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Abstract. C* algebra “spectral permanence” extends from the ordinary in-
verse to the Moore-Penrose inverse.

“Spectral permanence” for C* algebras says that if T : A → B is an isometric
C* homomorphism then the image spectrum σB(Ta) is always the same as the
original spectrum σA(a): equivalently invertibility Ta ∈ B−1 implies invertibility
a ∈ A−1. In this note we extend this to relative regularity, and offer a fresh proof
of the Harte/Mbekhta theorem ([5] Theorem 6) which says that relatively regular
C* algebra elements always have “Moore-Penrose inverse”. Instead of [5] the “poor
man’s path” between projections, we proceed via the Drazin inverse.

1. Spectral permanence

Suppose T : A → B is a homomorphism of semigroups: here a “semigroup” A
is assumed to have an identity 1 , and we write A−1 for its subgroup of invertibles;
then there is inclusion

1.1 T (A−1) ⊆ B−1 ⊆ B ,

and hence also

1.2 A−1 ⊆ T−1(B−1) ⊆ A ;

now if there is equality in (1.2) we shall say that T has the Gelfand property,

1.3 A−1 = T−1(B−1) :

this famously is the case when A is a commutative Banach algebra and T : A →
B = C(X) is the Gelfand mapping from A to the continuous functions on the
“maximal ideal space” X = σ(A) of A. Another familiar example is the left regular
representation

1.4 T = L : a 7→ La (A → AA ≡ Map(A,A)) ,

where, for each x ∈ A,
La(x) = ax .

This holds also for the natural embedding

1.5 A = commB(K) ⊆ B ,
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of the commutant of a subset K ⊆ B,

1.6 commB(K) = {b ∈ B : a ∈ K =⇒ ba = ab} .

The same is also true, among rings, of the quotient mapping

1.7 T : A → A/Rad(A) ,

where

1.8 Rad(A) = {a ∈ A : 1−Aa ⊆ A−1}
is the Jacobson radical of the ring A. Our final example, if not the most “elemen-
tary”, is the process of taking the determinant of a square matrix: it is precisely
because of the Gelfand property that it “determines” whether or not a matrix is
invertible.

Generally when A is a complex linear algebra there is a spectrum

1.9 σA(a) = {λ ∈ C : a− λ 6∈ A−1} ,

for elements a ∈ A: thus complex analysis is harnessed to the theory of invertibility.
Now inclusion (1.1) takes the form

1.10 σB(Ta) ⊆ σA(a) ,

while equality (1.3) corresponds to equality in (1.10), where it is referred to as
“spectral permanence”. Generally if a homomorphism T : A → B of Banach
algebras is isometric, or more generally bounded below, then there is inclusion

1.11 ∂σA(a) ⊆ σB(Ta) ⊆ σA(a) ,

where we write ∂K for the topological boundary of K ⊆ C: thus the condition, for
a particular a ∈ A, that

1.12 σA(a) ⊆ ∂σA(a)

is sufficient for “spectral permanence at a” in the sense of equality in (1.10).

2. Generalized permanence

If A is a semigroup we shall write

2.1 A∩ = {a ∈ A : a ∈ aAa}
for the “regular” or relatively regular elements of A, those a ∈ A which have a
generalized inverse b ∈ A for which

2.2 a = aba :

we remark that if (2.2) holds the products

p = ba = p2 , q = ab = q2

are both idempotent. Generally if T : A → B is a homomorphism there is inclusion

2.3 T (A∩) ⊆ B∩ ⊆ B ,

and hence also

2.4 A∩ ⊆ T−1(B∩) ⊆ A .

If there is equality in (2.4) we shall say that T has generalized permanence. This
happens for example when

2.5 T−1(0) ⊆ A∩ , T (A) = B :
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recall the implication

(a− aAa) ∩A∩ 6= ∅ =⇒ a ∈ A∩ .

If in particular there is b ∈ A for which

2.6 a− aba = 0 = ab− ba ,

then a ∈ A is very special; we shall say that a ∈ A is simply polar, and refer to the
product bab as the group inverse for a ∈ A: more generally a group inverse for a
power an gives rise to a Drazin inverse for a. We remark that it is necessary and
sufficient for a ∈ A to be simply polar that

2.7 a ∈ a2A ∩Aa2 :

indeed [9] there is implication

2.8 a2u = a = va2 =⇒ au = va , aua = a = ava ,

giving (2.6) with b = vau. In particular if A = B(X) for a Banach space X then
relatively regular elements have closed range:

Theorem 2.1. If a ∈ A = B(X) for a normed space X then

2.9 a ∈ A∩ =⇒ a(X) = cl a(X) .

If X is complete then necessary and sufficient for a ∈ A to be simply polar is that
it has ascent ≤ 1,

2.10 a−2(0) ⊆ a−1(0) ; equivalently a−1(0) ∩ a(X) = O ≡ {0} ,

and also descent ≤ 1,

2.11 a(X) ⊆ a2(X) ; equivalently a−1(0) + a(X) = X .

Proof. If a = aba ∈ A then the range

a(X) = ab(X) = (1− ab)−1(0)

is the null space of the complementary idempotent, therefore closed. Now the
complementary subspaces a−1(0) and a(X) determine the idempotent q : X → X,
defined by setting

q(x) ∈ a(X) ; x− q(x) ∈ a−1(0)

for each x ∈ X, whose boundedness, together with the closedness of the range a(X),
follows ([4] Theorem 4.8.2) from the open mapping theorem, and finally, if x ∈ X,

b(x) = bq(x) ; b(ax) = q(x) •
¤

We remark, even together with the assumption a ∈ A∩, the conditions (2.10)
and (2.11) are ([4] (7.3.6.8)) not sufficient for simple polarity (2.6) when A = B(X)
for an incomplete normed space X.

More generally if there is n ∈ N for which an is simply polar we shall also say
that a ∈ A is “polar”, or Drazin invertible. If a ∈ A is polar then there is b ∈ A for
which ab = ba and a− aba is nilpotent.
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3. Drazin permanence

More generally if we write

3.1 QN(A) = {a ∈ A : 1−Ca ⊆ A−1}
for the quasinilpotents of A then a ∈ QN(A) if and only if

σA(a) ⊆ {0} ,

while with some complex analysis we can prove that if a ∈ QN(A) then

3.2 ‖an‖1/n → 0 (n →∞) .

In the ultimate generalization of “group invertibility”, we shall write QP(A) for the
quasipolar elements a ∈ A, those which have a spectral projection p ∈ A for which

3.3 p = p2 ; ap = pa ; a + p ∈ A−1 ; ap ∈ QN(A) .

Now [7] the spectral projection and the Koliha-Drazin inverse

3.4 a• = p , a× = (a + p)−1(1− p)

are uniquely determined and lie in the double commutant of a ∈ A. It is easy to
see that if (3.3) is satisfied then

3.5 0 6∈ acc σA(a) :

the origin cannot be an accumulation point of the spectrum; conversely if (3.5)
holds then we can display the spectral projection as a sort of “vector-valued winding
number”

3.6 a• =
1

2πi

∮

γ(0)

(z − a)−1dz ,

where we integrate counter clockwise round a small circle γ = γ(0) centre the origin
whose connected hull is a disc ηγ whose intersection with the spectrum is at most
the point {0}. By the same technique we can display the Koliha-Drazin inverse in
the form

3.7 a× =
1

2πi

∮

γ(σ(a)\{0})
z−1(z − a)−1dz .

Now generally for a homomorphism T : A → B there is inclusion

3.8 T QP(A) ⊆ QP(B) ,

while if T : A → B has spectral permanence in the sense (1.3) then it is clear from
(3.5) that there is also “Drazin permanence” in the sense that

3.9 QP(A) = T−1QP(B) ⊆ A :

Theorem 3.1. For Banach algebra homomomorphisms T : A → B there is impli-
cation

spectral permanence =⇒ Drazin permanence.

Proof. Equality in (1.10) together with (3.5) • ¤

In general we cannot deduce “generalized permanence”, equality in (2.4), from
spectral permanence (1.3):
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Theorem 3.2. If T : A → B and A is commutative then there is inclusione

3.10 T (A∩) ⊆ QP(B) ∩B∩ .

Thus if A is commutative there is implication, for arbitrary a ∈ A,

3.11 T (a) ∈ B∩ \QP(B) =⇒ a 6∈ A∩ .

Proof. If A is commutative then everything in A∩ is simply polar • ¤

For a specific example take T : A → B the embedding

A = comm2
B(a) ⊆ B = B(X)

with X = `2 and a ∈ A either the forward or the backward shift, or alterna-
tively the left regular representation L : A → B(A). Here of course comm2(a) is
comm comm(K) with K = {a}. Conversely however if A = B(X) for a normed
space X then there is implication

3.12 LaA = cl LaA =⇒ a(X) = cl a(X) :

indeed if axn → y and ϕ ∈ X∗ and ϕ(x) = 1 then, with ϕ¯ y : w 7→ ϕ(w)y,

3.13 La(ϕ¯ y) = La(b) =⇒ y = a(bx) .

For another example observe that generalized permanence fails for the process
of factoring out the radical of a ring, unless it is semisimple:

3.14 Rad(A) ∩A∩ = O .

4. Moore-Penrose permanence

We recall that a “C*algebra” is a Banach algebra which also has an involution
a 7→ a∗ which is conjugate linear, reverses multiplication, respects the identity and
satisfies the “B* condition”

4.1 ‖a∗a‖ = ‖a‖2 (a ∈ A) .

Historically the term “C* algebra” was reserved for closed *-subalgebras of the
algebras B(X) for Hilbert spaces X; however the Gelfand/Naimark/Segal (GNS)
representation

4.2 Γ : A → B(ΞA)

takes an arbitrary “B* algebra” A isometrically into the algebra of operators on a
rather large Hilbert space ΞA built from its “states”: a defect of (4.2) would be
that if already A = B(X) we do not get back ΞA = X. In the opinion of at least
one writer these terms “B* algebra” and “C* algebra” could easily ([4] Chapter 8)
have been Hilbert algebra. When in particular A = B(X) for a Hilbert space X
then the closed range condition is sufficient for relative regularity a ∈ A∩: indeed
we can satisfy (2.2) by setting

4.3 b(x) = b(qx) ; b(ax) = p(x) (x ∈ X) ,

where q∗ = q = q2 and p∗ = p = p2 are the orthogonal projections on the range
a(X) and the orthogonal complement a−1(0)⊥ of the null space. The element b ∈ A
given by (4.3) satisfies four conditions:

4.4 a = aba ; b = bab ; (ba)∗ = ba ; (ab)∗ = ab ,
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and is known as the Moore-Penrose inverse of a ∈ B(X): more generally in a
C*algebra A the conditions (4.4) uniquely determine at most one element

4.5 b = a† ∈ A ,

lying ([5] Theorem 5) in the double commutant of {a, a∗}, and still known as a
“Moore-Penrose inverse” for a ∈ A. Now it is a result of Harte and Mbekhta ([5]
Theorem 6) that generally there is equality (A† denotes the set of all Moore-Penrose
invertible elements of A):

4.6 A∩ = A† :

in an arbitrary C*algebra, every relatively regular element has a Moore Penrose
inverse. The argument, and a slight generalization, proceeds with the aid of the
Drazin inverse. Generally for a C*algebra A we write

4.7 Re(A) = {a ∈ A : a∗ = a} ,

for the subspace of hermitian elements: now we claim

Theorem 4.1. If A is a C*algebra then

4.8 Re(A) ∩A∩ ⊆ QP(A) ,

and

4.9 a ∈ A∩ =⇒ a∗a ∈ A∩ =⇒ a∗a ∈ QP(A) .

Proof. When A = B(X) then the “ascent” conditions (2.9) hold for hermitian
elements a ∈ Re(A): this is because [6] generally, if a ∈ B(X),

4.10 x ∈ X =⇒ ‖ax‖2 ≤ ‖x‖ ‖a∗ax‖ ,

giving a−1(0) = (a∗a)−1(0). Also if a = a∗ has closed range then also the “descent”
conditions (2.10) hold:

4.11 cl a(X) = (a∗)−1(0)⊥ =⇒ cl a(X) + (a∗)−1(0) = X ,

giving also if a has closed range, a∗(X) = a∗a(X), which is therefore also closed.
To establish (4.8) and (4.9) for general A look at isometric T : A → B(X), recalling
(1.12), hence spectral permanence and then Drazin permanence • ¤

Theorem 4.1 says that self adjoint C* elements have [2] “property EP”.
Our main result is a slight generalization, and a new proof, of the Harte/Mbekhta

result (4.6), and at the same time “generalized permanence”, equality in (2.4), for
isometric C* homomorphisms:

Theorem 4.2. If T : A → B is an isometric C* homomorphism then it has both
a “left” and a “right” Gelfand property, and hence also Drazin permanence; there
is equality

4.12 A† = T−1B∩ .

Proof. If a ∈ A then the product a∗a ∈ A+ ⊆ Re(A) is positive, with

4.13 ∂σA(a∗a) = σA(a∗a) ⊆ [0,∞) ⊆ R ,

giving “spectral permanence at” a∗a. Since also

4.14 a ∈ A−1
left ⇐⇒ a∗a ∈ A−1

this converts to equality in both a left and a right version of (1.10).
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Now by (4.9) the product a∗a ∈ QP(A) has a Koliha-Drazin inverse, and even a
group inverse: but now (cf [5] Theorem 10)

4.15 a† = (a∗a)×a∗ = (a∗a)†a∗

gives a Moore-Penrose inverse a† for a ∈ A • ¤

In the situation of (4.8) we now have more detail:

4.16 a = a∗ ∈ A∩ =⇒ a† = a× ; 1− a†a = a• .

We remark that it is rather easy ([5] Theorem 7) to see

4.17 a ∈ A† =⇒ a∗a ∈ A∩ :

for if b = a† then

4.18 a∗a = a∗b∗a∗aba = a∗(ab)∗(ab)∗a = a∗a(bb∗)a∗a .

Theorem 4.2 has an obvious extension to homomorphisms with closed range:

Theorem 4.3. If T : A → B has closed range then there is implication, for
arbitrary a ∈ A,

4.19 T (a) ∈ B∩ =⇒ a + T−1(0) ∈ (A/T−1(0))∩ .

Proof. Apply Theorem 4.2 to the bounded below T∧ : A/T−1(0) → B • ¤

5. Irreducible representations

If T : A → B(X) is an isometric * homomorphism, with a Hilbert space X, and
if there is a closed subspace Y ⊆ X for which, for arbitrary a ∈ A, there is inclusion

5.1 T (a)Y ⊆ Y ; T (a)Y ⊥ ⊆ Y ⊥ ,

then we shall say that the representation has been reduced to a representation
TY : A → B(Y ); if it follows from (5.1) that

5.2 Y = X or Y = O ≡ {0}
then we shall describe the representation T : A → B(X) as irreducible. Now if
B(X) is the bounded operators on a Banach space we shall write B00(X) for the
ideal of finite rank operators, and B0(X) for the larger closed ideal of compact
operators; we remark that ([4] Theorem 6.8.5)

5.3 B0(X) ∩B(X)∩ = B00(X) :

a compact operator is relatively regular if and only if it is finite rank. When X
is a Hilbert space then B0(X) = cl B00(X) is also the norm closure of the finite
rank operators, which in turn are the linear subspace generated by the rank one
operators:

5.4 X∗ ¯X = {x∗ ¯ y : x, y ∈ X} ,

where for arbitrary x, y ∈ X we set

5.5 (x∗ ¯ y)(w) = 〈w; x〉y (w ∈ X) .

Irreducible C* subalgebras A ⊆ B(X) have an important property ([1] Theorem
6.3.3) relating them to the compact ideal B0(X): there is implication

5.6 A ∩B0(X) 6= O =⇒ B0(X) ⊆ A .
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In words if A contains even one non zero compact operator then it contains them
all.

As a companion to (5.6) we observe (cf [1] Theorem 5.2.1) that if J ⊆ A is a
two-sided ideal there is implication, when A = B(X),

5.7 J 6= O =⇒ A ∩B00(X) ⊆ J .

In words a non trivial two-sided ideal of irreducible A contains all the finite rank
operators in A. If in particular the ideal is closed then it contains all the compact
operators.

If T : A → B is a homomorphism of rings then it also brings ([4] Chapter 7)
a Fredholm theory to the departure ring A: generally for T : A → B to have the
Gelfand property means that “Fredholm implies invertible”. Intermediate between
the invertibles and the Fredholms is the semigroup of Weyl elements:

5.8 A−1 ⊆ A−1 + T−1(0) ⊆ T−1(B−1) ⊆ A .

More generally if we replace invertibles by left and by right invertibles we get “left”
and “right” Fredholm and Weyl elements. For example if, with a Banach space X,

5.9 T = π : B(X) → D = B(X)/B0(X)

is the Calkin quotient then (Atkinson’s theorem) the Fredholm operators are those
with finite dimensional null space and closed range of finite codimension, while
(Schechter’s theorem) the Weyl operators are the Fredholm operators “of index
zero”, for which those two finite dimensions are equal. If instead

5.10 T = π0 : B(X) → D0 = B(X)/B00(X)

then, since

5.11 B00(X) ⊆ B(X)∩ ; π0B0(X) ⊆ Rad(D0)

the Fredholm theory is unchanged: there is, recalling (2.5), equality

5.12 π−1D−1 = π−1
0 D−1

0 ⊆ B(X)∩ .

Now if A ⊆ B(X) is irreducible then more generally if J ⊆ A is a non trivial closed
two-sided ideal then the homomorphisms

πA : A → D = B(X)/B0(X)

and
ρJ : A → DJ = A/(J ∩B0(X))

generate, according to ([1] Theorem 6.3.4), the same Fredholm theory:

Theorem 5.1. If A ⊆ B(X) is irreducible and

O 6= AJ + JA ⊆ J 6= A

then there is equality

5.13 π−1
A D−1 = ρ−1

J D−1
J .

Proof. It is clear at once that if ρJ(a) ∈ A/(J ∩ B0(X)) is left or right invertible
then so is πA(a) ∈ D = B(X)/B0(X). Conversely if πA(a) ∈ D−1

left then two cases
appear.

Case 1) a ∈ A−1
left, then ρJ(a) ∈ (A/(J ∩B0(X))−1

left.
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Case 2) a /∈ A−1
left, then a∗a /∈ A−1. Since a ∈ A∩, by (4.9) a∗a ∈ QP(A) with

spectral projection

5.14 0 6= p = (a∗a)• ∈ J ∩B00(X) ,

Appealing to irreducibility and (5.7), with

1 = ((a∗a + p)−1a∗)a + (a∗a + p)−1p ∈ Aa + J ∩B00(X) .

It follows ρJ(a) ∈ (DJ )−1
left.

Similarly we can start with πA(a) ∈ D−1
right to obtain ρJ(a) ∈ (DJ)−1

right.
Alternatively, if πA(a) ∈ D−1

left, then a ∈ A has a Moore-Penrose inverse a† ∈ A,
and now

5.15 1− a†a ∈ A ∩B00(X) ⊆ J

is the orthogonal projection with finite dimensional range a−1(0) • ¤
We remark that Theorem 5.2.1 of [1] holds for A = B(X), while if (5.7) holds

and there are any non zero finite rank operators in A then they will all be in J . It
seems to us that the argument of [1] requires our (5.7) rather than their Theorem
5.2.1: one might hope to derive our (5.7) by a combination of the arguments of
their (5.2.1) and their (6.3.3).
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