. (4)

Now we can state the following result.

Theorem 2.1. There exists at most one element in the set a{1, 3p, 4q, 5r}.
Proof . If a−, a= ∈ a{1, 3p, 4q, 5r}, then

a−−a= = r+a−aa−−(r+a=aa=) = a−aa−−a=aa= = a=aa−−a=aa− = 0,
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because aa= = aa− = 1− q and a−a = a=a = p. ¤

From now on, we use âr to denote the unique element of the set a{1, 3p, 4q, 5r},
in the case when the last set is non-empty.

Lemma 2.1. Let a, r ∈ R and p, q ∈ R• be such that âr exists. Then

r = (1− âra)âr(1− aâr). (5)

We prove the following result. If we know one (p, q)−inner inverse of a,
then we can describe all of them.

Lemma 2.2. Let a, r ∈ R and p, q ∈ R• be such that âr exists. Then

a{1, 3p, 4q} = {âr − r + s | s = (1− âra)u(1− aâr), u ∈ R}
= {âraâr + s | s = (1− âra)u(1− aâr), u ∈ R} (6)

Proof . Let c ∈ a{1, 3p, 4q}. Then aca = a, ca = p, ac = 1 − q, and let
s = c− cac. So, we get c = âr − r + s where s = (1− âra)c(1− aâr).

On the other hand, notice that s = u − uaâr − ârau + ârauaâr, and
let b = âr − r + s = âraâr + u − uaâr − ârau + ârauaâr. Then we obtain
ba = p+ua−ua− âraua+ âraua = p, and consequently, aba = b. Moreover,
ab = aâr + au− auaâr − au + auaâr = 1− q. Finally,

b− bab = âraâr + u− uaâr − ârau + ârauaâr

−âra(âraâr + u− uaâr − ârau + ârauaâr)
= âraâr + u− uaâr − ârau + ârauaâr − âraâr − ârau

+ârauaâr + âraârau− âraârauaâr

= u− uaâr − ârau + ârauaâr − ârau + ârauaâr

+ârau− ârauaâr

= s.

From Theorem 2.1 it follows that b = âs. ¤

Notice that if â0 exists, then it is a reflexive generalized inverse with
prescribed idempotents p and q, so it is unique [10].

Lemma 2.3. Let a ∈ R, and p, q ∈ R•. The following statements are
equivalent:

(1) a{1, 3p, 4q} 6= ∅.
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(2) ap = a, and there exists some c ∈ R such that cap = p and ac = 1− q.

Proof . (1) =⇒ (2): Obvious.
(2) =⇒ (1) : If (2) holds, then we have aca = ac(ap) = a(cap) = ap = a,

that is c ∈ a{1}. Also, ca = cap = p and ac = 1− q. ¤

We need the notion of the group inverse in a ring. Let a ∈ R. An
element b ∈ R is a group inverse of a, provided that the following hold:

aba = a, bab = b, ab = ba.

In this case the element a is group invertible. If a group inverse of a exists,
then it is unique and denoted by ag. The set of all group invertible elements
in R is denoted by Rg. If a is invertible, then a is group invertible and
a−1 = ag. Hence, R−1 ⊂ Rg.

Now, we prove the following result, which is a generalization of a result
from [7].

Theorem 2.2. Let a, c, r ∈ R and p, q ∈ R• be such that âr exists. If ĉ0 is
the reflexive (1− q, 1− p)−inverse of c then ac, ca ∈ Rg, and

âr = r + c(ac)g = r + (ca)gc.

Proof . Since âr = a− and ĉ0 = c− exist, we have c−a−ac = c−pc = c−cc−c =
c−c = 1 − q = aa− = aa−aa− = apa− = acc−a−. Also acc−a−ac =
(1 − q)ac = ac, and c−a−acc−a− = c−a−. Hence, (ac)g = c−a−. Similarly,
we obtain (ca)g = a−c−. Now it easily follows r + cc−a− = r + pa− =
r + a−aa− = a−. ¤

We also prove the following result.

Theorem 2.3. Let a, b, r, s ∈ R and p, q ∈ R• such that âr and b̂s exist.
Then bâra = aârb, and there exists some c which is a (p, q)−inner inverse
of the element bâr.

Moreover,
1 + âr(b− a), 1 + (b− a)âr ∈ R−1

and
b̂r = (1 + âr(b− a))−1âr = âr(1 + (b− a)âr)−1. (7)

Proof . Let a− = âr, and b− = b̂s. Then we have ba−a = bb−b = aa−b.
Also, b− is a (p, q)−inner inverse of ba−a, since (ba−a)b−(ba−a) = ba−a,
b−ba−a = p2 = p and ba−ab− = aa−bb− = 1−q. Now, from a− ∈ a{1, 3p, 4q}
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and b− ∈ b{1, 3p, 4q} and because a−ab−a = b−bb−a = b−aa−a = b−a we
get

(1 + a−(b− a))(1 + (b− − a−)a) = (1 + a−b− a−a)(1 + b−a− a−a)
= 1 + a−b− a−a + b−a + a−bb−a− a−ab−a− a−a− a−ba−a + a−aa−a
= 1 + (a−b− a−ba−a) + (−a−a + a−aa−a) + (b−a− a−ab−a)

+(a−bb−a− a−a)
= 1.

(8)
Similarly, we get (1 + (b− − a−)a)(1 + a−(b− a)) = 1.

So, there exists (1 + âr(b − a))−1 = 1 + (b̂s − âr)a. Note that, b̂sa is
unique for any choice on s. So

(1 + a−(b− a))−1a− = (1 + (b̂s − âr)a)âr

= âr + b̂saâr − âraâr = r + b̂raâr = r + b̂rbb̂r = b̂r.

that is, the equation (7) follows. ¤

Now, let R be a ring with involution. We need a structure more similar
to C∗−algebras, so we can apply our results to linear bounded operators on
Hilbert spaces.

Definition 2.2. Let p ∈ R• be such that p∗ = p. Then p is called a projec-
tion.

The following result is a generalization of a result for Moore-Penrose
invertible elements in rings with involution(Theorem 1.4.2 in [9]).

Theorem 2.4. Let a ∈ R and p, q be projections in R. If there exists âr,
then the following statements are satisfied:

(1) (âr)∗ ∈ a∗{1, 3(1− q), 4(1− p), 5r∗} that is (âr)∗ = (â∗)r∗;

(2) ârâ
∗
r is a (p, 1− p)−inner inverse of a∗a;

(3) â∗r âr is a (1− q, q)−inner inverse of aa∗;

(4) a[âr(âr)∗] = [(âr)∗âr]a ∈ a∗{1, 2, 3(1− q), 4(1− p)};

Proof . Let there exists âr, that is

aâra = a, âra = p, aâr = 1− q and r = âr − âraâr.
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(1) We have a∗(âr)∗a∗ = (aâra)∗ = a∗, also (âr)∗a∗ = (aâr)∗ = (1− q)∗ =
1 − q and a∗(âr)∗ = (âra)∗ = p∗ = p. Also (âr)∗ − (âr)∗a∗(âr)∗ =
(âr − âraâr)∗ = r∗. That is (âr)∗ is (1− q, 1− p)−inner inverse of a∗.

(2) Now, a∗a(ârâ
∗
r)a

∗a = a∗aâr(aâr)∗a = a∗a. Also (ârâ
∗
r)a

∗a = âr(aâr)∗a =
âra = p and a∗a(ârâ

∗
r) = a∗(aâr)∗â∗r = (âraâra)∗ = (âra)∗ = p.

(3) Similarly.

(4) First, notice that aârâ
∗
r = (aâr)∗â∗r = (âraâr)∗. The rest is a direct

consequence. ¤

From the last results we actually see that the following chain of equiva-
lences hold

a ∈ R− ⇐⇒ a∗ ∈ R− ⇐⇒ aa∗ ∈ R− ⇐⇒ a∗a ∈ R−

Definition 2.3. An element a ∈ R is left ∗-cancellable if a∗ax = 0 implies
ax = 0. Analogously, a ∈ R is right ∗−cancellable if xaa∗ = 0 implies xa =
0. Finally, a ∈ R is ∗−cancellable if it is both left and right ∗−cancellable.

In C∗-algebras, every element is ∗−cancellable. See [17, 16] to notice the
connection between Moore-Penrose invertibility and ∗−cancellability.

We give some analogous connections between inner invertibility and
∗−cancellability of an element in a ring with involution.

Theorem 2.5. Let a ∈ R, and let p and q be projections in R. Then the
following statements are equivalent:

(1) There exists a− which is a (p, q)−inner inverse of a;

(2) a is ∗−cancellable and there exist (p, 1− p)−inner inverse of a∗a and
(1− q, q)−inner inverse of aa∗.

Moreover, if any of the above condition is true, then any (p, q)−inner inverse
of a is given with

a− = ba∗aa∗c

where b and c are (p, 1 − p) and (1 − q, q) − inner inverses of a∗a and aa∗

respectively.
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Proof .
(1) =⇒ (2) : Let there exists a−, a (p, q)−inner inverse of a, and let

a∗ax = 0. Then ax = aa−ax = (aa−)∗ax = (a−)∗a∗ax = 0. Also, if
xaa∗ = 0, then we have xa = xaa−a = xa(a−a)∗ = xaa∗(a−)∗ = 0.

From Theorem 2.4 it follows that a∗a and aa∗ are (p, 1−p) and (1−q, q)−
inner invertible, respectively.

(2) =⇒ (1) : Let a be ∗−cancellable, and let there exist b ∈ (a∗a){1, 3p, 4(1−
p)} and c ∈ (aa∗){1, 3(1−q), 4q}. Denote d = ba∗aa∗c and x1 = (ba∗aa∗ca−
1)a∗. Then since a is left ∗−cancelable and

a∗ax1 = (a∗aba∗a)a∗caa∗ − a∗aa∗

= a∗(aa∗caa∗)− a∗aa∗

= a∗aa∗ − a∗aa∗

= 0,

(9)

it follows that
0 = ax1 = (aba∗aa∗c− 1)aa∗.

Now since a is right ∗−cancelable we get aba∗aa∗ca = a, which proves the
inner invertibility of a with an inner inverse ba∗aa∗c.

Now again from right ∗−cancelability of a and because

(da− p)a∗ = daa∗ − ba∗aa∗

= ba∗(aa∗caa∗)− ba∗aa∗

= 0,

we get da = p. In the similar way, using left ∗−cancelability of a we get
ad = 1− q. ¤

Theorem 2.6. Let R be a ring with involution, let a ∈ R and let p ∈ R•.
Then the following statements are equivalent:

(1) There exists an inner inverse a− of a such that a−a = p;

(2) a is left ∗−cancelable and there exists a (p, 1 − p)−inner inverse of
a∗a.

Proof . Using technique of the proof of Theorem 2.5, the result can be ob-
tained.

¤

Analogously we get the following result.
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Theorem 2.7. Let R be a ring with involution and let a ∈ R. Then the
following statements are equivalent:

(1) There exists an inner inverse a− of a such that aa− = 1− q;

(2) a is right ∗−cancelable and there exists a (1 − q, q)−inner inverse of
aa∗.

Now, we prove some results concerning the reverse order law for inner
generalized inverses in a ring.

Theorem 2.8. Let a, b ∈ R, c = ab, and let p, q ∈ R•, such that a{1, 3p} 6=
∅ and b{1, 4q} 6= ∅. Then the following statements are equivalent:

(1) b−a− ∈ c{1} for some a− ∈ a{1, 3p} and for some b− ∈ b{1, 4q};
(2) r = p(1− q) ∈ R•;
(3) b−a− ∈ c{1} for all a− ∈ a{1, 3p} and all b− ∈ b{1, 4q}.

Moreover, in any of these cases, the corresponding idempotents w and v
of c are given by

w = (b−a−)(ab) = b−rb and 1− v = abb−a− = ara−.

Proof . (1) ⇒ (2): Let abb−a−ab = ab for some a− ∈ a{1, 3p} and b− ∈
b{1, 4q}. We multiply abb−a−ab = ab by a− from the left side and by b−

from the right side. Thus, we obtain that a−abb− = p(1 − q) = r is an
idempotent.

(2) ⇒ (3): Let a− ∈ a{1, 3p} and b− ∈ b{1, 4q} be arbitrary. Now we
have the following chain of implications and equivalencies:

p(1− q)p(1− q) = p(1− q)
⇐⇒ a−a(1− q)pbb− = p(1− q)
=⇒ a(1− q)pb = ap(1− q)b
⇐⇒ abb−a−ab = ab

⇐⇒ (3).

(3) ⇒ (1): Obvious.
Finally, we obtain

w = (b−a−)(ab) = b−pbb−b = b−p(1− q)b = b−rb
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and

1− v = abb−a− = a(1− q)a− = aa−a(1− q)a− = ara−.

¤

Recall that x◦ = {y ∈ R : xy = 0} and xR = {xy : y ∈ R} are right
ideals of R. Now, we can easily prove the following result.

Theorem 2.9. Suppose that the conditions of Theorem 2.8 are satisfied.
Then (1− v)◦ = (ra−)◦ and wR = b−rR.

Previous Theorem 2.8 and Theorem 2.9 are proved in [20] (Theorem 2.3
and Theorem 2.4) for complex matrices.

We use R† to denote the set of all Moore-Penrose invertible elements in
R. Now, we prove the following result.

Theorem 2.10. Let R be a ring with involution, a, b ∈ R†, 1− q = bb† and
p = a†a. Then the following statements are equivalent:

(1) b−a− ∈ (ab){1, 2} for some a− ∈ a{2, 3p} and for some b− ∈ b{2, 4q}.
(2) xy ∈ (ab){1, 2} for all y ∈ a{2, 3p} and for all x ∈ b{2, 4q}.

Proof . (1) ⇒ (2): Suppose that there exists some a−, b− such that the
following hold:

a−aa− = a−, a−a = a†a, b−bb− = b−, bb− = bb†,
abb−a−ab = ab, b−a−abb−a− = b−a−.

Also, suppose that for x, y ∈ R we have

yay = y, ya = a†a, xbx = x, bx = bb†.

We obtain the following:

abxyab = abb†a†ab = abb−a−ab = ab,

so xy ∈ (ab){1}.
Since x = xbb− and y = a−ay, we have

s = xyabxy = (xbb−)(a−ay)ab(xbb−)(a−ay).
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Also,
ayabxb = aa†abb†b = ab,

so we get

s = (xbb−a−)ayabxb(b−a−ay) = xb(b−a−)ab(b−a−)ay = (xbb−)(a−ay) = xy.

Consequently, xy ∈ (ab){2}.
(2) ⇒ (1): Obvious. ¤

Previous result is an algebraic version of [20] (Theorem 5.4).

Definition 2.4. Let p, q ∈ R•, and let a ∈ R be such that there exists a
(p, q)−inner inverse of a, and u, v ∈ R. Then the splitting a = u − v such
that there exists a (p, q)−inner inverse of u, is called a (p, q)−splitting of a
induced by its inner inverse.

See [11], [19] and references therein for various types of splitting of ma-
trices and operators.

Theorem 2.11. Let p, q ∈ R•, r ∈ R and let a ∈ R such that a = u−v is a
(p, q)-splitting of a induced by its inner inverse. Then for âr, the following
statements are satisfied:

(1) There exists ûr;

(2) âr − ûr = u=va= = a=vu= for arbitrary elements a= ∈ a{1, 3p, 4q}
and u= ∈ u{1, 3p, 4q};

(3) âr = (1− ûrv)−1ûr = ûr(1− vûr)−1;

(4) ûr = (1 + ârv)−1âr = âr(1 + vâr)−1.

Proof . Let a = u − v and let ûs be the (p, q)−inner inverse of u such that
s = ûs − ûsuûs.

(1) Obvious, taking into account that ûr = r − s + ûs, (see the equality
(6));

(2) If we denote a= = âk and u= = ûs then

âr − ûr = (âr − r)− (ûr − r)
= âraâr − ûruûr

= a=aa= − u=uu=

= u=ua= − u=aa=

= u=va=.

In the same manner, we get âr − ûr = a=vu=;
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(3) Using uâra = aâru with Theorem 2.3, we get the results;

(4) This part follows from (3).

¤

3 Inner generalized inverses in Banach algebras

Now, letR be a normed algebra. If a is invertible, then the condition number
of a is defined as k(a) = ‖a‖ · ‖a−1‖. The condition number of a is related
with the sensitivity of the equation ax = b for perturbations of a. If a is not
invertible then the generalized condition number can be used.

Definition 3.1. The generalized condition number kp,q,(r)(a) of a, is defined
with

kp,q,(r)(a) = ‖a‖ · ‖âr‖. (10)

Now, we prove the following result.

Theorem 3.1. Let a, b, r ∈ R and p, q ∈ R• such that there exist âr and
b̂r. Then the following results hold:

(1) âr − b̂r = b̂r(b− a)âr = âr(b− a)b̂r;

(2) If R is a Banach algebra and ‖âr‖ · ‖b− a‖ < 1, then

‖âr(b− a)‖
kp,q,(r)(a)(1 + ‖âr‖‖b− a‖) ≤

‖b̂r − âr‖
‖âr‖

≤ ‖âr(b− a)‖
1− ‖âr(b− a)‖ ≤

kp,q,(r)(a)‖b− a‖/‖a‖
1− kp,q,(r)‖b− a‖/‖a‖ .

(3) If R is a normed algebra, then

‖âr‖
1 + ‖âr(b− a)‖ ≤ ‖âr‖ ≤ ‖âr‖

1− ‖âr(b− a)‖ .

Proof .

(1) Obvious from Theorem 2.11;
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(2) From Theorem 2.3 and equality (7) we have

b̂r − âr = (1 + âr(b− a))−1âr − âr

=

( ∞∑

n=0

(−1)n(âr(b− a))n − 1

)
âr

=
∞∑

n=1

(−1)n(âr(b− a))nâr.

That is, the second and the third inequality hold.

On the other hand,

âr(b− a) = ârb− âra

= ârb− b̂rb = (âr − b̂r)b = âr(b− a)b̂rb
= âr(b− a)âra = âr(b− a)âr(1 + (b− a)âr)−1(1 + (b− a)âr)a
= âr(b− a)b̂r(1 + (b− a)âr)a
= (âr − b̂r)(1 + (b− a)âr)a.

So, the first inequality is true.

(3) Obvious. ¤

Theorem 2.11 and Theorem 3.1 extends some results from [11] and [12].
Let a− and b− be (p, q)−inner inverses of a and b respectively. Now we

are going to characterize elements a and b such that b−b = a−a + u and
bb− = aa− + v for 1− u2, 1− v2 ∈ R−1.

Such a characterization of outer invertible elements is proved in [18] and
for Drazin invertible elements in [4].

Theorem 3.2. [18] Let u ∈ R be such that 1−u2 ∈ R−1, and let p,m, p+u ∈
R•. Then the following conditions are equivalent:

(1) m = p + u

(2) p(1 + u)(1−m) = (1− p)(1− u)m;

(3) m(1− u)(1− p) = (1−m)(1 + u)p.

Theorem 3.3. Let a, b, u, v ∈ R be such that a− and b− are any (p, q)−inner
inverses of a and b respectively and 1−u2, 1−v2 ∈ R−1. Then the following
conditions are equivalent:
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(1) b−b = a−a + u and bb− = aa− + v;

(2) au + vb = b − a − a(a− − b−)b and ub− + a−v = b−bb− − a−aa− −
a−(a− b)b−.

Proof . The proof uses Theorem 3.2 and is similar with the proof of Theorem
3.2 in [18]. ¤

Let R be a complex Banach algebra with unit 1. Many papers deal with
the computing of the outer inverse of a given element in R (see [5], [8] and
[6]). Here, we give a method for computing the inner inverse with prescribed
idempotents of an element a in Banach algebra.

We state an auxiliary result.

Lemma 3.1. Let a, p ∈ R, such that pa = ap and p2 = p. Then the element
a is invertible in R if and only if ap is invertible in pRp and a(1 − p) is
invertible in (1− p)R(1− p). In this case

a−1 = [ap]−1
pRp + [a(1− p)]−1

(1−p)R(1−p).

Now, we prove the following result.

Theorem 3.4. Let p, q ∈ R• and a, c ∈ R such that, a− ∈ a{1, 3p, 4q, 5r}
and c− ∈ c{1, 2, 3(1− q), 4(1− p)}. Also, suppose that x0 = x0(1− q), and
β 6= 0 is a complex number. Define the sequence (xk)k in R in the following
way

xk+1 = xk + β(1− xka)c, k = 0, 1, 2, . . . . (11)

If (1− q − βac)k → 0, then xk → a−aa−, that is

r + xk+1 → a−.

The opposite implication holds if x0 − a− is not the left topological divisor
of zero.

Proof . The elements a− and c− satisfy

aa−a = a, cc−c = c, c−cc− = c−, a−a = p = cc−, aa− = c−c = 1− q.

Note that x0 = x0(1 − q) by the assumption. If we suppose that xk−1 =
xk−1(1− q) than we have

xk(1−q) = (xk−1+β(1−xk−1a)c)(1−q) = xk−1+β(1−xk−1a)c(1−q) = xk.

14



Then we get

xk+1 − a−aa− = xk − a−aa− + β(1− xka)c
= (xk − a−) + β(1− xka)cc−c
= (xk − a−)aa− − β(xka− a−a)c
= (xk − a−aa−)(1− q)− β(xk − a−aa−)ac
= (xk − a−aa−)(1− q − βac)
= . . .
= (x0 − a−aa−)(1− q − βac)k+1

= (x0 − a−)(1− q − βac)k+1

(12)

So, since (1− q − βac)k → 0 we get the result xk+1 → a−aa−, that is

r + xk+1 → a−.

If x0− a− is not a topological divisor of zero, then the opposite implica-
tion also holds.

¤
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