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Abstract

We study the Moore-Penrose inverse (MP-inverse) in the setting of rings
with involution. The results include the relation between regular, MP-
invertible and well-supported elements. We present an algebraic proof of
the reverse order rule for the MP-inverse valid under certain conditions on
MP-invertible elements. Applications to C*-algebras are given.
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1 Introduction and preliminaries

In this paper we study the Moore—Penrose inverse in rings with involution. Where-
as in C*-algebras or *reducing algebras a*a = 0 always implies ¢ = 0, in this
paper we only consider x-cancellability as a local property.

The paper is motivated by the work of Harte and Mbekhta [11, 12] in C*-al-
gebras and Koliha and Patricio [18] in rings with involution. (See also the recent
paper of Fernandez-Miranda and Labrousse [9].) We relate the concept of a well-
supported element in a ring with involution (see [1] for a C*-algebra definition)
to the regularity of the element and the existence of the Moore—Penrose inverse.

In Section 3 we give applications of our results to C*-algebras, in particular
to the characterization of stable rank 1 and real rank 1 (see [15]).

In Section 4 we study the reverse order rule for the product of Moore—Penrose
invertible elements in the setting of rings with involution, extending the known
results for matrices [4] and Hilbert space operators [2, 3] and [14]. We then apply
this result to obtain the reverse order rule for the weighted Moore—Penrose inverse

in C*-algebras in Section 5, generalizing the matrix results of Sun and Wei [23].
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Throughout this paper, R will be a ring with a unit 1 # 0 and an involution

a — a* satisfying
(a*)"=a, (a+b)"=a"+b", (ab)*=0b"a".

By R~! we denote the group of invertible elements in R, and by R the set of
all self-adjoint elements of R (a* = a). An element a € R is regular (in the sense
of von Neumann) if a € aRa. The set of all regular elements of R will be denoted
by R™.

An element f € R is idempotent if f2 = f. A self-adjoint idempotent is a
projection. The idempotents f,g € A are equivalent, written f ~ g, if there
exist elements a,b € A such that f = ba and g = ab. Any regular element
a generates equivalent idempotents: If a = aba, then f = ba and g = ab are
equivalent idempotents. Idempotents f,g € R are mutually orthogonal, written
flg,if fg=0=gf.

The usual notation for the commutator of u and v is used: [u,v] = uv — vu.
In this paper we shall frequently use the fact that the product of two selfadjoint

elements u and v is self-adjoint if and only if [u,v] = 0.

Definition 1. We say that a € R is Moore—Penrose invertible (or MP-invertible),
if there exists b € R such that the following hold [20]:

aba = a, bab =10, (ab)* = ab, (ba)* = ba. (1)
Any b that satisfies (1) is called a Moore—Penrose inverse of a.

It is well known that the Moore—Penrose inverse is unique when it exists; here
is a quick argument based on the observation that [za,ya| = [az,ay] = 0 if z,y

are two candidates for a Moore—Penrose inverse for a:

z = zaz = (va)(ya)r = (ya)(za)r = yaz = y(ay)(az) = y(az)(ay) = yay = y.

We will denote the Moore-Penrose inverse of a by af. We point out some prop-
erties of the Moore—Penrose inverse that follow from the definition. Clearly, a is

MP-invertible if and only if a* is MP-invertible; in this case
(a*)f = (ah)".
If a is MP-invertible, then so are a*a and aa®, while

(a*a)t = al(a®)!, (aa®)! = (a")Tal.
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Definition 2. An element a € R is left x-cancellable if a*ax = a*ay implies
ax = ay, it is right *-cancellable if raa* = yaa™ implies xza = ya, and x-cancellable
if it is both left and right cancellable. We observe that a is left x-cancellable if

and only if a* is right *-cancellable.

In a C*-algebra, every element is *-cancellable: If a*az = 0, then |az||? =
|(az)*az|| = ||z*a*az| = 0; similarly zaa* = 0 implies za = 0. A ring R is
called x-reducing if every element of R is x-cancellable. This is equivalent to the
implication a*a =0 = a =0 for all a € R.

IfT: X —Yand S:Y — Z are bounded and linear operators between
normed spaces, then we may classify the par (S,T) as left skew exact if there is
the equality

(ST)~{0} = {0} (2)
The condition (2) is equivalent to the condition S™1{0} N T(X) = {0} which
holds for left*-cancellable a € A if we take S = Lo and T = L,. Hence, for
left*-cancellable a € A, the pair (Lg+, L,) is left skew exact. When A = B(H) is
an algebra of bounded operators on Hilbert space, then for arbitrary a € A the

pair (Lg+, Lg) is left skew exact (for more details concerning exactness see [19]) .

Definition 3. The Drazin inverse of a € A is the element a” € A which satisfies

aPaa? = aP, ad® =aPa, oF*laP =d¥ (3)
for some nonnegative integer k. The least such k is the index of a, denoted by
ind(a).

Drazin inverse of a is unique if it exists. When ind(a) = 1 then the Drazin

inverse a?

is called the group inverse. It is well known that a” double commutes
with a, that is, [a,2] = 0 = [a”
invertible then ind(a) < 1.

The basic existence theorem for the Moore—Penrose inverse in the setting of

,z] = 0. Also, when a = a* and a is Drazin

rings with involution was given in [22, Theorem 8.25] (see also [18, Theorem 5.3]):

Proposition 1. Let R be a ring with involution and let a € R. Then the following

are equivalent:
(a) a is MP-invertible.

(b) a s left x-cancellable and a*a is group invertible.



Moore—Penrose inverse 4

(¢) a is right x-cancellable and aa* is group invertible.
(d) a is x-cancellable and both a*a and aa* are group invertible.
The MP-inverse of a is given by
af = (a*a)Pa* = a*(aa*)P.
To gain access to the circle of ideas connected with the positivity of elements
of the form a*a in C*-algebras, we coin the following term.

Definition 4. A ring R with involution has the Gelfand-Naimark property (GN-
property) if
l+z*'zeR! foralzeR. (4)

It is well known that C*-algebras possess the GN-property.

2 Existence of the MP-inverse

We extend the definition [1, Definition 6.5.3] from C*-algebras to rings with in-

volution.

Definition 5. An element a of a ring R with involution is well-supported if there

exists a self-adjoint idempotent p such that
ap=a, a‘a+l—peR L (5)
The idempotent p is called the support of a.

(The second condition in [1, Definition 4.3.3] is the invertibility of a*a in pRp;
this is easily seen to be equivalent to a*a +1 —p & R™1.)

Notice that if @ is a linear bounded operator on a Hilbert space H, then a is
well-supported in the ring of all linear bounded operators on H if and only if the
range of a is closed. In this case p is the orthogonal projection from H onto the
range of a*.

We observe that a support p of a € R satisfies p® = a?, where
a® = {z €R:ax =0}.

Indeed, if ax = 0, then a*apz = 0 and (a*a + 1 — p)px = 0, which implies px = 0.

Conversely, pz = 0 implies az = apr = 0. From p° = a° we deduce that the
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support is unique: Suppose p, ¢ are two supports for a. Then p° = a° = ¢°. From
1 —p € p® C ¢° we obtain ¢ = gp. Interchanging the roles of p and ¢ we get
p = pq. Taking adjoints, we get p = p* = gp = ¢. The support p is in the double
commutant of {a,a*}, that is, [a,z] = 0 = [a*, z] implies [p,x] = 0. This can be

also deduced from the equation p° = a°.

Theorem 1. Let R be a ring with involution. An element a € R is MP-invertible
if and only if a is left x-cancellable and well-supported. The support p of a is given
by p = ala.

Proof. Suppose that a is left x-cancellable and well-supported with the support
p. We observe that [a*a,p] = 0 and a*ap = a*a. Set

b= (a*a+1—p)'p.
Then a*ab = ba*a = p, a*ab® = (a*ab)b = pb = b, and (a*a)?b = a*a(a*adb) =
a*ap = a*a. This proves b = (a*a)D . Hence by Proposition 1, a is MP-invertible
with

ol = (a*a+1—p)~1p.

Conversely, let a be MP-invertible. Set p = afa. Then ap = aa'a = a. By

Proposition 1, a*a is group invertible. Then
(a*a)P +1-p)(a*a+1—p) = (a*a)Pa*a+1-p=dala+1-p=1,

which shows that a*a + 1 — p is invertible. Hence a is well-supported with the

support p = ala. [

In analogy with a support we can introduce a co-support of a as a projection

q € R satisfying
ga=a, aa*+1—qgeR L (6)
An element a € R is MP-invertible if and only if it has a co-support ¢ and is right

s-cancellable. In this case ¢ = aal.

Theorem 2. Let R be a ring with involution satisfying the GN-property. Then
a € R is MP-invertible if and only if a is reqular.

Proof. Any MP-invertible element a is regular as a = aa'a.
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Suppose that a is regular, that is, aba = a for some b € R. The elements

f =ba and g = ab are idempotents, and
S=14(g — )9 —9) €RTL, t=1+(f = f)'(f — ) e R
in view of the GN-property. Define
p=gg*s”! and ¢q=fft .
After some algebra (see, for instance, [1, Proposition 4.6.2] for details) we obtain

pP’=p=p°, pg=g, gp=n,
7 7, fa=1f af=q

From af = a and ga = a we obtain aq = a and pa = a, respectively. Set ¢ = qbp.
Then

ac = agbp = abp = gp = p € R*,
ca = qbpa g qba g qf g q E RSa)
aca = (ac)a = pa = a,

cac = (ca)e = qec = c.
This proves that ¢ is the Moore—Penrose inverse of a. O

Regular elements in rings with involution need not be x-cancellable. The
preceding theorem together with Proposition 1 shows that in a ring with the

GN-property, regularity does imply *-cancellability.

3 Applications to C*-algebras

Let A be a unital C*-algebra. Then A is a #-reducing ring with the GN-property,
and we can apply to it the results of the preceding section. The denseness of
the set of all well-supported elements in A plays an important role in the theory
of stable rank of C*-algebras. From Theorems 1 and 2 we obtain the following

result.

Proposition 2. In a unital C*-algebra A the following conditions on a € A are

equivalent:
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(a) a is well-supported,
(b) @ is Moore—Penrose invertible,
(¢) a is regular.

This has implications for characterizations within C*-algebra theory involving
well-supported elements as the simple algebraic property of regularity does not
involve involution. It is also convenient to have on hand the other characterization
of well-supported elements as the Moore—Penrose invertible elements of A.

Let A be a unital C*-algebra. The stable rank of A is the least positive integer
such that the elements (z1,...,z,) € A" with Y " | zfx; € A1 are dense in A".
A parallel theory of real rank was introduced in [5]: It is the least nonnegative
integer n for which the elements of the form (zg,x1,...,7,) € (A%)"! with
S 2?2 € A7l are dense in (A%?)"T!. For instance, A has stable rank 1 if the
invertible elements are dense in A; it has real rank 0 if the invertible self-adjoint
elements are dense in A%?; it has real rank less than or equal to 1 if the elements
x € A for which z*z + z2* € A~! are dense in A.

Let ex(A) be the set of all extreme points of the closed unit ball of A. A
C*-algebra A is called extremally rich (see [5]) if the set A~ tex(A).A™! is dense in
A. From Proposition 2 we obtain the following result (see [15, Proposition 3.2]).

Proposition 3. Let A be a unital C*-algebra. If the A is extremally rich, then

the set of all reqular elements of A is dense in A.

Proof. From [5, Theorem 1.1] it follows that if = is an extreme point of A, then
¥z is invertible or 0 is an isolated spectral point of z*z. Then x is Moore—Penrose
invertible by [16, Theorem 1.1], and hence z is regular by Proposition 2. Hence
A~ lex(A)A™! € A, and the result follows. O

The following result is obtained from Proposition 2 and [1, Theorem 6.5.6].

Proposition 4. Let A be a unital C*-algebra. Then the regular self-adjoint ele-

ments of A are dense in A% if and only if real rank of A is 0.

We say that A has cancellation of idempotents if
fLh glh, f+h~g+h = f~g

From Proposition 2 and [15, Theorem 3.8] we get the following.
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Proposition 5. Let A be a unital C*-algebra. Then the following are equaiva-

lent.

(a) A has stable rank 1.

(b) The regular elements of A are dense in A and A has cancellation of pro-

jections.
Proposition 2 combined with [15, Proposition 3.6] yields the following result.

Proposition 6. Let A be a unital C*-algebra in which regular elements are dense

in A. Then A has real rank less than or equal to 1.

4 Reverse order rule for the Moore—Penrose inverse

If a,b are invertible in a semigroup with the unit, then the rule (ab)~! = b~la™!
is known as the reverse order rule for the ordinary inverse. In the case of the
Moore-Penrose inverse in a ring with involution, the rule (ab)l = bfal is not
always satisfied. Greville [10] proved that (ab)’ = bTal holds for complex matrices
if and only if afa commutes with bb* and bb' commutes with aa* (see also Boullion
and Odell [4]).

Bouldin [2, 3] and Izumino [14] generalized this result for closed range oper-
ators on Hilbert spaces. Their proofs are based on operator theoretical methods
and use properties of ranges of operators and gaps between subspaces.

In this section we give a proof of the reverse order rule for the Moore—Penrose
inverse in the setting of rings with involution. Our proof is close to the one given
by Boullion and Odell in [4] for matrices, but is purely algebraic and, unlike the
proof in [4], it avoids any reference to ranges of transformations.

We mention that multiple matrix products are considered in [13] and [24].
The weighted Moore-Penrose inverse is investigated in [23]. Reverse order rule
involving ranks of various types of matrices is studied in [7] and [25]. More general
reverse order rule for generalized inverses are also investigated in [8, 26]. Recently,
several papers on generalized inverses in rings, or Banach and C*-algebras with
strong emphasis on algebraic methods, appeared [16, 17, 18].

Now we prove the main result of this section.

Theorem 3. Let R be a ring with involution, let a,b € R be MP-invertible and let

(1—a'a)b be left x-cancellable. Then the following condition are equivalent:
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(a) ab is MP-invertible and (ab)? = blaT,
(b) [a'a,bb*] = 0 and [bb,a*a] = 0.

Proof. (b) = (a): Suppose that (b) holds. By part (c) of Lemma, we have
[afa, (00*)T] = 0 and [bb', (a*a)f] = 0. From part (b) of Lemma, [a'a,bbl] =
[aTa, (bb*)(bb*)T] = 0. Then

abbtatab = a(bb)(a'a)b = a(a'a)(bb")b = ab,

blatabblal = b (afa)(bb")al = b7 (b0T)(aTa)al = bTal,

which implies that bfal is a reflexive (inner and outer) generalized inverse of ab.
Further,

abb'a’ = abb'(a*a)ta* = a(a*a)bb'a* = (a*)Tbbla* = (abblal)*

and
blatab = b* (bb*)Talab = b*aa(bb*)Tb = b*ala(b’)* = (blaTab)*.

(a) = (b): The left hand side of
blatab = (b*b)T(b*alab)
is self-adjoint, which implies
[(b*D)T, b*aTab] = 0.
Further,

abb*b = abb'a’abb*b = ab(b*b)T (b*alab)b*b
= ab(b*a’ab)(b*b)Tb*b = abb*a’abb’h
= abb*a'ab,

where we used the equation (b*b)'0*b = b'b. Hence abb*(1 — ata)b = 0, and
abb*(1 — a'a)(1 — a'a)b = ab((1 — a'a)b)*(1 — a'a)b = 0.
Using the hypothesis that (1 — afa)b is left *-cancellable, we get
abb*(1 —a'a) =0 and abb* = abb*ala.

Now we find that
alabb* = a'abb*a’a = a'ab(a'ab)*
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is self-adjoint, implying
[a'a, bb*] = 0.

To prove the second result of (b), notice that by taking adjoints in (ab)’ = bfaf
we obtain
(b*a*)t = (a*)T(0")".
From the first part of the implication (a) = (b), we get
[(b*)76%,a*a] = 0,

which is equivalent to
[bb', a*a) = 0. O

Let us remark that condition (ii) of the preceding theorem can be expressed
in several equivalent ways, as for instance in [4].

If R = B(X) is the space of all bounded linear operators on a Hilbert space
H, it is known that A € B(X) is Moore—Penrose invertible if and only if the range
of A is closed. If A, B € B(X) are two closed range operators such that

[ATA,BB*] =0 and [B'B,A*A]=0,
then our theorem implies that AB is also a closed range operator.

Remark 1. The preceding theorem holds in *-reducing rings without the hy-
pothesis that (1 —afa)b is left *-cancellable, which is then automatically satisfied.
Hence we recover the results of Bouldin [2, 3] and Izumino [14] for Hilbert space
operators. The results of Greville [10] are obtained as a special case of our Theo-
rem, without the hypotheses of Moore—Penrose invertibility and *-cancellability,
which are always true for matrices. Notice that results obtained in [13] hold in

x-reducible ring providing that the implication uv =1 = vu =1 is satisfied.

5 The weighted M P-inverse in C*-algebras

In this section we consider the so-called weighted MP-inverse. It was introduced
by Chipman [6] for matrices, who used positive definite weight matrices, and
extended by Prasad and Bapat [21] to include invertible, not necessarily positive

definite weights.
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Definition 6. Let R be a ring with involution and e, f two invertible elements
in R. We say that an element a € R has a weighted MP-inverse with weights e, f
if there exists b € R such that

aba =a, bab=>b, (eba)* =eba, (fab)" = fab. (7)

An element @ € R can have at most one weighted MP-inverse with given
weights e, f: Suppose that ¢ € R is another such weighted MP-inverse for a.
Then (ab)* = eabe™! and (ac)* = eace™!. We also have abac = ac and acab = ab.
Taking adjoints we obtain ca = ba. Finally, b = bab = bac = cac = c¢. The unique
weighted MP-inverse with weights e, f will be denoted by a; f if it exists.

Prasad and Bapat [21, Theorem 3 and Theorem 8| found necessary and suffi-
cient conditions for the existence of the weighted MP-inverse for matrices. They
showed that the conditions that a*ea and af~'a* are self-adjoint are necessary
for the existence of al’ 5 It therefore makes sense to assume that e and f are self-
adjoint. In the next theorem we prove the existence of the weighted MP-inverse
in a C*-algebra A under the hypothesis that e, f are positive invertible elements
in A.

Suppose e € A is positive and invertible. Then the mapping z — z*¢ = ¢!

x*e
is an involution on A. Further, for any z € A define ||z||. = [le!/?ze~/2||. We can
verify that A, = (A, *,||-||¢) is a unital C*-algebra with the involution z — x*¢

and the norm ||-||c. Conditions (7) can be rewritten as
aba =a, bab="b, (ba)*=ba, (ab)*’ = ab. (8)
We can then prove the following theorem.

Theorem 4. Let A be a unital C*-algebra and let e, f be positive invertible ele-

ments of A. If a € A is reqular, then the unique weighted MP-inverse az 5 exists.

Proof. Since a is regular in the C*-algebra A., a has the MP-inverse u € A,
satisfying

ava =a, wau=u, (ua)*=wa, (au)* = au.

Similarly, a has the MP-inverse v in the C*-algebra A; satisfying
ava = a, vav =", (va)*f = va, (cw)*f = av.

It is then straightforward to verify that b = uav satisfies (8) and is therefore the

required MP-inverse al Iz O
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It is useful to express the weighted MP-inverse in terms of the ordinary MP-

inverse.

Theorem 5. Let A be a unital C*-algebra and let e, f be positive invertible ele-
ments of A. If a € A is regular, then
an _ e_l/Q(fl/Qae_l/Q)Tfl/Q. (9)

67
Proof. Since a is regular with an inner inverse a~, then so is a1 = f%/2ae=1/2
with an inner inverse e’/2a~ f~1/2. Hence a{ exists. Write b = e_l/2a];f1/2. Then
a=f"12q1e"2 ba=e —1/241 alel/ and bab = el/QaTa anl/Q = b. Similarly we

verify that ab = f*1/2a ap Tel/2 and aba = Y2 ala e}/2 = a. Further,

(ba)*® = e 'e'%(ala,) e 2 = e 2ala,e'/? = ba,

(ab)* = FLfY2 (a0l ) FV2F = 712 0l FY/2 = ab,
This proves b = a; ;- -

Before we can give the reverse order rule for the weighted MP-inverse we
introduce the weighted involution in A. Let e, f be positive invertible elements of
A and define z*¢f = e~1z*f. It can be checked that this defines an involution on
A satisfying (a*¢7)* = (a*)*/. Note that the B*-identity need not hold for this

involution.

Theorem 6. Let A be a unital C*-algebra and e, f, h positive invertible elements

of A. It a,b € A are reqular, the following conditions are equivalent:
(a) ab is regular and (ab)z,h = b;fa},h.
(b) [al, a,bb*f] = 0.
Proof. Let a1 = hl/zaf*1/2 and b; = f1/266*1/2. Then a;by = hi/2abe=1/2.

According to Theorem 5,

(ab) , = e (b)) h!2, 0] b, = e/ 2lalnt?,

provided a1, b1,a1b1 are regular, which occurs if and only if a, b, ab are regular,
respectively. Hence the equation (ab)z h = bl ayp, holds if and only if (a1by)t =
blal 101, and we can apply Theorem 3 to finish the proof.
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The following equations show that (b) is equivalent to [alay, b,b}] = 0:

aial — (WM 2af V2R 20 12 = fl/za;r% af /2
blbi _ (fl/?be—l/Q)(e—l/Qb*fl/Q) _ fl/be*e,ff—l/Q.

The proof now follows from Theorem 3. O

Necessary and sufficient conditions for the reverse order rule for the weighted

MP-inverse for matrices were recently given by Sun and Wei in [23] in terms of

the inclusion of matrix ranges (column spaces).
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