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1 Introduction

Generalized inverses of matrices have important roles in theoretical and nu-
merical methods of linear algebra. The most significant fact is that we can
use generalized inverses of matrices, in the case when ordinary inverses do
not exist, in order to solve some matrix equations. Similar reasoning can be
applied to linear (bounded or unbounded) operators on Banach and Hilbert
spaces. Then, it is interesting to consider generalized inverses of elements
in Banach and C∗-algebras, or more general, in rings with or without invo-
lution.

Let A be a complex unital Banach algebra. An element a ∈ A is gen-
eralized (or inner) invertible, if there exists some b ∈ A such that aba = a
holds. In this case b is a generalized (or inner) inverse of a. If aba = a, then
take c = bab to obtain the following: aca = a and cac = c. Such c is called a
reflexive (or normalized) generalized inverse of a. Finally, if aba = a, then ab
and ba are idempotents. In the case of the C∗-algebra, we can require that
ab and ba are Hermitian. We arrive at the definition of the Moore-Penrose
inverse in C∗-algebras.
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Definition 1.1. Let A be a unital C∗-algebra. An element a ∈ A is Moore-
Penrose invertible, if there exists some b ∈ A such that

aba = a, bab = b, (ab)∗ = ab, (ba)∗ = ba

hold. In this case b is the Moore-Penrose inverse of a, usually denoted by
a†.

If a is Moore-Penrose invertible in a C∗-algebra, then a† is unique, and
the notation is justified.

More general, if A is an unital Banach algebra, we have the following
definition of Hermitian elements.

Definition 1.2. An element a ∈ A is said to be Hermitian if ‖ exp(ita)‖ = 1
for all t ∈ R.

The set of all Hermitian elements of A will be denoted by H(A). Now, it
is natural to consider the following definition of the Moore-Penrose inverse
in Banach algebras ([1], [2]).

Definition 1.3. Let A be a complex unital Banach algebra and a ∈ A. If
there exists b ∈ A such that

aba = a, bab = b, ab and ba are Hermitian,

then the element b is the Moore-Penrose inverse of a, and it will be denoted
by a†.

The Moore-Penrose inverse of a is unique in the case when it exists.
Although the Moore-Penrose inverse has many nice approximation prop-

erties, the equality aa† = a†a does not hold in general. Hence, it is interest-
ing to distinguish such elements.

Definition 1.4. An element a of a unital Banach algebra A is said to be
EP if there exists a† and aa† = a†a.

The name EP will be explained latter. There is another kind of a gen-
eralized inverse that commutes with the starting element.

Definition 1.5. Let A be a unital Banach algebra and a ∈ A. An element
b ∈ A is the group inverse of a, if the following conditions are satisfied:

aba = a, bab = b, ab = ba.

2



The group inverse of a will be denoted by a# which is uniquely deter-
mined (in the case when it exists).

Let X be a Banach space and L(X) the Banach algebra of all linear
bounded operators on X. In addition, if T ∈ L(X), then N(T ) and R(T )
stand for the null space and the range of T , respectively. The ascent of T
is defined as asc(T ) = inf{n ≥ 0 : N(Tn) = N(Tn+1)}, and the descent of
T is defined as dsc(T ) = inf{n ≥ 0 : R(Tn) = R(Tn+1)}. In both cases the
infimum of the empty set is equal to ∞. If asc(T ) < ∞ and dsc(T ) < ∞,
then asc(T ) = dsc(T ).

Necessary and sufficient for T# to exist is the fact that asc(T ) = dsc(T ) ≤
1. If T ∈ L(X) is a closed range operator, then T# exists if and only if X =
N(T ) ⊕ R(T ) (see [3]). Obviously, R((T#)n) = R(T#) = R(T ) = R(Tn)
and N((T#)n) = N(T#) = N(T ) = N(Tn), for every non-negative integer
n. Now the name follows: EP means ”equal projections“ on R(T k) parallel
to N(T k) for all positive integers k.

Finally, if a ∈ A is an EP element, then clearly a# exists. In fact,
a# = a†. On the other hand, if a exists, then necessary and sufficient for
a to be EP is that aa# is a Hermitian element of A. Furthermore, in this
case a# = a†.

The left multiplication by a ∈ A is the mapping La : A → A, which is
defined as La(x) = ax for all x ∈ A. Observe that, for a, b ∈ A, Lab = LaLb

and that La = Lb implies a = b. If a ∈ A is both Moore-Penrose and group
invertible, then La† = (La)† and La# = (La)# in the Banach algebra L(A).
According to [4, Remark 12], necessary and sufficient condition for a ∈ A to
be EP is that La ∈ L(A) is EP.

A similar statement can be proved if we consider Ra ∈ L(A) instead of
La ∈ L(A), where the mapping Ra : A → A is the right multiplication by
a, and defined as Ra(x) = xa for all x ∈ A.

Let V(A) = H(A) + iH(A). Recall that according to [5, Hilfssatz 2(c)],
for each a ∈ V(A) there exist necessary unique Hermitian elements u, v ∈
H(A) such that a = u + iv. As a result, the operation a∗ = u − iv is well
defined. Note that ∗ : V(A) → V(A) is not an involution, in particular (ab)∗

does not in general coincide with b∗a∗, a, b ∈ V(A). However, if A = V(A)
and for every h ∈ H(A), h2 = u + iv with uv = vu, u, v ∈ H(A), then A is
a C∗-algebra whose involution is the just considered operation, see [5].

An element a ∈ V(A) satisfying aa∗ = a∗a is called normal. If a =
u + iv ∈ V(A) (u, v ∈ H(A)), it is easy to see that a is normal if and only
if uv = vu. An element a ∈ V(A) satisfying a = aa∗a is called a partial
isometry [6].

Note that necessary and sufficient for a ∈ A to belong to H(A) is that

3



La ∈ H(L(A)). Therefore, a ∈ V(A) is normal if and only if La ∈ V(L(A))
is normal. Observe that if a ∈ V(A) then La ∈ V(L(A)) and La∗ = (La)∗.

Theorem 1.1. [7] Let X be a Banach space and consider T ∈ L(X) such
that T † exists and T ∈ V(L(X)). Then the following statements hold.

(i) R(T ∗) ⊆ R(T ) if and only if T = TTT †.

(ii) N(T ) ⊆ N(T ∗) if and only if T = T †TT .

In addition, if the conditions of statements (i) and (ii) are satisfied, then T
is an EP operator.

Notice that R(T ∗) ⊆ R(T ) is equivalent to T ∗ = TT †T ∗, by R(T ) =
R(TT †) = N(I − TT †). The condition N(T ) ⊆ N(T ∗) is equivalent to
T ∗ = T ∗T †T , because N(T ) = N(T †T ) = R(I − T †T ) [7]. Hence, by
Theorem 1.1, we deduce the following.

Corollary 1.1. Let X be a Banach space and consider T ∈ L(X) such that
T † exists and T ∈ V(L(X)). Then the following statements hold.

(i) T ∗ = TT †T ∗ if and only if T = TTT †.

(ii) T ∗ = T ∗T †T if and only if T = T †TT .

There are many papers characterizing EP elements, partial isometries,
or related classes (such as normal elements). See, for example [4], [7], [8],
[9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22] and [23].
Properties of the Moore-Penrose inverse in various structures can be found
in [1], [2], [24], [25], [26], [27] and [28].

In [8] O.M. Baksalary, G.P.H. Styan and G. Trenkler used an elegant
representation of complex matrices to explore various classes of matrices,
such as partial isometries and EP. Inspired by [8], in paper [21] we use
a different approach, exploiting the structure of rings with involution to
investigate partial isometries and EP elements.

In this paper we characterize elements in Banach algebras which are EP
and partial isometries.

2 Partial isometry and EP elements

Before the main theorem, we give some characterizations of partial isome-
tries in Banach algebras in the following theorem.
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Theorem 2.1. Let A be a unital Banach algebra and consider a ∈ V(A)
such that a† and a# exist. Then the following statements are equivalent:

(i) a is a partial isometry;

(ii) a#a∗a = a#;

(iii) aa∗a# = a#;

Proof. (i) ⇒ (ii): If aa∗a = a, then

a#a∗a = (a#)2(aa∗a) = (a#)2a = a#.

(ii) ⇒ (i): From a#a∗a = a#, it follows

aa∗a = a2(a#a∗a) = a2a# = a.

(i) ⇔ (iii): This part can be proved similarly.

In the following result we present equivalent conditions for an bounded
linear operator T on Banach space X to be a partial isometry and EP.
Compare with [21, Theorem 2.3] where we studied necessary and sufficient
conditions for an element a of a ring with involution to be a partial isometry
and EP.

Theorem 2.2. Let X be a Banach space and consider T ∈ L(X) such that
T † and T# exist and T ∈ V(L(X)). Then the following statements are
equivalent:

(i) T is a partial isometry and EP;

(ii) T is a partial isometry and normal;

(iii) T ∗ = T#;

(iv) TT ∗ = T †T and T = TTT †;

(v) T ∗T = TT † and T = T †TT ;

(vi) TT ∗ = TT# and T = TTT †;

(vii) T ∗T = TT# and T = T †TT ;

(viii) T ∗T † = T †T#;

(ix) T †T ∗ = T#T †;
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(x) T †T ∗ = T †T# and T = TTT †;

(xi) T ∗T † = T#T † and T = T †TT ;

(xii) T ∗T# = T#T † and T = T †TT ;

(xiii) T ∗T † = T#T# and T = T †TT ;

(xiv) T ∗T# = T#T# and T = T †TT ;

(xv) TT ∗T# = T † and T = T †TT ;

(xvi) T ∗T 2 = T and T = T †TT ;

(xvii) T 2T ∗ = T and T = TTT †;

(xviii) TT †T ∗ = T# and T = TTT †;

(xix) T ∗T †T = T# and T = T †TT .

Proof. (i) ⇒ (ii): If T is EP, then T = TTT † and, by Corollary 1.1, T ∗ =
TT †T ∗. Since T is a partial isometry, we have

TT ∗T# = (TT ∗T )(T#)2 = T (T#)2 = T#

and

T ∗T#T = TT †T ∗T#T = T †(TT ∗T )T# = T †TT# = T#TT# = T#.

Thus, TT ∗T# = T ∗T#T and T = T †TT imply T is normal, by [7, Theorem
3.4(i)].

(ii) ⇒ (iii): The condition T is normal and [7, Theorem 3.4(vii)] imply
T ∗ = TT ∗T#. Because T is a partial isometry, we have

T ∗ = TT ∗T# = (TT ∗T )(T#)2 = T (T#)2 = T#.

(iii) ⇒ (i): Using the equality T ∗ = T#, we get:

TT ∗ = TT# = T#T = T ∗T and TT ∗T = TT#T = T.

By [7, Theorem 3.3], T is normal gives T is EP. The condition (i) is satisfied.
(ii) ⇒ (iv): By [7, Theorem 3.4(ii)], T is normal gives TT ∗T# = T#TT ∗

and T = TTT †. Now

TT ∗ = T (T#TT ∗) = T (TT ∗)T# = (TT ∗T )T# = TT#.
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Since T is normal implies T is EP, then TT ∗ = T#T = T †T .
(iv) ⇒ (vi): Assume that TT ∗ = T †T and T = TTT †. Then

T#(TT ∗) = T#T †T = (T#)2TT †T = T#

implying
TT ∗T# = T (T#TT ∗)T# = TT#T# = T#

and T#TT ∗ = TT ∗T#. By [7, Theorem 3.4(ii)], T is normal and, by [7,
Theorem 3.3], T is EP. Therefore, TT ∗ = T †T = TT † = TT#.

(vi) ⇒ (ii): Let TT ∗ = TT# and T = TTT †. Then

T (TT ∗) = TTT# = T = (TT#)T = TT ∗T

which yields that T is a partial isometry and normal by [7, Theorem 3.4(x)].
(ii) ⇒ (v) ⇒ (vii) ⇒ (ii): These implications can be proved in the same

way as (ii) ⇒ (iv) ⇒ (vi) ⇒ (ii) using [7, Theorem 3.4(i)] and [7, Theorem
3.4(ix)].

(i) ⇒ (viii): From (i) follows (iii) T ∗ = T# and T is EP which gives
(viii).

(viii) ⇒ (xi): Suppose that T ∗T † = T †T#. Then

TT# = T 2(T#)2 = TTT †T (T#)2 = TT (T †T#) = TTT ∗T †

= TT (T ∗T †)TT † = TTT †T#TT † = TTT †TT#T † = TT †.

Hence, TT# is Hermitian and T is EP. Now condition (xi) is satisfied by

T ∗T † = T †T# = T#T † and T †TT = TT †T = T.

(xi) ⇒ (xvi): The assumptions T ∗T † = T#T † and T = T †TT give, by
Corollary 1.1,

T ∗T 2 = (T ∗T †)TT 2 = T#T †TT 2 = (T#)2TT †TT 2 = T.

(xvi) ⇒ (xiv): Multiplying T ∗T 2 = T by (T#)3 from the right side, we
get T ∗T# = T#T#. Hence, T satisfies condition (xiv).

(xiv) ⇒ (xii): If T ∗T# = T#T# and T = T †TT , then we see that
T ∗T = (T ∗T#)T 2 = T#T#T 2 = T#T . Thus, by (vii) ⇔ (i), we get that T
is EP, and

T ∗T# = (T ∗T )(T#)2 = T#T (T#)2 = (T#)2 = T#T †.
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(xii) ⇒ (vii): Applying T ∗T# = T#T † and T = T †TT , we obtain the
condition (vii):

T ∗T = (T ∗T#)T 2 = T#(T †T 2) = T#T.

(i) ⇒ (ix) ⇒ (x) ⇒ (xvii): Similarly as (i) ⇒ (viii) ⇒ (xi) ⇒ (xvi).
(xvii) ⇒ (vi): Suppose that T 2T ∗ = T and T = TTT †. Then TT ∗ =

T#T 2T ∗ = T#T and the condition (vi) is satisfied.
(xiii) ⇒ (xi): Multiplying the equality T ∗T † = T#T# by TT † from the

right side, we obtain T ∗T † = T#T †. So, we deduce that condition (xi) holds.
(xi) ⇒ (xiii): By (xi), we have that T is EP and condition (xiii) is

satisfied.
(xv) ⇒ (i): Let TT ∗T# = T † and T = T †TT . Now, we observe that

TT ∗T = (TT ∗T#)T 2 = T †TT = T

and
T † = TT ∗T# = T#T (TT ∗T )(T#)2 = T#TT (T#)2 = T#.

Therefore, T is a partial isometry and EP.
(i) ⇒ (xv): The hypothesis T is EP gives T = T †TT and, because (i)

implies (iii),
TT ∗T# = TT#T# = T# = T †.

(xviii) ⇒ (iii): By the assumption TT †T ∗ = T# and T = TTT †, we
obtain T ∗ = TT †T ∗ = T#.

(iii) ⇒ (xviii): From T ∗ = T#, we get

TT †T ∗ = TT †T# = TT †T (T#)2 = T#

and T is EP implying T = TTT †.
(iii) ⇔ (xix): Analogy as (iii) ⇔ (xviii).

Now, we return to a general case, i.e. A is a complex unital Banach
algebra, and a ∈ A is both Moore-Penrose and group invertible.

Corollary 2.1. Theorem 2.2 holds if we change L(X) for an arbitrary com-
plex Banach algebra A , and we change T by an a ∈ A such that a† and a#

exist.
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Proof. If a ∈ A satisfies the hypothesis of this theorem, then La ∈ L(A)
satisfies the hypothesis of Theorem 2.2. Now, if any one of statements (i)-
(xix) holds for a, then the same statement holds for La. Therefore, La is a
partial isometry and EP in L(A). By [4, Remark 12], it follows that a is EP
in A. It is well-known that if a ∈ V(A) then La ∈ V(L(A)) and La∗ = (La)∗.
Since La is a partial isometry, LaLa∗La = La, i.e Laa∗a = La. So, we deduce
that aa∗a = a and a a partial isometry in A.

A similar statement can be proved if we consider Ra ∈ L(A) instead of
La ∈ L(A).

The cancellation property and the identity (ab)∗ = b∗a∗ are important
when we proved the equivalent statements characterizing the condition of
being a partial isometry and EP in a ring with involution R in [21]. Since
∗ : V(A) → V(A) is not in general an involution, and it is not clear if the
cancellation property holds for Moore-Penrose invertible elements of V(A),
in most statements of Theorem 2.2 an additional condition needs to be
considered.
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[11] D.S. Djordjević, Products of EP operators on Hilbert spaces, Proc.
Amer. Math. Soc. 129 (6) (2000), 1727-1731.
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