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Abstract. In this paper we consider the reverse order rule of the form

(AB)
(2)
K,L = B

(2)
T,SA

(2)
M,N for outer generalized inverses with prescribed range

and kernel. As corollaries, we get generalizations of the well-known results of
Bouldin (SIAM J. Appl. Math. 25 (1973), 489–495; in “Recent Applications
of Generalized Inverses, vol 66. Pitman Ser. Res. Notes in Math, (1982),
233–248) and Izumino (Tohoku Math. J. 34 (1982), 43–52) for the ordinary
Moore-Penrose inverse, and Sun and Wei (SIAM J. Matrix Anal. Appl. 19
(1998), 772–775) for the weighted Moore-Penrose inverse. Results of Bouldin
(the second paper mentioned above) for the reverse order rule for the Drazin
inverse are improved. Finally, necessary and suficient conditions such that
the reverse order rule holds for the group inverse are introduced.

1. Introduction

The rule (ab)−1 = b−1a−1, where a, b are invertible elements of a semi-

group with a unit, is called the reverse order rule for the ordinary inverse.

In this paper we will consider the rule (AB)− = B−A−, where A− de-

notes a generalized (outer, Moore-Penrose, Drazin) inverse of a Banach or

Hilbert space operator A. As corollaries, we will get generalizations of the
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well-known results of Bouldin [2],[3] and Izumino [9] for the ordinary Moore-

Penrose inverse, and Sun and Wei [13] for the weighted Moore-Penrose in-

verse. Results of Bouldin [3] for the reverse order rule for the Drazin inverse

will be improved. Finally, necessary and suficient conditions such that the

reverse order rule holds for the group inverse will be introduced.

Let X, Y, Z be Banach spaces and L(X, Y ) be the set of all bounded

linear operators from X into Y . For B ∈ L(X, Y ) we use N (B) and R(B)

to denote the range and the kernel of B. We say that C ∈ L(Y, X) is an

outer generalized inverse of B, if CBC = C.

Recall the basic properties of outer generalized inverses with prescribed

range and kernel (see [11] and [12]). Let T and S be subspaces of X and

Y , respectively, such that there exists an outer generalized inverse B
(2)
T,S ∈

L(Y, X) of B with range equal to T and kernel equal to S, i.e. B
(2)
T,S satisfies

B
(2)
T,SBB

(2)
T,S = B

(2)
T,S , R(B(2)

T,S) = T, N (B(2)
T,S) = S.

If B, T and S given as above, then B
(2)
T,S exists if and only if T, S are closed

complemented subspaces of X and Y respectively, the restriction of B|T :

T → B(T ) is invertible and B(T ) ⊕ S = Y . In this case B
(2)
T,S is unique.

Hence, the notation is justified. For example, the ordinary Moore-Penrose

inverse, the weighted Moore-Penrose inverse and the Drazin inverse of B can

be obtain as outer generalized inverses with prescribed range and kernel, for

suitable choices of T and S.

We consider a similar situation for A ∈ L(Y,Z) and AB ∈ L(X,Z). Let

subspaces M of Y and N of Z be given such that there exists A
(2)
M,N ∈

L(Z, Y ). Also, let subspaces K of X and L of Z be given such that there

exists (AB)(2)K,L ∈ L(Z, X).

In this paper we will find sufficient conditions such that the reverse order

rule for outer generalized inverses with prescribed range and kernel holds.

Precisely, these conditions will be sufficient such that the next equality holds:

(AB)(2)K,L = B
(2)
T,SA

(2)
M,N .
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As corollaries, we will get sufficient conditions for the reverse rule for some

classes of generalized inverses.

Our aim was to investigate outer inverses with prescibed range and kernel

becouse of their usefulness. Starting point for investigating outer generalized

inverses are papers of Nashed and Votruba [11] and Nashed [12]. Also, re-

lated results in Banach algebras are presented in [5]. Recently, several papers

concerning outer generalized inverses of matrices with prescribed range and

kernel appeared, for example [15], [17] and [18]. Most of their applications

are related to solving overdetermined linear systems.

On the other hand, in many papers the reverse order rule for generalized

inverses is investigated. Fisrt of all, there is a classical paper of Greville

[7], where the reverse order rule for the Moore-Penrose inverse of compelx

matrices is proved. Usually, the Moore-Penrose inverse, or inner generalized

inverses are investigated. Sometimes the reverse order rule for reflexive gen-

eralized inverses is considered. Some related results are presented in papers

[6], [14], [16] and [19]. It is important to mention the reverse order rule

of the form (ABC)† = C†B†A† is investigated by Hartwig in [8]. Results

which are closely related to those presented in this paper are the following.

The reverse order rule for the Moore-Penrose inverse of bounded operators

on Hilbert spaces is obtained in [2], [3] and [9]. The reverse order rule for

the weighted Moore-Penrose inverse is obtained in [13] and the reverse order

rule for the Drazin inverse is considered in [3].

The paper is organized as follows. In Section 2 known results concerning

the ordinary and the weighted Moore-Penrose inverses, the ordinary and the

generalized Drazin inverses and the Drazin index of an operator are pre-

sented. The main result concerning the sufficient conditions for the reverse

order rule for outer generalized inverses with prescribed range and kernel

is proved in Section 3. In Section 4 we introduce generalizations of known

results for the reverse order rule for the weighted Moore-Penrose inverse and

the ordinary and the generalized Drazin inverses of an operator. Finally, we
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also find necessary and sufficient conditions such that the reverse order rule

for the group inverse holds.

2. Auxiliary results

If X and Y are Hilbert spaces and B ∈ L(X, Y ) has a closed range, we

can take T = R(A∗) and S = N (A∗), to obtain B
(2)
T,S = B†. Here B∗ denotes

the conjugate operator of B and B† denotes the Moore-Penrose inverse of

B. If R(B) is closed, B† can also be defined as the unique operator which

satisfies: BB†B = B, B†BB† = B†, (BB†)∗ = BB† and (B†B)∗ = B†B.

Let X, Y be Hilbert spaces and let positive and invertible operators F ∈
L(X) and E ∈ L(Y ) be given. If B ∈ L(X,Y ) has a closed range, then there

exists the unique operator B†
E,F ∈ L(Y, X), such that the following hold:

BB†
E,F B = B, B†

E,F BB†
E,F = B†

E,F ,

(EBB†
E,F )∗ = EBB†

E,F , (FB†
E,F B)∗ = FB†

E,F B.

The operator B†
E,F is known as the weighted Moore-Penrose inverse of B.

Notice the weighted conjugate operator B# = F−1B∗E considered in

[13]. Recall that

BB†
E,F = PR(B),E−1N (B∗) = PR(B),N (B#) and

B†
E,F B = PF−1R(B∗),N (B) = PR(B#),N (B).

Here PW1,W2 denotes the projection onto W1 parallel to W2. Hence, B†
E,F is

the unique outer generalized inverse of B with the range equal to F−1R(B∗)

and the kernel equal to E−1N (B∗).

If X is a Banach space and V ∈ L(X), then the ascent of V is the smallest

nonnegative integer k (if it exists) such that N (V k) = N (V k+1) holds. The

descent of V is the smallest nonnegative integer k (if it exists) such that



REVERSE ORDER RULE FOR GENERALIZED INVERSES 5

R(V k) = R(V k+1) holds. If the ascent and the descent of V are both finite,

then they are equal and this common value is known as the Drazin index of

V , denoted by ind(V ). It is well-known that ind(V ) = k if and only if there

exists the unique operator V D ∈ L(X), which satisfies

V k+1V D = V k, V DV V D = V D, V V D = V DV.

V D is known as the Drazin inverse of V . If ind(V ) = 0, then V is invertible.

If ind(V ) ≤ 1, then V D is known as the group inverse of V , denoted by V g.

For more informations about the Drazin inverse see [5, p. 186-190]. For the

Drazin inverses of matrices see also [1] and [4].

If ind(V ) = k, then X = R(V k)⊕N (V k), the restriction of V to R(V k) is

invertible and the restriction of V to N (V k) is nilpotent. Hence, the matrix

representation of V has the following form:

V =
[

V1 0
0 V2

]
:
[R(V k)
N (V k)

]
→

[R(V k)
N (V k)

]
,

where V1 is invertible and V k
2 = 0. Also

V D =
[

V −1
1 0
0 0

]
:
[R(V k)
N (V k)

]
→

[R(V k)
N (V k)

]
.

Hence, the Drazin inverse V D is the unique outer generalized inverse of V ,

with the range equal to R(V k) and the kernel equal to N (V k).

An operator V ∈ L(X) has the group inverse (i.e. ind(V ) ≤ 1) if and

only if X = R(V )⊕N (V ). In particular, it follows that R(V ) is closed. In

this case V has the following matrix decomposition

V =
[

V1 0
0 0

]
:
[R(V )
N (V )

]
→

[R(V )
N (V )

]
,

where V1 is invertible. In this case the group inverse of V has the form

V g =
[

V −1
1 0
0 0

]
.
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It is also well-known that V ∈ L(X) has the Drazin inverse, if and only

if the point λ = 0 is pole of the resolvent λ 7→ (λ− V )−1. The order of this

pole is equal to ind(V ) (see [5, p.188]).

In [10] Koliha introduced the concept of a generalized Drazin inverse V d

of a bounded operator V ∈ L(X). If 0 is not the point of accumulation of the

spectrum σ(V ) of V , denote by P the spectral idempotent of V corresponding

to {0}. Let X1 = N (P ) and X2 = R(P ). Then the decomposition X =

X1 ⊕X2 completely reduces V , the restriction V1 = V |X1 is invertible and

the restriction V2 = V |X2 is quasinilpotent. In this case V has the following

matrix form

V =
[

V1 0
0 V2

]
:
[

X1

X2

]
→

[
X1

X2

]
.

The generalized Drazin inverse of V can be defined as

V d =
[

V −1
1 0
0 0

]
:
[

X1

X2

]
→

[
X1

X2

]
.

Other alternative definitions of V d can be found in [10]. Obviously, if V

has the generalized Drazin inverse, then V d is the unique outer generalized

inverse of V , whose range is equal to N (P ) and kernel is equal to R(P ). If

V has the Drazin inverse, then V D = V d.

3. Main results

Let B ∈ L(X,Y ) and assume that B
(2)
T,S ∈ L(Y, X) exists for given closed

subspaces T of X and S of Y . Let B′
T,S ∈ L(Y, X) be any operator which

satisfies R(B′
T,S) = T and N (B′

T,S) = S (this operator obviously exists).

For example, if X and Y are Hilbert spaces, T = N (B)⊥, S = R(B)⊥, then

we can take B′
T,S = B∗. We prove the following useful result.
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Lemma 3.1. Suppose that for B ∈ L(X, Y ) and given closed subspaces T

and S of X and Y , respectively, there exists B
(2)
T,S ∈ L(Y, X). Then

B
(2)
T,S = B′

T,S(BB′
T,S)g,

where B′
T,S ∈ L(Y,X) is an arbitrary operator satisfying R(B′

T,S) = T and

N (B′
T,S) = S.

Proof. There exists a closed complementary subspace T1 of T in X. Consider

the following matrix decomposition of B:

B =
[

U1 U2

0 U3

]
: X =

[
T
T1

]
→

[
B(T )

S

]
= Y.

The restriction U1 = B|T : T → B(T ) is invertible and obviously

B
(2)
T,S =

[
U−1

1 0
0 0

]
:
[

B(T )
S

]
→

[
T
T1

]
.

From the properties of B′
T,S we conclude that it has the following form

B′
T,S =

[
U ′

1 0
0 0

]
:
[

B(T )
S

]
→

[
T
T1

]
,

where U ′
1 = B′

T,S |B(T ) : B(T ) → T is invertible. Hence

BB′
T,S =

[
U1U

′
1 0

0 0

]
:
[

B(T )
S

]
→

[
B(T )

S

]
.

Since U1U
′
1 is invertible, we conclude that ind(BB′

T,S) ≤ 1 and

(BB′
T,S)g =

[
(U ′

1)
−1U−1

1 0
0 0

]
:
[

B(T )
S

]
→

[
B(T )

S

]
.

Now we get

B′
T,S(BB′

T,S)g = B
(2)
T,S . ¤

Remark 3.2. If X,Y are Hilbert spaces and B ∈ L(X, Y ) has a closed range,

then Lemma 3.1 implies B† = B∗(BB∗)g = B∗(BB∗)† (see [3, Theorem

3.4]). Also, Wei proved the result of Lemma 3.1 for finite dimensional spaces

in [18, Theorem 2.1].

Now, we will prove the main result of this paper.
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Theorem 3.3. Let A ∈ L(Y,Z), B ∈ L(X,Y ), and let A
(2)
M,N ∈ L(Z, Y ),

B
(2)
T,S ∈ L(Y, X) and (AB)(2)K,L ∈ L(Z, X) be outer inverses of A, B and

AB with subspaces K,T ⊂ X, M, S ⊂ Y and N, L ⊂ Z. Let operators

A′M,N ∈ L(Z, Y ), B′
T,S ∈ L(Y, X) and (AB)′K,L ∈ L(Z, X) satisfy

R(A′M,N ) = M, N (A′M,N ) = N, R(B′
T,S) = T, N (B′

T,S) = S,

R(B′
T,SA′M,N ) = R((AB)′K,L) = K, N (B′

T,SA′M,N ) = N ((AB)′K,L) = L.

If A
(2)
M,NA commutes with BB′

T,S and BB
(2)
T,S commutes with A′M,NA, then

(AB)(2)K,L = B
(2)
T,SA

(2)
M,N .

Proof. Taking M1 = N (A(2)
M,NA) and T1 = N (B(2)

T,SB) we get Y = M ⊕M1

and X = T ⊕ T1. Consider the following decompositions

A =
[

A1 A2

0 A3

]
:
[

M
M1

]
→

[
A(M)

N

]
,

where A1 = A|M : M → A(M) is invertible,

A
(2)
M,N =

[
A−1

1 0
0 0

]
:
[

A(M)
N

]
→

[
M
M1

]
,

A′M,N =
[

A′1 0
0 0

]
:
[

A(M)
N

]
→

[
M
M1

]
,

where A′1 = A′M,N |A(M) : A(M) → M is invertible. Operators related to B

have the following decompositions:

B =
[

B1 B3

B2 B4

]
:
[

T
T1

]
→

[
M
M1

]
,

B′
T,S =

[
B′

1 B′
2

0 0

]
:
[

M
M1

]
→

[
T
T1

]
.

We know that A
(2)
M,NA is the projection from Y onto M parallel to M1. From

A
(2)
M,NA =

[
I A−1

1 A2

0 0

]
:
[

M
M1

]
→

[
M
M1

]
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we get A2 = 0, A =
[

A1 0
0 A3

]
and A

(2)
M,NA =

[
I 0
0 0

]
:
[

M
M1

]
→

[
M
M1

]
.

Since

BB′
T,S =

[
B1B

′
1 B1B

′
2

B2B
′
1 B2B

′
2

]
:
[

M
M1

]
→

[
M
M1

]
,

it follows that

BB′
T,SA

(2)
M,NA =

[
B1B

′
1 0

B2B
′
1 0

]

and

A
(2)
M,NABB′

T,S =
[

B1B
′
1 B1B

′
2

0 0

]
.

Since BB′
T,S commutes with A

(2)
M,NA, we conclude that

B2B
′
1 = 0, B1B

′
2 = 0

and

BB′
T,S =

[
B1B

′
1 0

0 B2B
′
2

]
.

Using Lemma 3.1, from ind(BB′
T,S) ≤ 1 it follows that ind(B1B

′
1) ≤ 1,

ind(B2B
′
2) ≤ 1 and

(BB′
T,S)g =

[
(B1B

′
1)

g 0
0 (B2B

′
2)

g

]
.

From Lemma 3.1 we also get

B
(2)
T,S = B′

T,S(BB′
T,S)g =

[
B′

1(B1B
′
1)

g B′
2(B2B

′
2)

g

0 0

]
.

Since

AB =
[

A1B1 A1B3

A3B2 A3B4

]

and

B
(2)
T,SA

(2)
M,N =

[
B′

1(B1B
′
1)

gA−1
1 0

0 0

]
,

we easily get

B
(2)
T,SA

(2)
M,NABB

(2)
T,SA

(2)
M,N = B

(2)
T,SA

(2)
M,N .
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Using B2B
′
1 = 0 and B1B

′
2 = 0 we compute

BB
(2)
T,S =

[
B1B

′
1(B1B

′
1)

g 0
0 B2B

′
2(B2B2)′

]
.

Obviously, BB
(2)
T,S is the projection from Y onto R(B1B

′
1)⊕R(B2B

′
2) with

respect to the following decomposition of the space

Y = [R(B1B
′
1)⊕N (B1B

′
1)]⊕ [R(B2B

′
2)⊕N (B2B

′
2)].

On the other hand BB
(2)
T,S must be the projection from Y onto B(T ) parallel

to S.

Since the restriction B|T : T → Y is one-to-one, we conclude thatN (B1)∩
N (B2) = {0}. From B1B

′
2 = 0 and B2B

′
1 = 0 we get R(B′

1) ∩ R(B′
2) ⊂

N (B2) ∩N (B1) = {0}. Hence

T = R(B′
T,S) = R(B′

1) +R(B′
2) = R(B′

1)⊕R(B′
2),

N (B1) = R(B′
2) and N (B2) = R(B′

1). Now it follows that R(B1) =

R(B1B
′
1) and R(B2) = R(B2B

′
2). In particular, we get that R(B1) and

R(B2) are closed subspaces of Y and B(T ) = R(B1)⊕R(B2).

The inclusion N (B′
1) ⊂ N (B1B

′
1) is obvious. Suppose that there exists

some x ∈ N (B1B
′
1) \ N (B′

1). Then B1B
′
1x = 0, B′

1x ∈ N (B1) and hence

B′
1x = 0. We get N (B1B

′
1) = N (B′

1) and similarly N (B2B
′
2) = N (B′

2). It

follows that

M = R(B1)⊕N (B′
1), M1 = R(B2)⊕N (B′

2)

and these decompositions completely reduce B1B
′
1 and B2B

′
2 respectively.

Since BB
(2)
T,S commutes with A′M,NA, we obtain

A′1A1B1B
′
1(B1B

′
1)

g = B1B
′
1(B1B

′
1)

gA′1A1.
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Hence the decomposition M = R(B1) ⊕ N (B′
1) completely reduces A′1A1.

Consider the following decomposition:

A(M) = A1(R(B1))⊕A1(N (B′
1)).

There exist invertible operators C1, C2, C
′
1, C

′
2 such that

A1 =
[

C1 0
0 C2

]
:
[R(B1)
N (B′

1)

]
→

[
A1(R(B1))
A1(N (B′

1))

]
, A−1

1 =
[

C−1
1 0
0 C−1

2

]

and

A′1 =
[

C ′1 0
0 C ′2

]
:
[

A1(R(B1))
A1(N(B′

1))

]
→

[R(B1)
N (B′

1)

]
.

There exists an invertible operator D ∈ L(R(B1)) such that

B1B
′
1 =

[
D 0
0 0

]
:
[R(B1)
N (B′

1)

]
→

[R(B1)
N (B′

1)

]
and (B1B

′
1)

g =
[

D−1 0
0 0

]
.

Since

B′
T,SA′M,N =

[
B′

1A
′
1 0

0 0

]
,

we find

N (B′
T,SA′M,N ) = N ⊕N (B′

1A
′
1) = N ⊕A1(N (B′

1)).

It is easy to verify the following

N (B(2)
T,SA

(2)
M,N ) = N ⊕A1(N (B′

1)) = N (B′
T,SA′M,N ) = N ((AB)′K,L) = L.

We also find that

R(B′
T,SA′M,N ) = R(B′

1)

and
R(B(2)

T,SA
(2)
M,N ) = R(B′

1(B1B
′
1)

gA−1
1 ) = R(B′

1)

= R(B′
T,SA′M,N ) = R((AB)′K,L) = K.

We have just proved

(AB)(2)K,L = B
(2)
T,SA

(2)
M,N . ¤
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Lots of results concerning the reverse order rule for generalized inverses

are already known (see, for example, [2], [3], [6], [7], [8], [9], [13], [14], [16]

[19]). Most of them deal with the Moore-Penrose inverse, inner of reflexive

(both inner and outer) generalized inverse. Also, most of these results are

specialized to complex matrices. As far as we know, results contained in our

Theorem 3.3 are not published before.

4. Applications

Bouldin [2, Theorem 3.1, Remark 3.2], [3, Theorem 3.3] and Izumino [9,

Corollary 3.11] found the necessary and sufficient conditions such that the

reverse order rule for the ordinary Moore-Penrose inverse of operators on

Hilbert spaces holds:

Proposition 4.1. If X, Y, Z are Hilbert spaces and A ∈ L(Y,Z), B ∈
L(X,Y ) and AB ∈ L(X, Z) have closed ranges, then the following state-

ments are equivalent:

(1) (AB)† = B†A†;

(2) A†A commutes with BB∗ and BB† commutes with A∗A;

(3) R(A∗AB) ⊂ R(B) and R(BB∗A∗) ⊂ R(A∗).

In [13, Theorem 2.4] Sun and Wei proved the following result:

Proposition 4.2. Let X,Y, Z be Hilbert spaces and let positive and invert-

ible operators E ∈ L(X), F ∈ L(Y ) and G ∈ L(Z) be positive and invertible

operators. Then the following statements are equivalent:

(1) (AB)†G,E = B†
F,EA†G,F ;

(2) R(A#AB) ⊂ R(B) and R(BB#A#) ⊂ R(A#).

Here A# = F−1A∗G and B# = E−1B∗F .

Although Sun and Wei considered complex matrices, a careful reading

shows that their method is valid for bounded Hilbert space operators with
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closed ranges. Notice that in Proposition 4.2 the same weight for A and B on

the space Y is considered. We can prove a more general result, considering

different weights for A and B on the space Y .

The next Corollary 4.3 is a generalization of known results considering

the reverse order rule for the weighted Moore-Penrose inverse.

Corollary 4.3. Let X, Y, Z be Hilbert spaces and let A ∈ L(Y, Z), B ∈
L(X,Y ) and AB ∈ L(X,Z) have closed ranges. Let E ∈ L(X), F,H ∈ L(Y )

and G ∈ L(Z) be positive and invertible and let A# = H−1A∗G, B# =

E−1B∗F and (AB)# = E−1(AB)∗G. Consider the following statements:

(1) A†G,HA commutes with BB# and BB†
F,E commutes with A#A;

(2) (AB)†G,E = B†
F,EA†G,H .

If R((AB)#) = R(B#A#) and N ((AB)#) = N (B#A#), then (1) =⇒ (2).

If F = H, then (1) ⇐⇒ (2).

Proof. The implication (1) =⇒ (2) follows from Theorem 3.3 taking T =

E−1R(B∗) = R(B#), S = F−1N (B∗) = N (B#), M = H−1R(A∗) =

R(A#), N = G−1N (A∗) = N (A#), A′M,N = A#, B′
T,S = B# and (AB)′K,L

= (AB)# = E−1(AB)∗G. If F = H, then the implication (2) =⇒ (1) is a

result from Proposition 4.2. ¤

Let X be a Banach space and let A,B ∈ L(X) have Drazin inverses.

Bouldin [3, Theorem 4.3] proved the following result:

Proposition 4.4. If BDB commutes with A, ADA commutes with B and

(1) N ((AB)j) ⊃ N (AD) ∪N (BD)

holds for some nonnegative integer j, then

(AB)D = BDAD,

N (AB)D = span{N (AD),N (BD)}, R((AB)D) = R(AD) ∩R(BD)
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and the least j for which (1) holds is the Drazin index of AB.

We will prove a result concerning the generalized Drazin inverse.

Corollary 4.5. If A,B, AB ∈ L(X) have generalized Drazin inverses, AAd

commutes with BBd, R(BdAd) = R((AB)d) and N (BdAd) = N ((AB)d),

then (AB)d = BdAd.

Proof. Let P, Q, R denote the spectral idempotents of A,B, AB, respectively,

corresponding to {0}. In Theorem 3.3 we have to take T = N (Q), S = R(Q),

M = N (P ), N = R(P ), K = N (R), L = R(R), A′M,N = Ad, B′
T,S = Bd,

(AB)′K,L = (AB)d. ¤

In the case of the ordinary Drazin inverse, we compare Corollary 4.5 with

Proposition 4.4.

Proposition 4.6. If the assumptions of Proposition 4.4 hold, then so do

the assumptions of Corollary 4.5.

Proof. If the assumptions of Proposition 4.4 hold, i.e. AD and BD ex-

ists, BDB commutes with A, ADA commutes with B and N ((AB)j) ⊃
N (AD) ∪ N (BD), then AAD commutes with BBD, the reverse order rule

for the Drazin inverse holds, and hence the assumptions of Corollary 4.5 are

valid. ¤

However, the converse of Proposition 4.6 is not true in general. For the

convenience of the reader, we use one Bouldin’s example from [3, p. 243-244].

Example 4.7. Let A be a nonzero nilpotent operator on a Hilbert space

X, and let B be the orthogonal projection onto the orthogonal complement

of N (A). Then AB = A, AD = 0, (AB)D = 0, BD = B, AADBBD =

BBDAAD = 0, (AB)D = BDAD, but BDB = B2 = B does not commute

with A. Otherwise, R(B) = N (A)⊥ would be invariant under A, so R(A)

would be contained in N (A)⊥. It follows that N (A2) = N (A), hence A = 0.
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In the case of the group inverse, we can prove the reverse implication in

Corollary 4.5.

Theorem 4.8. Let A,B,AB ∈ L(X) have group inverses. Then the fol-

lowing statements are equivalent:

(1) AAg commutes with BBg, R((AB)g) = R(BgAg) and N ((AB)g) =

N (BgAg).

(2) (AB)g = BgAg.

Proof. According to Corollary 4.5 we only have to prove (2) =⇒ (1). The

main problem is to prove that AAg commutes with BBg.

We improve notations from Theorem 3.3:

A =
[

A1 0
0 0

]
:
[R(A)
N (A)

]
→

[R(A)
N (A)

]
,

where A1 is invertible,

Ag =
[

A−1
1 0
0 0

]
,

B =
[

B1 0
B2 0

]
:
[R(B)
N (B)

]
→

[R(A)
N (A)

]
.

Since R(Bg) = R(B), we conclude that Bg must have the following form

Bg =
[

B′
1 B′

2

0 0

]
:
[R(A)
N (A)

]
→

[R(B)
N (B)

]
.

Since

BgAg =
[

B′
1A

−1
1 0

0 0

]
,

BgAgABBgAg =
[

B′
1B1B

′
1A

−1
1 0

0 0

]
,

we conclude that B′
1B1B

′
1 = B′

1. From

AB =
[

A1B1 0
0 0

]
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and

ABBgAgAB =
[

A1B1B
′
1B1 0

0 0

]
,

we conclude that B1B
′
1B1 = B1. Hence B′

1B1 is the projection from R(B)

onto R(B′
1) parallel to N (B1) and R(B1) = B1(R(B′

1)). In particular, it

follows that R(B1) is closed. Also,

BgB =
[

B′
1B1 + B′

2B2 0
0 0

]
:
[R(B)
N (B)

]
→

[R(B)
N (B)

]
.

But BgB must be a projection from X onto R(B) parallel to N (B), so

B′
1B1 + B′

2B2 = I|R(B). We conclude that B′
2B2 is the projection from

R(B) onto N (B1) parallel to R(B′
1).

We will prove that B2|R(B′1) = 0.

Notice that R(AB) = R((AB)g) = R(BgAg) = R(B′
1). Hence R(B′

1) ⊂
R(A) ∩R(B) ⊂ R(B1). Since R(B1) is closed and R(B′

1) is complemented

in X, we conclude that R(B′
1) is complemented in R(B1). There exists a

subspace U , such that R(B′
1) ⊕ U = R(B1). Notice that we can always

take U ⊂ N (B1)⊕N (B) and U need not to be closed. Define the operator

B1 ∈ L(X) in the following way: B1|R(B) = B1 and B1|N (B) = 0. It follows

that R(B1) = R(B1) and N (B1) = N (B)⊕N (B1). Notice that

R(B1
2
) = B1(R(B′

1)) + B1(U) = R(B1) = R(B1).

Also

N (B1
2
) = [N (B)⊕N (B1)] + U = N (B1).

We conclude that ind(B1) ≤ 1, U = {0} and

X = R(B1)⊕N (B1) = R(B1)⊕N (B1)⊕N (B) = R(B′
1)⊕N (B1)⊕N (B).

From R(B′
1) ⊂ R(A) ∩R(B) ⊂ R(B1) we conclude that R(B′

1) = R(B1) =

R(A) ∩ R(B). Since R(B) ⊂ R(B1) ⊕ R(B2) we find B2|R(B′1) = 0 and

R(B) = R(B1)⊕R(B2).
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We will prove B1|R(B′2) = 0.

Since B|R(B) is one-to-one, we get N (B1)∩N (B2) = {0}, hence N (B2) =

R(B′
1). We know the following

R(B′
1) +R(B′

2) = R(B) = R(Bg) = Bg(R(B)) = B′
1(R(B1)) + B′

2(R(B2))

= R(B′
1)⊕N (B1),

since B′
1B1 + B′

2B2 = I|R(B) and B′
1B1 is the projection from R(B) onto

R(B′
1) parallel to N (B′

1). Since Bg is nonzero only on the subspace R(B) =

R(B1) ⊕ R(B2), we conclude that R(B′
1) = B′

1(R(B1)) and R(B′
2) =

B′
2(R(B2)) = N (B1). Hence, B1|R(B′2) = 0.

Now we know

BBg =
[

B1B
′
1 0

0 B2B
′
2

]

and BBg commutes with

AgA =
[

I 0
0 0

]
.

Thus, the proof is completed. ¤

Remark 4.9. The following quaestion is interesting: is Theorem 4.8 a new

result? Our Theorem 4.8 shows that if one wants to get the reverse order rule

for the group inverse, then the strong commutativity condition AAgBBg =

BBgAAg cannot be avoided.
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