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Abstract

We present a unified representation theorem for the class of all outer
generalized inverses of a bounded linear operator. Using this representation
we develop a few specific expressions and computational procedures for the
set of outer generalized inverses. The obtained result is a generalization of
the well-known representation theorem of the Moore-Penrose inverse as well
as a generalization of the well-known results for the Drazin inverse and the
generalized inverse Ag? )s Also, as corollaries we get corresponding results
for reflexive generalize& inverses.
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1 Introduction

Let X and Y be arbitrary Banach spaces and let £(X,Y) be the set of all bounded
linear operators from X to Y. For A € L(X,Y), we use N'(A) to denote the null
space, and R(A) to denote the range of A. An operator G € L(Y,X) is an
outer generalized inverse of A if GAG = G. f T = R(G) and S = N(G), then
G is known as the generalized inverse Ag )S It is easy to verify that for given

subspaces T of X and S of Y there exists the generalized inverse Ag )S if and

only if T" and 5, respectively, are closed and complemented subspaces of X and
Y, the restriction A|p : T'— A(T) is invertible and A(T) @ S =Y. In this case
the generalized inverse Ag? 29 is unique.

Special generalized invérses, such as the Moore-Penrose inverse, the ordinary
and the generalized Drazin inverse (in the case when any of them exists) are

outer generalized inverses with particular choices of T and S.
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Outer generalized inverses have many applications, for example, applications
in the iterative methods for solving nonlinear equations [1], [17] and applications
to statistics [9]. In particular, outer generalized inverses play an important role
in stable approximations of ill-posed problems and in linear and nonlinear prob-
lems involving rank-deficient generalized inverses [16], [22]. The researchers have

proposed many numerical methods for computing the Ag% 29 generalized inverse
in the literature (see [7], [20], [24], [28], [29], [30]).
For the sake of completeness, we briefly describe known representations of

)

. o 2 . .
the Moore-Penrose inverse, the Drazin inverse and the A(T 5 generalized inverse.

In this paper Af, AP, A9 A9 repsectively, denote the Moore-Penrose inverse the
Drazin ivnerse, the generalized Drazin inverse and the group inverse of A. By
ind(A) we denote the Drazin index of the operator A.

Theorem 1.1 [10] Let X and Y be Hilbert spaces. Suppose that T € L(X,Y)
has closed range and let T =TT ;... : R(T*) — R(T™). Then " =T71T*,
Theorem 1.2 [26] Let X be a Banach space and A € L(X) with ind(A) = k.
Then

AP = A7t 4F

where A = AFH| : R(AF) — R(AF).

R(AF)
Theorem 1.3 [24], [7] Let X and Y be Banach spaces, let T and S be closed
subspaces of X and Y, respectively, such that for an operator A € L(X,Y) the
generalized inverse Ag )S exists. Let G € L(Y,X) be an arbitrary operator which
satisfies R(G) =T and N(G) = S. Then ind(GA) = ind(AG) =1 and

AP = (GA)IG = G(AG)? = A7'G,

where A= Alp: T — A(T).

In this paper we introduce a unified representation theorem for the set of all
outer generalized inverses of bounded linear operators on Banach spaces. Us-
ing this representation, we develop a number of iterative methods for generating
outer generalized inverses. Moreover we obtain known representations and ap-
proximations of the Drazin inverse [4], [5], [27], [23], [26], the generalized inverse
A% )S [15], [24], [28], [29], [30] and the weighted Moore-Penrose inverse [25]. As a
partial result we get an improvement of the hyper-power iterative method, which
is investigated in [19]. Also, a limit representation of the outer generalized in-
verses, introduced in [18], can be considered as a partial case of the introduced
approximations.
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2 Representation of outer generalized inverses

In this section we establish a unified representation theorem for outer generalized
inverses of operators on Banach spaces. Recall that A € £(X,Y) is relatively
regular if A has an inner generalized inverse B, i.e. ABA = A. It is well-known
that A is relatively regular if and only if R(A) and N (A), respectively, are closed
and complemented subspaces of Y and X.

An operator B € L(Y, X) is called a reflexive generalized inverse of A, if B
is both inner and outer generalized inverse of A.

If A€ £(X) and 0 is not the accumulation point of the spectrum o(A), then
there exists the generalized Drazin inverse of A, denoted by A? [13]. For the
most important properties see [13] and [8].

Theorem 2.1 Let X and Y be Banach spaces and let A € L(X,Y) be arbitrary.
Then the following hold:
(a) The set of outer generalized inverses A can be represented in the following
way:
-1
A2} = {(WA)lg,) W 2 W €LY, X), R(W) is closed and (2.1)
(WA) R(W) — R(W) is invertible}.

‘R(W) :

(b) If A is relatively regular, then the class of all reflexive generalized inverses
of A can be represented as follows:

Af1,2} = {((WA)
(WA4)

—1 .
R(W>) W:W e L(Y,X), R(W) is closed,
R(W) — R(W) is invertible and R(W) & N(A) = X }.

RW) *

(c) If A € L(X), 0 is not the point of accumulation of the spectrum o(A) and
E is the spectral idempotent of A corresponding to the point {0}, then for any
W e L(X) such that R(W) = N(E) and N(W) = R(E), the following holds

Ad = ((WA)| W.

R(W))

~1
Proof. (a) If G has the form (2.1), i.e. G = ((WA)|R(W)) W for a suitable
choice of W € L(Y, X), we conclude that G is bounded. Now we verify that

GAG = (WA) ) WA(WA) ) W= (WAlyy,) W=a

On the other hand, let G be any outer generalized inverse of A. We prove that
there exists an appropriate operator W, such that R(W) is closed, the operator

-1
(WA |z : RIW) — R(W) is invertible and G = (WA|R(W)> W. Indeed,
we can use W = G. In this case WA is a projection onto R(W) and

WAz =
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is invertible. Also,

((WA)|R(W))_1 W= (I|R(W))_1 W=w.

(b) Let A be relatively regular and let G be any reflexive generalized inverse of
A. We take W = G. Then R(W) @ N (A) = X, since W A is the projection from
X onto R(W) parallel to N'(A). We simply verify that G = (WA)|gw)) ' W.

On the other hand, assume that R(W) is closed, X = R(W) & N(A) and
(WA) ey : ROW) — R(W) is invertible. Let G = ((WA4)|rw)) "W From
the part (a) we know that G is an outer generalized inverse of A. If z € X, then
x =u+ v, where u € R(W) and v € N(A4). Then

-1 -1
((wa WAz = (WA) e,)  WAU=u = Pray) i)

waow)
Hence,
A((Wa)
and G is a reflexive generalized inverse of A.
(c) If E is the spectral idempotent of A corresponding to {0}, then X =

N(E) ® R(E),
(5 2] 28] (8
10 A4y || RE) R(E) |’

—1

R(W)

where A1 = Al + N(E) — N(E) is invertible and Ay = Al , : R(E) —
R(FE) is quasinilpotent. In this case the generalized Drazin inverse of A is

At =

AT 0
0 0|

If R(IW) = N(E) and N (W) = R(E), then we conclude that W must have the
form _
W Wi 0| | NE) _ N(E)
Lo o | RE R(E) |
where W; = W\N(E) : N(E) — N(E) is invertible. Now,

. WiA1 0O
Wa- [ 41 0 ]
and W1 Ay = (WA)|, .y, is invertible. It is easy to verify that
-1 -1
((WA)’R(W)) W= Al_lwl_lw - l Aé 8 ] =A% =

The invertibility of (WA)|gy : R(W) — R(W) is a very strong condition,
as we can see from the following corollary.
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Corollary 2.1 If A and W are given as in Theorem 2.1 (a), then R(W) and
N(W), respectively, are complemented subspaces of X andY . Moreover, ind(A) =
L and 0(A) = o(WA)\ {0}, where we denote A = (W A)|gw) : R(W) — R(W).

Proof. Let G = (WA)|gw)) 'W. Since A is an inner generalized inverse
of G, we get that GA is a projection from X onto R(G) = R(W), and also
I — AG is a projection from Y onto N(G) = N(W). Now, X = RW)a T
and Y = A(R(W)) & N (W), where T'= N (GA). We have the following matrix
decomposition:

A_[Al 0]_-R(W)]_>[A(R(W))_
o A |

where A; is invertible. Also

0 O

W:lwl o}z'Am(W))F[R(W)'

where W is invertible. Now,

WA 0] A0
s M) 8)

ind(WA) =1 and o(A) = o(WA) \ {0}. O

Corollary 2.2 (a) If A € L(X,Y) is arbitrary and if T, S are subspaces of X
andY such that the generalized inverse A’EI?)S exists, then we have to take R(W) =
T and N(W) =S in (2.1) to obtain the known representation in Theorem 1.3.

(b) If A € L(X), k =1ind(A) < oo, then we can take W € L(X) such that
R(W) = R(A*) and N (W) = N (A*) then use Theorem 2.1 (c) to get

AP = (W))W

(¢) If X and Y are Hilbert spaces, A € L(X,Y) and R(A) is closed, then we
can take W satisfying R(W) = R(A*) and N (W) = N(A*), then use Theorem
2.1 (a) or (b) to get

Al = (WA g,) W

R<w>>

Remark 2.1 (a) In the case (c) of Corollary 2.2 we can take W = A* and get
the result of Theorem 1.1.

(b) The choice W = Al, 1 > ind(A), in the case (b) of Corollary 2.2 gives us
the result of Theorem 1.2.
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We also formulate a result for complex matrices, which is important for prac-
tical applications.

Corollary 2.3 Let A € C["*™. Then the class of all reflexive and the class of all
outer generalized inverses of A can be represented as follows:

Af1,2) = {((WA)\R(W))_l W W e,
rank(WAW') = rank(W) = rank(A)}

and

A2y = {(WAly,,) W: weemm,
rank(WAW) = rank(W) < rank(A)}.

Now we are in a position to establish the general representation theorem.

Theorem 2.2 Let A € L(X,Y) and let W € L(Y,X) be arbitrary such that
R(W) is closed and A = (WA)|gaw) : RIW) — R(W) is invertible. Let §) be

an open subset of the set C \ {0} such that o(A) C Q. Let (Sp)n be any family
of complex analytic functions on Q with nh_)rgo Sn(z) = % uniformly on compact
subsets of Q2. Then

G = lim S,(AW = A~'w

n—oo

is an outer generalized inverse of A.

Furthermore, for any € > 0, there is an operator norm || - ||« such that
Sun(AW = G|.
15(4) H < max |S,(2)z — 1]+ O(e). (2.2)
1G]l z€a(A)

Proof. Using the well-known properties of the functional calculus (see, for
example, [21][Theorem 10.27]), we have

lim S,(A) = A"

n—oo

It follows from Theorem 2.1 that

lim S,(A)W = AW = G € A{2}.

To obtain the error bound we note that W = AG and therefore

Su(A)W = G = [Sp(A)A - 1] G.
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Also, for any B and € > 0, there is an operator norm | - ||« such that ||B|, <
p(B) + € (see [3][page 77]), where p(B) is the spectral radius of B. Thus

IS AW =Gl = || [Su(AD)A-1]G].
< ISn(A)A ~ 1]l Gl

< lmax Su(2)2— 1] +0<e>] IGI.
z€o(A)

Now (2.2) follows immediatelly. O

In order to make use of this general error estimate above on specific approx-
imation procedures it will be convenient to have a lower and upper bounds for

o(A). This is given in the following theorem.

Theorem 2.3 Let A and W be as in Theorem 2.1, and denote A = (W A)

Then for each X € o(A) we have

’R(W)'

1
< || < || WA
TV AW Al < WAl

Proof. From Corollary 2.1 we know that (W A)Y exists. Let A € o(A). Since
WA > [[(WA)|gwll, it follows that |[A| < [[W Al holds. On the other hand,

we know that + € o(A~!) and

,i, < p(A7Y) < (WA,

which completes the proof. O

3 Approximations of outer generalized inverses

In this section we present several corollaries which illustrate the use of Theorem
2.2 in developing specific representations and computational procedures for outer
generalized inverses of operators on Banach spaces. We also find corresponding
error bounds.

The section is divided into six subsections.

(a) The following well-known summability method is called the Euler-Knopp
method [11]. A series > o2 ay is said to be Euler-Knopp summable with param-
eter a > 0 to the value a if the sequence defined by

n k k b i
Sn:azz<j>(1—a) a’la;

k=075=0
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converges to a. If a; = (1—z)7 for j = 0, 1,. .., then we obtain as the Euler-Knopp
transform of the series Y2 (1 — 2)", the sequence given by

n

Sn(z) =« Z(l —az)k,

k=0

We use the notation C* = {z € C: Rez > 0}.

Theorem 3.1 Let A and W be given such that the conditions of Theorem 2.1
are satisfied. Suppose that o(WA)\{0} CCT, m =inf{ReX: X € c(WA)\{0}},

p=p(WA) and 0 < a < ;7224-%' Consider the sequence

Ay=aW, Apy1={I—-aWAA,+aW, n>0. (3.1)

Then
Jim A, =G € A{2}.

Moreover, there exists some 3, 0 < B < 1, such that for any € > 0 there exists
the operator norm || - ||« such that

[An = G«

"t O(e). 3.2
Telm <"+ 0(e) (3.2)

If the spectrum of W A is real and nonnegative, then « can be chosen as 0 < a <

2/|[WAll.

Proof. Since S, (2) = aX?_o(1 — az)¥, we get that lim S,(z) = 1/z uni-
n—oo
formly on compact subsets of the set

Ea:{z:|1—ozz<1}:{z:m+iy:0<x<2/a,y|<\/(2/oz)x—:z:2}.

Particularly, if K is a compact subset of E,, then max{|l —az|: z € K} = 0k <
1.

We need to find sufficient conditions for « such that o(W A) \ {0} C E,. Let
M = max{ReX : A € o(WA)\ {0}}. Now a can be chosen according to the

condition

{ 2m 2M }
0 < o < min .

p2 +m2’ p2 +M2
Notice that 0 < m < M < p. Also, the function ¢ +— pfﬁ is increasing in

t € (0, p]. Hence, the sufficient condition for o(A) C E, is given by

2m
O0<ax< ST 5
p=+m
Moreover, if the set o(W A) is real and nonnegative, then E, = (0,2/a). In

this case it is enough to take 0 < a < 2/||WA]J|.
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From the proof of Corollary 2.1 we know the following:

A_lAl O].lMWWH[A(R(W))}
L0 A || T NW) |’

where A; is invertible,

W_[Wl 0].[A<R<W>)]H[R<W>]
o o] NW ’

where W is invertible and consequently

"relle sl

WA:[O 0 0 0

Since A = (WA)|gwy = Wi Ay : R(IW) — R(W), it is easy to see that
(I —aWAW = (I —aA)W.

Consequently, using Theorem 2.2 we get

S, (WAW = 8, (AW — G € A{2} (n — )

G=a) (I-aWA)"W.
n=0

If we set A, = Sp(WA)W, then it is easy to verify that

Ap=a) (I - aWA)FW,
k=0

and
n+1

(I—aWA)A,=a) (I-aWAFW = Ap1 — oW,
k=1

From (3.3) and (3.4) we obtain (3.1) and Jim_ A, =G.

(3.3)

For the error bound we note that the sequence of functions (S,(z)), satisfies

Snt1(2)z =1 = (1 —az)(Sp(z)z — 1).

Thus
1S, (2)z — 1| = |1 — az|* T

Notice that « is chosen according to the condition

max |1 —az|=p<1.
z€o(A)
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Hence, for all z € (A) the following holds
1S,(2)z —1| < B =0 (n — o0). (3.5)

If € > 0 is arbitrary, from (3.5) and Theorem 2.2 it follows that there exists an
operator norm || - ||« such that (3.2) holds. O

Remark 3.1 Since p < [|[WA|, we can take the following sufficient condition

for a in Theorem 3.1:
2m

0< < -5
CSIWARZ +m?

(b) To develop another iterative method, we regard 1/z as the root of the

function

s(y) =y~ ' -z

The Newton-Raphson method [11] can be used to approximate this root. This is
done by generating a sequence (yy,), where

Yn+1 = Yn — 5(Yn)/8' (Yn) = yn(2 — 2yn),

for suitable yq.

Theorem 3.2 Let A and W be given such that the conditions from Theorem 2.1
are satisfied. Suppose that o(WA)\{0} C Ct, m =inf{ReX: X € o(WA)\{0}},
p=p(WA) and 0 < a < ;;224—%' Consider the sequence
Ao = aVV, An+1 = An(QI - AAn), n > 0. (36)
Then
Jim A, =G e A{2}.

Moreover, there exists some 3, 0 < B < 1, such that for any € > 0 there exists
the operator norm || - ||« such that

[An — Gl

-
r <0+ 00, (3.7)

If the spectrum of W A is real and nonnegative, then a can be chosen as 0 < a <
2/[w Al

Proof. For a > 0 we define a sequence of complex functions (Sy,(z)), by
So(z) =a, Spy1(z) = Sn(2) 2 — 2S.(2)] . (3.8)
Clearly the sequence of functions in (3.8) satisfies

2Sn41(2) — 1= — [2Sn(2) — 1]2.
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Iterating this equality we obtain the following
1280 (2) — 1] = Jaz — 1%, (3.9)

Again, let

Eo={z=z+iy:0<z<2/a, |yl </(2/a)x — 22}

In the same way as in Theorem 3.1 we can prove that our choice of o implies

0(A) C E,. Obviously, 5= sup |1 —az| < 1. Hence, for all z € o(A) we get
z€a(A)

1250 (2) — 1] < B2n -0 (n— o)

and lim Sn(z) = 1/z uniformly on compact subsets of E,.

The sequence (S,,(A)),, defined by

So(A) = al,  Sui1(A) = 5(A) 21 = AS,(4)

has the property that nhlgO S, (AW = G e A{2}. Using Corollary 2.1 it is easy
to prove S, (A)W = S,(WA)W. If we set A, = S,(WA)W, then we have (3.6)
immediately.

The error estimate (3.7) follows in the same way as in Theorem 3.1. O

(c) Choosing S, = (1/n + 2)~!, we have Jim Sp(z) = 1/z uniformly on

compact subsets of C \ {0}. Hence we have the following result.

Theorem 3.3 Let A and W be the same as in Theorem 2.1. Then

1 -1
Tim. (n.r + WA) W= G e Af2}. (3.10)
Also, there ezists the norm || - ||« such that the following norm estimate holds:

IGT+WATW -Gl _ (WA
1G] R (U2

O(e) (3.11)

for sufficiently large n.

Proof. We set Sy, (z) = (1/n + z)~!. Using Theorem 3.1 we get

lim S,(A)W =G € A{2}.

n—oo

Again, we easily verify that ((1/n)I + WA)“'W = ((1/n)I + A)~'W. Note that
for z € 0(A) we can deduce that

25n(2) — 1| =
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for sufficiently large n. Using Theorem 2.3 for any z € o(A) we can obtain

1 1
1 LI1(WA)Y
’ZSn(Z> — 1‘ < 1 & 1 — nHl( ) Hg
v —n L Rll(WA)
for sufficiently large n. The rest of the proof follows from Theorem 2.2. O

Remark 3.2 In the partial case R(W) = T, N(W) = S we obtain the well-

known limit expression of the generalized inverse Ag )S originated by Wei in [24],
that is of the form (3.10).

(d) So far we have considered results based on approximating the function
1/z. Now we will use Theorem 2.2 and the Newton-Gregory interpolation [11],
[12] of the function f(z) = 1/z to generate iterative methods for computing the
generalized inverse G € A{2} and obtain corresponding asymptotic error bounds.

The unique polynomial, generated by the Newton-Gregory interpolation for-
mula, which interpolates the function f(z) = % at the points z =1,2,...,n+ 1,
is equal to

()= ( ; 1>Nf<1>, (3.12)

j=0
where A is the forward difference operator defined by

Af(z) = flz+1) = f(2), Af(2) = AN f(2)),

(z) . <Z—1> _(E-1DE-2)--(z-4)
0 ’ j j '

It is not hard to see that if f(2) = 1/z, then AJf(1) = (;71)3 A routine calculation

and

1
now shows that the interpolation polynomial is given by
n 1 j—1 »
= — 1— 3.13
Pal2) ;Jjﬂl:[)( z+1>’ (3.13)

where the product from 0 to —1 is, by convention, taken to be —1. Groetsch in

[11] shown that
- z
1_an(2)_ll;£<1_ l—l—l)'

Lemma 3.1 The polynomials p,(z) satisfy

1
lim pp(z) = -, (3.14)
z

n—oo

uniformly on compact subsets of CT.
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Proof. Let K be a compact subset of Ct. Then m = inf{z : 2 = z + iy €
K} > 0. There exists some positive integer jx such that for all j > jx and all
z =1z +1y € K the following is satisfied:

0<z<2(j+1) and |y| </2(j+ 1)z — 22

Hence, for all z € K and all j > j; we have 0 < ‘1 - =

T < 1. Notice that

o0 [e.°]
> % > JEO 741 = T and consequently Z 7 +1 = 400 uniformly on K. Since

7 +1 = —oo uniformly on

Jj=
K. Consequently, lim H 1-—

O

Theorem 3.4 Let A and W satisfy the conditions from Theorem 3.1 and suppose
that o(A) C Ct. Consider the sequence

w
Ay = A, =A,+——(1 - AA, 1
0o=W, +1 +n+2( ) (3.15)

Then nhnrolo A, = G € A{2}. Moreover, there exist some constant ¢ and the norm
| - |l such that the following holds:

Wk <ec(n+2)"" 4 0(e), (3.16)

for n sufficiently large, where m = inf{ Re X : A € o(A)}.

Proof. Tt follows from Theorem 2.2 and Lemma 3.1 that nlirglo p(AW =G e

A{2}, where A= (WA)R(M. In order to phrase this result in a form which is
more convenient for computation we note that pg(z) = 1 and

1 2 z
= 1 -
Prt1(2) Pnlz) + n—i-QZIIO( l+1)

[1— zpn(2)].

- pn(z)+n+2

Consider now an arbitrary operator W € L(Y, X) which satisfies conditions of
Theorem 2.1, the corresponding outer generalized inverse inverse G € L(Y, X) of
A€ L(X,Y). and the following sequence of operators

Ap = pp(A)W.
Let z = x4 iy € o(A). Then

0<m< Rez < |2| < |[WA
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We take L = [||[WA||]. Then for [ > L we have

2
-1 —2(21 .2
< e—(l—i—l) 2$e(l+1) (z%+y?)

1— 2
‘ 1+ 1’ - ’
implying
‘1 _ ‘ < o a(H )71 271 ) (a2 4y?)
I+1|~
[e.e]
Let us denote S = . n~2. Then we get
n=0
n
| A ) S e e AP M i
iy [+1
Since . )
n+
ZLZ @zln(n—l-Z)—ln(L—i-l)
[+1 t ’
we obtain
n
[T - | < et @ r0re S < 2= [wayre VAR,

Let ¢ denote
-1

z
c= max 14 [|[WA|N* 1-— ‘ .
e el I
Then we get
11— zpn(2)] <c(n+2)7° <c(n+2)7™
Now (3.16) follows from Theorem 2.2. O

Remark 3.3 An iterative method for the approzimation of the Moore-Penrose
inverse, which is based on the interpolation of the function 1/x and Theorem
1.1 is derived in [10]. Also, in the partial case R(W) =T, N(W) = S we get
corresponding iterative method for computing the generalized inverse AFE,? )S’ which
is introduced in [30]. 7

(e) We now take the natural step of approximating the generalized inverse
G € A{2} by the Hermite interpolation [12] of the function 1/z and its asymptotic
error bound.

We seek the unique Hermite interpolation polynomial g, (2) of degree 2n + 1
which satisfies

a(i) =1/i, ¢,(i)=-1/i%, (i=1,2,...,n+1).
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The Hermite interpolation formula yields the representation

Here the product from 1 to 0 is, by convention, taken to be 1. An easy inductive

argument gives
n 2
z
1—zqn(z):H<1— l+1) . (3.17)

We obtain the following result.

Theorem 3.5 Let A and W be the same as in Theorem 3.1, such that o(A) C
CT. Consider the sequence

1 1
Ap=(2I-WA App1 = A+ —— (2 ———WA I-AA,). (3.1
0= QL= WAW, Ay = Ayt — 5 (21— o WA)W(I-44,). (319

Then lim_ A, =G e A{2}.
Moreover, there exist the same constant ¢ as in Theorem 3.4 and the norm
| - |« such that the following holds:

HAn — GH*

e <e(n+2)"" 4 O(e) (3.19)

for sufficiently large n, where m = inf{Re\: A € o(A)}.
Proof. 1t follows from Theorem 2.2 and Lemma 3.1 that

G = lim g,(A)W € A{2},

where A = (WA)| One can verify the following

R(W)*

Qoz) = 2—2

n+1 — 5 2
Gir(2) = au(2)+ 2 +2) — 2] (l )

Using (3.17) we have

i (2) = () + s (2 g ) 11— 20n2)

An application of Theorem 2.2 gives G = nhnélo g (A)W € A{2}. Using

Ay, = Qn(A)W = Qn(WA)W
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we obtain iterations (3.18) and lim A, = G. The norm estimate follows in the
n—oo
same way as in Theorem 3.4. O

(f) Now we shall consider the hyper power method. Let p > 1 be an arbitrary
integer.

Theorem 3.6 Let A and W satisfy the same conditions as in Theorem 2.1 and
suppose that o(WA) \ {0} € CT. Let m = inf{ReX : A € o(WA) \ {0}},
p=p(WA) and 0 < o < ;;224—%' Consider the sequence

p—1
Ap=aW, Ani1=A4A,> (I-AA)F, n>0. (3.20)
k=0

Then
nanC}O A, =G e A{2}.

Moreover, there exists some 3, 0 < 8 < 1, such that for any € > 0 there exists
the operator norm || - ||« on L(Y,X) such that

[ AW — G«

< 67"+ O(e).
I ©

If the spectrum of WA is real and nonnegative, then o can be chosen as

0<a<2/|WA|.

Proof. Define the sequence (S,(z)), in the following way:

p—1
So(z) =a, Spt1(2) = Sn(z) Z(l — z5,(2))%, n>0.
k=0

Then (S,(z)), is a sequence of compelx analytic functions satisfying
|2Sn+1(2) — 1] = |2Sn(2) — 1|P
and consequently
|28, (2) — 1] = |az — 1[P".

Using the proof of Theorem 3.1 we get that Jim Sn(z) = 1/z uniformly on
compact §ubsets~ of the set E,, where E, is the same as in r12heorem 3.1. Hence,
lim 5,(A4) = A=l Using Corollary 2.1 we get that S,(A)W = S,(WA)W.
Téoflosequently, lim A, = G € A{2}. The error esitmate follows in the same way
as in Theorem n3ﬁloo O

Remark 3.4 Similar results for refelexive generalized inverses of complex ma-
trices are obtained in [19] and [14].
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4 Numerical results

In this section several illustrative numerical examples are presented.

Example 4.1 Consider the matrix

N O W
LN NN
DN = W

of rank 2. Since rank(W AW) = rank(W) = 2 < rank(A), conditions of Corol-

lary 2.3 are satisfied. We generate the following approximations of outer gener-
alized inverses of A corresponding to W. By z0 and x1 we denote two successive
approximations of the outer generalized inverse of A.

Applying the method from Section 8 (a) with o = 2/[||W Al % 100], we get the
following outer generalized inverse after 2871 iterations with the precision ||zl —

20|| = 0.4531203356671671 x 10~7 and ||zl.a.z]1 — z1| = 0.9981538491324644 x
107°
l 1.001646030447 x 107 0.052631282753692  1.001646030447 x 10~%  0.052631282753692 ]

—0.99999437232006 0.47368254642908 —0.99999437232006 0.47368254642908
0.9999963756120 —0.36841998092172 0.9999963756120 —0.36841998092172

An application of the method from Section 3 (b) gives us the following result after
13 iterative steps with the precision ||zl.a.x1 — 21|| = 2.08301031776417 x 10~
and ||z1 — z0|| = 2.08459513025796 x 10~ after 14 iterative steps :

—1.619079761754x 1071 0.05263157894736889 —6.24611582074x 107*°  0.052631578947370625
—0.9999999999999929 0.4736842105263136 —0.9999999999999724 0.47368421052630616
0.999999999999994 —0.368421052631577 0.9999999999999768 —0.36842105263157077

The result of the method from Section 3 (d) is the following outer generalized
inverse of A

—1.00000525026419 0.4736857647560667 —1.00000525026419 0.4736857647560667

—9.327375025388 x 1077 0.052631855277063  —9.327375025388 x 10~7  0.052631855277063
1.0000033847891943 —0.36842205420194 1.0000033847891943 —0.36842205420194

with the precision ||x1.a.x1 — 1| = 0.931529764160 x 107° and ||z1 — 20| =
7.2087836129227 x 10~7 after 46 iterations.

The result of the method from Section 3 (e) is the following outer generalized
inverse of A

—0.9999999954278058 0.4736842091737521  —0.9999999954278058 0.473684209173752

8.1321254458607 x 10™1%  0.05263157870672663  8.13212544586 x 107°  0.05263157870672663
0.9999999970542309 —0.3684210517602989  0.9999999970542309  —0.3684210517602989




The Representation and Approximations of Quter Generalized Inverses 18

with the precision ||zl.a.x1 — x1|| = 8.1105234276314 x 10 and ||z1 — 20| =
3.633031520066 x 10~? after 19 iterations.

Finally, the method from Section 3 (f) produces the following outer generalized
inverse of A

—2.23454067749%x 1071¢  0.05263157894736856 —2.23454067749x 1076  0.05263157894736856
—0.999999999999998 0.4736842105263149 —0.999999999999998 0.4736842105263149 | ,
0.9999999999999984 —0.368421052631578 0.9999999999999984 —0.368421052631578

generated with the precision ||rl.a.x1 — x1| = 1.325796832150478 x 10~ and
|21 — 20| = 2.20212991054386 x 1015 after 4 iterations.

Example 4.2 Consider now the singular M-matriz from [28]:

1 -1 0 0 0 0
-1 1 0 0 0 0
-1 -1 1 -1 0 0
A= -1 -1 -1 1 0 0
-1 -1 -1 0 2 -1

-1 -1 0 -1 -1 2

Let us choose the following matrix W :

0 0 0 0 0 O
-1 1 0 0 0 O
0 0 0 0 0 O
W= -1 -1 -1 1 0 O
0 0 0 0 0 O
1 -1 0 0 0 O

One can verify that rank(W) = 2 = rank(WAW) < rank(A) = 5. Applying
the method from Section 3 (a) with o = 2/[||W A|| * 100] we obtain the following
approximation of outer generalized inverse of A with the the precision |zl.a.x1—
21| = 9.96295860900683 x 107% and ||z1 — 20| = 8.201745924803316 x 1078,
after 1446 iterations:

0. 0. 0.
—0.499996477537388  0.499996477537388 0.

0. 0. 0.
—0.499996477537388  —0.499996477537388 —0.499996477537388
0. 0. 0.

0.499996477537399  —0.499996477537399 0.
0. 0. 0
0. 0. 0
0. 0. 0
0.499996477537388 0. O
0. 0. 0
0. 0. 0

Also, it is an exercise to verify that ind(A) = 2. Now, using W = A% and o =
2/[|IW A||*100], the method from Section 3 (a) produces the following approxima-
tion of the Drazin inverse from [27] after 20705 iterative step, with the precision
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|zl.a.21 — 21| = 0.9998751461651 x 10~° and ||z1 — 20| = 0.57285891017949 x
1078:

0.249999999999996  —0.249999999999996 0.
—0.249999999999996  0.249999999999996 0.
0. 0. 0.249999999999996
0. 0. —0.249999999999996
0. 0. —0.416663131549148
0. 0. —0.583329798215805
0. 0. 0.
0. 0. 0.
—0.2499999738304 0. 0.
0.2499999738304 0 0

—0.583329798215805 0.666663131549191 0.333329798215859
—0.416663131549148  0.333329798215859 0.666663131549191

Using the method from Section 3 (b) with o = 2/[||W A|| * 100] we obtain the
following approximation of outer inverse of A after 12 iterations and with the pre-
cision ||z1.a.x1—x1| = 3.611212654972683x 10715, ||21—20|| = 7.219341585552812x

1078:

0. 0. 0. 0. 0. 0
—0.49999999999999  0.49999999999999 0. 0. 0. 0
0. 0. 0. 0. 0. 0
—0.49999999999999  —0.49999999999999  —0.49999999999999  0.499999999999999 0. O
0. 0. 0. 0. 0. 0
0.49999999999999  —0.49999999999999 0. 0. 0. 0

Using W = A?, the same method produces well known approzimation of the
Drazin inverse from [27] after 27 iterations with the precision |zl.a.x1—xz1| = 0.

and ||z1 — z0|| = 1.110223024625156 x 10~16:

0.25 —0.25 0. 0. 0 0
—-0.25 0.25 0. 0. 0 0
0. 0. 0.25 —0.25 0. 0.
0. 0. —0.25 0.25 0. 0.
0. 0. —0.4166666666667 —0.5833333333333 0.6666666666667 0.3333333333333
0. 0. —0.5833333333333 —0.4166666666667 0.3333333333333 0.6666666666667

Using the method from Section 3 (d) we obtain the following approzimation of
outer generalized inverse of A after 2 iterations and with the precision ||x1l.a.x1—
zl|| = ||lx1 — 20| = 0.:

0. 0. 0. 0. 0. 0
—-0.5 0.5 0. 0. 0. 0
0. 0. 0. 0. 0. 0
-05 —-05 —-05 05 0. O
0. 0. 0. 0. 0. 0
05 =05 0. 0. 0. 0

Using W = A% and the method from Section 3 (d) we obtain well known ap-
prozimation of the Drazin inverse from [27] after 27 iterations with the precision
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|z1l.a.21 — 21| = 0. and ||z1 — 20| = 1.110223024625156 x 10~16:

0.25 —0.25 0. 0. 0 0
-0.25 0.25 0. 0. 0 0
0. 0. 0.25 —0.25 0. 0.
0. 0. -0.25 0.25 0. 0.
0. 0. —0.4166666666667 —0.5833333333333 0.6666666666667 0.3333333333333
0 0. —0.5833333333333 —0.4166666666667 0.3333333333333 0.6666666666667

Using the method from Section 3 (e) we get the exact outer generalized inverse
corresponding to A and W after two iterative steps:

0 0 0O 0 0 O

-1 1 0 00 0

0 0 0 0 0 O

3 -3 -3 100

0 0 0 0 0 O

i -1 0 000

and the exact Drazin inverse of A:
il 1% 0 0 0 0
-1 1 0 0 0 0
o o + -1 00
0 0 -3 1 0 0
o o0 -2 -L 2 1
t 3
0 0 -% -3 3 3
Finally, the method from Section s (f) gives the solution

0. 0. 0. 0. 0. 0.
—-0.5 0.5 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
-05 —-05 —-0.5 05 0. O.
0. 0. 0. 0. 0. 0.
0.5 —=0.5 0. 0. 0. 0.

immediately after the first iterative step with the precision ||zl.a.xl — z1| =
|1 — 20| = 0.

In the case W = A? the Drazin inverse of A is produced after 7 iterations,

with the precision ||z1.a.x1—x1 = 0. and ||z1—20|| = 2.473830024735911 x 1015

0.25 —0.25 0. 0. 0. 0.
—-0.25 0.25 0. 0. 0. 0.
0. 0. 0.25 —0.25 0. 0.
0. 0. —0.25 0.25 0. 0.
0. 0 —0.41666666666667 —0.58333333333333 0.66666666666667 0.33333333333333
0. 0 —0.58333333333333 —0.41666666666667 0.33333333333333 0.66666666666667
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