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Abstract

We study the Moore–Penrose inverse (MP-inverse) in the setting of rings
with involution. The results include the relation between regular, MP-
invertible and well-supported elements. We present an algebraic proof of
the reverse order rule for the MP-inverse valid under certain conditions on
MP-invertible elements. Applications to C∗-algebras are given.
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1 Introduction and preliminaries

In this paper we study the Moore–Penrose inverse in rings with involution. Where-
as in C∗-algebras or ∗-reducing algebras a∗a = 0 always implies a = 0, in this
paper we only consider ∗-cancellability as a local property.

The paper is motivated by the work of Harte and Mbekhta [11, 12] in C∗-al-
gebras and Koliha and Patricio [18] in rings with involution. (See also the recent
paper of Fernandez-Miranda and Labrousse [9].) We relate the concept of a well-
supported element in a ring with involution (see [1] for a C∗-algebra definition)
to the regularity of the element and the existence of the Moore–Penrose inverse.

In Section 3 we give applications of our results to C∗-algebras, in particular
to the characterization of stable rank 1 and real rank 1 (see [15]).

In Section 4 we study the reverse order rule for the product of Moore–Penrose
invertible elements in the setting of rings with involution, extending the known
results for matrices [4] and Hilbert space operators [2, 3] and [14]. We then apply
this result to obtain the reverse order rule for the weighted Moore–Penrose inverse
in C∗-algebras in Section 5, generalizing the matrix results of Sun and Wei [23].
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Throughout this paper, R will be a ring with a unit 1 6= 0 and an involution
a 7→ a∗ satisfying

(a∗)∗ = a, (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗.

By R−1 we denote the group of invertible elements in R, and by Rsa the set of
all self-adjoint elements of R (a∗ = a). An element a ∈ R is regular (in the sense
of von Neumann) if a ∈ aRa. The set of all regular elements of R will be denoted
by R−.

An element f ∈ R is idempotent if f2 = f . A self-adjoint idempotent is a
projection. The idempotents f, g ∈ A are equivalent , written f ∼ g, if there
exist elements a, b ∈ A such that f = ba and g = ab. Any regular element
a generates equivalent idempotents: If a = aba, then f = ba and g = ab are
equivalent idempotents. Idempotents f, g ∈ R are mutually orthogonal , written
f⊥g, if fg = 0 = gf .

The usual notation for the commutator of u and v is used: [u, v] = uv − vu.
In this paper we shall frequently use the fact that the product of two selfadjoint
elements u and v is self-adjoint if and only if [u, v] = 0.

Definition 1. We say that a ∈ R is Moore–Penrose invertible (or MP-invertible),
if there exists b ∈ R such that the following hold [20]:

aba = a, bab = b, (ab)∗ = ab, (ba)∗ = ba. (1)

Any b that satisfies (1) is called a Moore–Penrose inverse of a.

It is well known that the Moore–Penrose inverse is unique when it exists; here
is a quick argument based on the observation that [xa, ya] = [ax, ay] = 0 if x, y

are two candidates for a Moore–Penrose inverse for a:

x = xax = (xa)(ya)x = (ya)(xa)x = yax = y(ay)(ax) = y(ax)(ay) = yay = y.

We will denote the Moore–Penrose inverse of a by a†. We point out some prop-
erties of the Moore–Penrose inverse that follow from the definition. Clearly, a is
MP-invertible if and only if a∗ is MP-invertible; in this case

(a∗)† = (a†)∗.

If a is MP-invertible, then so are a∗a and aa∗, while

(a∗a)† = a†(a∗)†, (aa∗)† = (a∗)†a†.
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Definition 2. An element a ∈ R is left ∗-cancellable if a∗ax = a∗ay implies
ax = ay, it is right ∗-cancellable if xaa∗ = yaa∗ implies xa = ya, and ∗-cancellable
if it is both left and right cancellable. We observe that a is left ∗-cancellable if
and only if a∗ is right ∗-cancellable.

In a C∗-algebra, every element is ∗-cancellable: If a∗az = 0, then ‖az‖2 =
‖(az)∗az‖ = ‖z∗a∗az‖ = 0; similarly zaa∗ = 0 implies za = 0. A ring R is
called ∗-reducing if every element of R is ∗-cancellable. This is equivalent to the
implication a∗a = 0 =⇒ a = 0 for all a ∈ R.

If T : X → Y and S : Y → Z are bounded and linear operators between
normed spaces, then we may classify the par (S, T ) as left skew exact if there is
the equality

(ST )−1{0} = {0}. (2)

The condition (2) is equivalent to the condition S−1{0} ∩ T (X) = {0} which
holds for left*-cancellable a ∈ A if we take S = La∗ and T = La. Hence, for
left*-cancellable a ∈ A, the pair (La∗ , La) is left skew exact. When A = B(H) is
an algebra of bounded operators on Hilbert space, then for arbitrary a ∈ A the
pair (La∗ , La) is left skew exact (for more details concerning exactness see [19]) .

Definition 3. The Drazin inverse of a ∈ A is the element aD ∈ A which satisfies

aDaaD = aD, aaD = aDa, ak+1aD = ak (3)

for some nonnegative integer k. The least such k is the index of a, denoted by
ind(a).

Drazin inverse of a is unique if it exists. When ind(a) = 1 then the Drazin
inverse aD is called the group inverse. It is well known that aD double commutes
with a, that is, [a, x] = 0 =⇒ [aD, x] = 0. Also, when a = a∗ and a is Drazin
invertible then ind(a) ≤ 1.

The basic existence theorem for the Moore–Penrose inverse in the setting of
rings with involution was given in [22, Theorem 8.25] (see also [18, Theorem 5.3]):

Proposition 1. Let R be a ring with involution and let a ∈ R. Then the following
are equivalent:

(a) a is MP-invertible.

(b) a is left ∗-cancellable and a∗a is group invertible.
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(c) a is right ∗-cancellable and aa∗ is group invertible.

(d) a is ∗-cancellable and both a∗a and aa∗ are group invertible.

The MP-inverse of a is given by

a† = (a∗a)Da∗ = a∗(aa∗)D.

To gain access to the circle of ideas connected with the positivity of elements
of the form a∗a in C∗-algebras, we coin the following term.

Definition 4. A ring R with involution has the Gelfand–Naimark property (GN-
property) if

1 + x∗x ∈ R−1 for all x ∈ R. (4)

It is well known that C∗-algebras possess the GN-property.

2 Existence of the MP-inverse

We extend the definition [1, Definition 6.5.3] from C∗-algebras to rings with in-
volution.

Definition 5. An element a of a ring R with involution is well-supported if there
exists a self-adjoint idempotent p such that

ap = a, a∗a + 1− p ∈ R−1. (5)

The idempotent p is called the support of a.

(The second condition in [1, Definition 4.3.3] is the invertibility of a∗a in pRp;
this is easily seen to be equivalent to a∗a + 1− p ∈ R−1.)

Notice that if a is a linear bounded operator on a Hilbert space H, then a is
well-supported in the ring of all linear bounded operators on H if and only if the
range of a is closed. In this case p is the orthogonal projection from H onto the
range of a∗.

We observe that a support p of a ∈ R satisfies p0 = a0, where

a0 = {x ∈ R : ax = 0}.

Indeed, if ax = 0, then a∗apx = 0 and (a∗a + 1− p)px = 0, which implies px = 0.
Conversely, px = 0 implies ax = apx = 0. From p0 = a0 we deduce that the
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support is unique: Suppose p, q are two supports for a. Then p0 = a0 = q0. From
1 − p ∈ p0 ⊂ q0 we obtain q = qp. Interchanging the roles of p and q we get
p = pq. Taking adjoints, we get p = p∗ = qp = q. The support p is in the double
commutant of {a, a∗}, that is, [a, x] = 0 = [a∗, x] implies [p, x] = 0. This can be
also deduced from the equation p0 = a0.

Theorem 1. Let R be a ring with involution. An element a ∈ R is MP-invertible
if and only if a is left ∗-cancellable and well-supported. The support p of a is given
by p = a†a.

Proof. Suppose that a is left ∗-cancellable and well-supported with the support
p. We observe that [a∗a, p] = 0 and a∗ap = a∗a. Set

b = (a∗a + 1− p)−1p.

Then a∗ab = ba∗a = p, a∗ab2 = (a∗ab)b = pb = b, and (a∗a)2b = a∗a(a∗ab) =
a∗ap = a∗a. This proves b = (a∗a)D. Hence by Proposition 1, a is MP-invertible
with

a† = (a∗a + 1− p)−1p.

Conversely, let a be MP-invertible. Set p = a†a. Then ap = aa†a = a. By
Proposition 1, a∗a is group invertible. Then

((a∗a)D + 1− p)(a∗a + 1− p) = (a∗a)Da∗a + 1− p = a†a + 1− p = 1,

which shows that a∗a + 1 − p is invertible. Hence a is well-supported with the
support p = a†a.

In analogy with a support we can introduce a co-support of a as a projection
q ∈ R satisfying

qa = a, aa∗ + 1− q ∈ R−1. (6)

An element a ∈ R is MP-invertible if and only if it has a co-support q and is right
∗-cancellable. In this case q = aa†.

Theorem 2. Let R be a ring with involution satisfying the GN-property. Then
a ∈ R is MP-invertible if and only if a is regular.

Proof. Any MP-invertible element a is regular as a = aa†a.
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Suppose that a is regular, that is, aba = a for some b ∈ R. The elements
f = ba and g = ab are idempotents, and

s = 1 + (g∗ − g)∗(g∗ − g) ∈ R−1, t = 1 + (f∗ − f)∗(f∗ − f) ∈ R−1

in view of the GN-property. Define

p = gg∗s−1 and q = f∗ft−1.

After some algebra (see, for instance, [1, Proposition 4.6.2] for details) we obtain

p2 = p = p∗, pg = g, gp = p,

q2 = q = q∗, fq = f, qf = q.

From af = a and ga = a we obtain aq = a and pa = a, respectively. Set c = qbp.
Then

ac = aqbp = abp = gp = p ∈ Rsa,

ca = qbpa = qba = qf = q ∈ Rsa,

aca = (ac)a = pa = a,

cac = (ca)c = qc = c.

This proves that c is the Moore–Penrose inverse of a.

Regular elements in rings with involution need not be ∗-cancellable. The
preceding theorem together with Proposition 1 shows that in a ring with the
GN-property, regularity does imply ∗-cancellability.

3 Applications to C∗-algebras

Let A be a unital C∗-algebra. Then A is a ∗-reducing ring with the GN-property,
and we can apply to it the results of the preceding section. The denseness of
the set of all well-supported elements in A plays an important role in the theory
of stable rank of C∗-algebras. From Theorems 1 and 2 we obtain the following
result.

Proposition 2. In a unital C∗-algebra A the following conditions on a ∈ A are
equivalent:
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(a) a is well-supported,

(b) a is Moore–Penrose invertible,

(c) a is regular.

This has implications for characterizations within C∗-algebra theory involving
well-supported elements as the simple algebraic property of regularity does not
involve involution. It is also convenient to have on hand the other characterization
of well-supported elements as the Moore–Penrose invertible elements of A.

Let A be a unital C∗-algebra. The stable rank of A is the least positive integer
such that the elements (x1, . . . , xn) ∈ An with

∑n
i=1 x∗i xi ∈ A−1 are dense in An.

A parallel theory of real rank was introduced in [5]: It is the least nonnegative
integer n for which the elements of the form (x0, x1, . . . , xn) ∈ (Asa)n+1 with∑n

i=1 x2
i ∈ A−1 are dense in (Asa)n+1. For instance, A has stable rank 1 if the

invertible elements are dense in A; it has real rank 0 if the invertible self-adjoint
elements are dense in Asa; it has real rank less than or equal to 1 if the elements
x ∈ A for which x∗x + xx∗ ∈ A−1 are dense in A.

Let ex(A) be the set of all extreme points of the closed unit ball of A. A
C∗-algebra A is called extremally rich (see [5]) if the set A−1ex(A)A−1 is dense in
A. From Proposition 2 we obtain the following result (see [15, Proposition 3.2]).

Proposition 3. Let A be a unital C∗-algebra. If the A is extremally rich, then
the set of all regular elements of A is dense in A.

Proof. From [5, Theorem 1.1] it follows that if x is an extreme point of A, then
x∗x is invertible or 0 is an isolated spectral point of x∗x. Then x is Moore–Penrose
invertible by [16, Theorem 1.1], and hence x is regular by Proposition 2. Hence
A−1ex(A)A−1 ⊂ A−, and the result follows.

The following result is obtained from Proposition 2 and [1, Theorem 6.5.6].

Proposition 4. Let A be a unital C∗-algebra. Then the regular self-adjoint ele-
ments of A are dense in Asa if and only if real rank of A is 0.

We say that A has cancellation of idempotents if

f⊥h g⊥h, f + h ∼ g + h =⇒ f ∼ g.

From Proposition 2 and [15, Theorem 3.8] we get the following.
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Proposition 5. Let A be a unital C∗-algebra. Then the following are equaiva-
lent.

(a) A has stable rank 1.

(b) The regular elements of A are dense in A and A has cancellation of pro-
jections.

Proposition 2 combined with [15, Proposition 3.6] yields the following result.

Proposition 6. Let A be a unital C∗-algebra in which regular elements are dense
in A. Then A has real rank less than or equal to 1.

4 Reverse order rule for the Moore–Penrose inverse

If a, b are invertible in a semigroup with the unit, then the rule (ab)−1 = b−1a−1

is known as the reverse order rule for the ordinary inverse. In the case of the
Moore–Penrose inverse in a ring with involution, the rule (ab)† = b†a† is not
always satisfied. Greville [10] proved that (ab)† = b†a† holds for complex matrices
if and only if a†a commutes with bb∗ and bb† commutes with aa∗ (see also Boullion
and Odell [4]).

Bouldin [2, 3] and Izumino [14] generalized this result for closed range oper-
ators on Hilbert spaces. Their proofs are based on operator theoretical methods
and use properties of ranges of operators and gaps between subspaces.

In this section we give a proof of the reverse order rule for the Moore–Penrose
inverse in the setting of rings with involution. Our proof is close to the one given
by Boullion and Odell in [4] for matrices, but is purely algebraic and, unlike the
proof in [4], it avoids any reference to ranges of transformations.

We mention that multiple matrix products are considered in [13] and [24].
The weighted Moore-Penrose inverse is investigated in [23]. Reverse order rule
involving ranks of various types of matrices is studied in [7] and [25]. More general
reverse order rule for generalized inverses are also investigated in [8, 26]. Recently,
several papers on generalized inverses in rings, or Banach and C∗-algebras with
strong emphasis on algebraic methods, appeared [16, 17, 18].

Now we prove the main result of this section.

Theorem 3. Let R be a ring with involution, let a, b ∈ R be MP-invertible and let
(1−a†a)b be left ∗-cancellable. Then the following condition are equivalent:
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(a) ab is MP-invertible and (ab)† = b†a†,

(b) [a†a, bb∗] = 0 and [bb†, a∗a] = 0.

Proof. (b) =⇒ (a): Suppose that (b) holds. By part (c) of Lemma, we have
[a†a, (bb∗)†] = 0 and [bb†, (a∗a)†] = 0. From part (b) of Lemma, [a†a, bb†] =
[a†a, (bb∗)(bb∗)†] = 0. Then

abb†a†ab = a(bb†)(a†a)b = a(a†a)(bb†)b = ab,

b†a†abb†a† = b†(a†a)(bb†)a† = b†(bb†)(a†a)a† = b†a†,

which implies that b†a† is a reflexive (inner and outer) generalized inverse of ab.
Further,

abb†a† = abb†(a∗a)†a∗ = a(a∗a)†bb†a∗ = (a∗)†bb†a∗ = (abb†a†)∗

and
b†a†ab = b∗(bb∗)†a†ab = b∗a†a(bb∗)†b = b∗a†a(b†)∗ = (b†a†ab)∗.

(a) =⇒ (b): The left hand side of

b†a†ab = (b∗b)†(b∗a†ab)

is self-adjoint, which implies

[(b∗b)†, b∗a†ab] = 0.

Further,

abb∗b = abb†a†abb∗b = ab(b∗b)†(b∗a†ab)b∗b

= ab(b∗a†ab)(b∗b)†b∗b = abb∗a†abb†b

= abb∗a†ab,

where we used the equation (b∗b)†b∗b = b†b. Hence abb∗(1− a†a)b = 0, and

abb∗(1− a†a)(1− a†a)b = ab((1− a†a)b)∗(1− a†a)b = 0.

Using the hypothesis that (1− a†a)b is left ∗-cancellable, we get

abb∗(1− a†a) = 0 and abb∗ = abb∗a†a.

Now we find that
a†abb∗ = a†abb∗a†a = a†ab(a†ab)∗
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is self-adjoint, implying
[a†a, bb∗] = 0.

To prove the second result of (b), notice that by taking adjoints in (ab)† = b†a†

we obtain
(b∗a∗)† = (a∗)†(b∗)†.

From the first part of the implication (a) =⇒ (b), we get

[(b∗)†b∗, a∗a] = 0,

which is equivalent to
[bb†, a∗a] = 0. ¤

Let us remark that condition (ii) of the preceding theorem can be expressed
in several equivalent ways, as for instance in [4].

If R = B(X) is the space of all bounded linear operators on a Hilbert space
H, it is known that A ∈ B(X) is Moore–Penrose invertible if and only if the range
of A is closed. If A,B ∈ B(X) are two closed range operators such that

[A†A, BB∗] = 0 and [B†B,A∗A] = 0,

then our theorem implies that AB is also a closed range operator.

Remark 1. The preceding theorem holds in ∗-reducing rings without the hy-
pothesis that (1−a†a)b is left ∗-cancellable, which is then automatically satisfied.
Hence we recover the results of Bouldin [2, 3] and Izumino [14] for Hilbert space
operators. The results of Greville [10] are obtained as a special case of our Theo-
rem, without the hypotheses of Moore–Penrose invertibility and ∗-cancellability,
which are always true for matrices. Notice that results obtained in [13] hold in
∗-reducible ring providing that the implication uv = 1 =⇒ vu = 1 is satisfied.

5 The weighted MP -inverse in C∗-algebras

In this section we consider the so-called weighted MP-inverse. It was introduced
by Chipman [6] for matrices, who used positive definite weight matrices, and
extended by Prasad and Bapat [21] to include invertible, not necessarily positive
definite weights.
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Definition 6. Let R be a ring with involution and e, f two invertible elements
in R. We say that an element a ∈ R has a weighted MP-inverse with weights e, f

if there exists b ∈ R such that

aba = a, bab = b, (eba)∗ = eba, (fab)∗ = fab. (7)

An element a ∈ R can have at most one weighted MP-inverse with given
weights e, f : Suppose that c ∈ R is another such weighted MP-inverse for a.
Then (ab)∗ = eabe−1 and (ac)∗ = eace−1. We also have abac = ac and acab = ab.
Taking adjoints we obtain ca = ba. Finally, b = bab = bac = cac = c. The unique
weighted MP-inverse with weights e, f will be denoted by a†e,f if it exists.

Prasad and Bapat [21, Theorem 3 and Theorem 8] found necessary and suffi-
cient conditions for the existence of the weighted MP-inverse for matrices. They
showed that the conditions that a∗ea and af−1a∗ are self-adjoint are necessary
for the existence of a†e,f . It therefore makes sense to assume that e and f are self-
adjoint. In the next theorem we prove the existence of the weighted MP-inverse
in a C∗-algebra A under the hypothesis that e, f are positive invertible elements
in A.

Suppose e ∈ A is positive and invertible. Then the mapping x 7→ x∗e = e−1x∗e
is an involution on A. Further, for any x ∈ A define ‖x‖e = ‖e1/2xe−1/2‖. We can
verify that Ae = (A, ∗e, ‖·‖e) is a unital C∗-algebra with the involution x 7→ x∗e

and the norm ‖·‖e. Conditions (7) can be rewritten as

aba = a, bab = b, (ba)∗e = ba, (ab)∗f = ab. (8)

We can then prove the following theorem.

Theorem 4. Let A be a unital C∗-algebra and let e, f be positive invertible ele-
ments of A. If a ∈ A is regular, then the unique weighted MP-inverse a†e,f exists.

Proof. Since a is regular in the C∗-algebra Ae, a has the MP-inverse u ∈ Ae

satisfying
aua = a, uau = u, (ua)∗e = ua, (au)∗e = au.

Similarly, a has the MP-inverse v in the C∗-algebra Af satisfying

ava = a, vav = v, (va)∗f = va, (av)∗f = av.

It is then straightforward to verify that b = uav satisfies (8) and is therefore the
required MP-inverse a†e,f .
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It is useful to express the weighted MP-inverse in terms of the ordinary MP-
inverse.

Theorem 5. Let A be a unital C∗-algebra and let e, f be positive invertible ele-
ments of A. If a ∈ A is regular, then

a†e,f = e−1/2(f1/2ae−1/2)†f1/2. (9)

Proof. Since a is regular with an inner inverse a−, then so is a1 = f1/2ae−1/2

with an inner inverse e1/2a−f−1/2. Hence a†1 exists. Write b = e−1/2a†1f
1/2. Then

a = f−1/2a1e
1/2, ba = e−1/2a†1a1e

1/2 and bab = e1/2a†1a1a
†
1f

1/2 = b. Similarly we
verify that ab = f−1/2a1a

†
1e

1/2 and aba = f−1/2a1a
†
1a1e

1/2 = a. Further,

(ba)∗e = e−1e1/2(a†1a1)
∗e−1/2e = e−1/2a†1a1e

1/2 = ba,

(ab)∗f = f−1f1/2(a1a
†
1)
∗f−1/2f = f−1/2a1a

†
1f

1/2 = ab.

This proves b = a†e,f .

Before we can give the reverse order rule for the weighted MP-inverse we
introduce the weighted involution in A. Let e, f be positive invertible elements of
A and define x∗e,f = e−1x∗f . It can be checked that this defines an involution on
A satisfying (a∗e,f )∗ = (a∗)∗e,f . Note that the B∗-identity need not hold for this
involution.

Theorem 6. Let A be a unital C∗-algebra and e, f, h positive invertible elements
of A. It a, b ∈ A are regular, the following conditions are equivalent:

(a) ab is regular and (ab)†e,h = b†e,fa†f,h.

(b) [a†f,h a, bb∗e,f ] = 0.

Proof. Let a1 = h1/2af−1/2 and b1 = f1/2be−1/2. Then a1b1 = h1/2abe−1/2.
According to Theorem 5,

(ab)†e,h = e−1/2(a1b1)†h1/2, b†e,fa†f,h = e−1/2b†1a
†
1h

1/2,

provided a1, b1, a1b1 are regular, which occurs if and only if a, b, ab are regular,
respectively. Hence the equation (ab)†e,h = b†e,fa†f,h holds if and only if (a1b1)† =
b†1a

†
1, and we can apply Theorem 3 to finish the proof.
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The following equations show that (b) is equivalent to [a†1a1, b1b
∗
1] = 0:

a†1a1 = (h1/2af−1/2)†h1/2af−1/2 = f1/2a†f,h af−1/2,

b1b
∗
1 = (f1/2be−1/2)(e−1/2b∗f1/2) = f1/2bb∗e,ff−1/2.

The proof now follows from Theorem 3.

Necessary and sufficient conditions for the reverse order rule for the weighted
MP-inverse for matrices were recently given by Sun and Wei in [23] in terms of
the inclusion of matrix ranges (column spaces).
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