
ON THE GENERALIZED DRAZIN INVERSE
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Abstract. We investigate the generalized Drazin inverse and the general-
ized resolvent in Banach algebras. The Laurent expansion of the generalized
resolvent in Banach algebras is introduced. The Drazin index of a Banach
algebra element is characterized in terms of the existence of a particularly
chosen limit process. As an application, the computing of the Moore-Penrose
inverse in C∗-algebras is considered. We investigate the generalized Drazin
inverse as an outer inverse with prescribed range and kernel. Also, 2 × 2
operator matrices are considered. As corollaries, we get some well-known
results.

0. Introduction

Let A be a Banach algebra with the unit 1. Recall that an element b ∈ A
is the Drazin inverse of a ∈ A provided that

ak+1b = ak, bab = b, ab = ba

holds for some nonnegative integer k. The least k in the previous definition

is called the Drazin index of a, and will be denoted by ind(a). If a has the

Drazin inverse, then the Drazin inverse of a is unique and is denoted by aD.

It is well-known that a ∈ A has the Drazin inverse if and only if the point
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λ = 0 is a pole of the resolvent λ 7→ (λ−a)−1. The order of this pole is equal

to ind(a). Particularly, it follows that 0 is not the point of accumulation of

the spectrum σ(a).

The Drazin inverse is investigated in the matrix theory [2, 3, 17, 26, 27],

in the ring theory [10, 11, 12]. In [5, 20] the Drazin inverse for bounded

linear operators on complex Banach spaces is investigated.

Recently, Koliha introduced the concept of a generalized Drazin inverse

[15]. The generalized Drazin inverse of an element a ∈ A exists if and only

if 0 /∈ accσ(a) and is described as follows. If 0 /∈ acc σ(a), then there exist

open subsets U and V of C, such that 0 ∈ U , σ(a) \{0} ⊂ V and U ∩V = ∅.
Define a function f in the following way:

f(λ) =
{

0, λ ∈ U,
1
λ , λ ∈ V.

The function f is regular in a neighbourhood of σ(a). The generalized Drazin

inverse of a is defined as ad = f(a). Notice that ad is a double commutant

of a. The generalized Drazin inverse retains some nontrivial nice properties

of the ordinary Drazin inverse. For example, the continuity properties of the

generalized and ordinary Drazin inverses are similar (see [16, 20]).

We mention that Harte also gave an alternative definition of a generalized

Drazin inverse in a ring [10, 11, 12]. These two concepts are equivalent in

the case when the ring is actually a Banach algebra.

On the other hand, in [21] Rose considered the Laurent expansion of the

generalized resolvent λ 7→ (A + λB)−1 for square matrices A and B, and

found several useful applications.

The purpose of this paper is to introduce several results which connect

the generalized Drazin inverse and the generalized resolvent of an element

of a Banach algebra.

In Section 1 we introduce the Laurent expansion of the generalized re-

solvent using the generalized Drazin inverse. In Section 2 we characterize
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the Drazin index in terms of the existence of a particularly chosen limit pro-

cess. As corollaries we get some well-known results of Koliha [15], Rose [21],

Meyer [18], Rothblum [22], Ji [14]. In Section 3 we use the resolvent expan-

sion to compute the Moore-Penrose inverse in C∗-algebras. In Section 4 we

investigate outer inverses with prescribed range and kernel. In particular,

we prove that the generalized Drazin inverse has similar properties. Finally,

in Section 5 we give a brief generalization of the well-known result of Meyer

and Rose [19] concerning the Drazin inverse of a block 2×2 upper triangular

operator matrix. Also, we consider one special case with non-zero entries of

a 2× 2 operator matrix.

1. Resolvent expansion

Let A be a Banach algebra and a ∈ A. We use σ(a) to denote the spec-

trum of a. If K is a compact subset of C, then acc K and iso K, respectively,

denote the set of all accumulation points and isolated points of K. Also,

H(K) denotes the set of all complex functions which are defined and regular

in a neighbourhood of K.

Let 0 /∈ accσ(a). If p = p(a, 0) is the spectral idempotent of a correspond-

ing to 0, then ap is quasinilpotent, and a(1− p) is invertible in the Banach

algebra (1 − p)A(1 − p). Using the well-known properties of the functional

calculus, it can be easily seen that ad is equal to the ordinary inverse of

a(1− p) in (1− p)A(1− p), i.e. ad = [a(1− p)]−1
(1−p)A(1−p). We can write

(1) a = ap + a(1− p)

and (1) is called the core-quasinilpotent decomposition of a. Also, p =

1−aad. If a has the ordinary Drazin inverse, then ad = aD. In this case the

core-quasinilpotent decomposition reduces to the well-known core-nilpotent

decomposition.

Recall that a ∈ A is g-invertible provided there exists b ∈ A, such that

aba = a. In this case b is a g-inverse, or an inner inverse of a. On the other
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hand, b is an outer inverse of a, if bab = b. Notice that ad (if it exists) is an

outer inverse of a.

Various expressions and applications of the resolvent λ 7→ (λ − a)−1 are

known in the literature (for example, see [22]). We shall generalize Rose’s

[21] and Koliha’s [15] results.

Let b ∈ A be such that ab = ba and 0 /∈ acc σ(a) ∪ accσ(b). Then

there exist generalized Drazin inverses of a and b, denoted by ad and bd,

respectively.

We shall prove the following result, originally proved in [4] for complex

matrices. Notice that the proof in [4] is essentially based on the fact ind(a) <

∞.

Theorem 1.1. Let a, b ∈ A, ab = ba, 0 /∈ accσ(a) ∪ accσ(b) and let there

exist (a + λb)−1 for some λ ∈ C. Then (1− aad)bbd = (1− aad).

Proof. Let pa = p(a, 0) and pb = p(b, 0) denote, respectively, the spectral

idempotents of a and b corresponding to the point z = 0. Then 1−aad = pa

and bbd = 1−pb. We have to prove pa(1−pb) = pa, or, equivalently, papb = 0.

If a is invertible, then pa = 0, so the statement of Theorem 1.1 holds.

Suppose that a is not invertible. Then (λb + a) is invertible for some

λ ∈ C\{0}. Since (λb)d = λ−1bd, we may assume that λ = −1, so let (a− b)

be invertible. We have to prove

1
2πi

∫

γ

(z − a)−1dz
1

2πi

∫

γ

(u− b)−1du = 0

for a suitably chosen contour γ around the point z = 0. Notice that

(z − a)−1 − (u− b)−1 = [(u− z) + (a− b)][(z − a)−1(u− b)−1].

Since a− b is inveritble, it follows that (u− z)+(a− b) is invertible for small

values of u and z. We may take γ such that (u − z) + (a − b) is invertible

for all z, u ∈ γ. Consider the function

F (z, u) = [(u− z) + (a− b)]−1[(z − a)−1 − (u− b)−1] = (z − a)−1(u− b)−1,
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which is continuous on the set γ × γ, so the order of integration may be

reversed if necessary. Obviously,
(

1
2πi

)2 ∫∫

γ×γ

F (z, u) dz du = papb.

On the other hand, the functions z 7→ [(u − z) + (a − b)]−1(u − b)−1 and

u 7→ [(u− z) + (a− b)]−1(z − a)−1 are regular in a neighbourhood of 0, so

(
1

2πi

)2 ∫∫

γ×γ

F (z, u) dz du =

=
1

2πi

∫

γ

[
1

2πi

∫

γ

[(u− z) + (a− b)]−1(z − a)−1du

]
dz

− 1
2πi

∫

γ

[
1

2πi

∫

γ

[(u− z) + (a− b)]−1(u− b)−1dz

]
du = 0.

It follows that papb = 0. ¤

The analogous statement in [4] is formulated using the condition N (A)∩
N (B) = {0}, where N (A) denotes the kernel of a matrix A. However, if A

and B are square matrices, then the following holds: N (A)∩N (B) = {0} if

and only if there exists some λ ∈ C such that A + λB is invertible.

Using Theorem 1.1 we prove a generalization of the well-known results of

Rose [21] and Koliha [15].

Theorem 1.2. Suppose the conditions from Theorem 1.1 are satisfied. Then

in a punctured neighbourhood of λ = 0 the following holds:

(λb− a)−1 = bd(1− aad)
∞∑

n=1

(abd)n−1λ−n − ad
∞∑

n=0

(adb)nλn.

Proof. The expansion
∑∞

n=0(a
db)nλn exists for small λ, since it represents

the function λ 7→ (1−λadb)−1. From 1−aad = pa and ab = ba we know that

abdpa is quasinilpotent. The expansion
∑∞

n=1(abd)n−1λ−n(1 − aad) exists

for |λ| > 0, since it represents the function λ 7→ (λ− abdpa)−1.
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Using Theorem 1.1 we obtain

(λb− a)

[
bd(1− aad)

∞∑
n=1

(abd)n−1λ−n − ad
∞∑

n=0

(adb)nλn

]
=

= bbd(1− aad)
∞∑

n=1

(abd)n−1λ−n+1 −
∞∑

n=0

(adb)n+1λn+1

− (1− aad)
∞∑

n=1

(abd)nλ−n + aad
∞∑

n=0

(adb)nλn

= (1− aad)

[ ∞∑
n=0

(abd)nλ−n −
∞∑

n=1

(abd)nλ−n

]

+ aad +
∞∑

n=1

a(ad)n+1bnλn −
∞∑

n=1

(adb)nλn = 1.

This completes the proof. ¤

If ind(a) < ∞, we get Rose’s expansion, established in [21] for complex

square matrices. If b = 1, we get Koliha’s expansion in Banach algebras [15].

2. Limits and characterizations of the index

In this section we will consider various limit processes which are related

with the generalized and ordinary Drazin inverses and the index of a Banach

algebra element.

We state several algebraic results.

Lemma 2.1. If a, b, p ∈ A are mutually commuting elements such that

p2 = p, and a, b are invertible, then

[ap + b(1− p)]−1 = a−1p + b−1(1− p) and [ap]−1
pAp = a−1p.
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Lemma 2.2. (a) The number of elements of the set

{
(i1, . . . , il) : i1, . . . , il ∈ {1, . . . , n}, i1 + · · ·+ il = n

}

is equal to
(
n−1
l−1

)
, where n ≥ 1 and 1 ≤ l ≤ n are arbitrary integers.

(b) Let v(n, l) denote the number of elements of the set

{
(i1, . . . , il) : i1 + · · ·+ il = n, i1, . . . , il ∈ {0, 1, . . . , n}

}
,

where n ≥ 0 and n + 1 ≥ l ≥ 1. Then

v(n, l) =
{ 1, n = 0∑l

i=1

(
l
i

)(
n−1
i−1

)
, n > 0

.

The following result is a generalization of a large class of known results

for matrices and very special elements of Banach algebras (see [17]). We

frequently use (as)d = (ad)s for an arbitrary integer s ≥ 0, which follows

from the definition of the generalized Drazin inverse and from the well-known

properties of the functional calculus.

Theorem 2.3. Let a ∈ A, 0 /∈ acc σ(a), and let s, l, t be positive integers.

Then

lim
λ→0

(λ + as)−l(ad)t = (ad)sl+t.

Proof. Let p = p(a, 0) be the spectral idempotent of a, corresponding to 0.

Since ad = ad(1− p) = [a(1− p)]−1
(1−p)A(1−p), using Lemma 2.1 we obtain

(λ + as)−l(ad)t = [(λ + as)−lp + (λ + as)−l(1− p)](ad)t(1− p)

= [(λ + as)(1− p)]−l
(1−p)A(1−p)(a

d)t(1− p).

Since the limit lim
λ→0

[(λ+ as)(1− p)]−l
(1−p)A(1−p) exists and is equal to ((as)d)l

= (ad)sl, it follows that

lim
λ→0

(λ + as)−l(ad)t = (ad)sl+t. ¤
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It is also possible to consider the limit of the type lim
λ→0

(λ + as)−l(ad)tar,

r ≥ 0, in Theorem 2.3, and repeat adaad = ad several times, to get the

known results for matrices [17].

We arrive at the main result of this section. The next theorem contains

all known results for the limit expressions characterizing the Drazin index of

an arbitrary square matrix. We will also use the expansion of the generalized

resolvent λ 7→ (λb− a)−1 from Theorems 1.2 and 1.1.

Theorem 2.4. Let a, b ∈ A satisfy the conditions from Theorem 1.1 and

let us consider the limit

w = lim
λ→0

w(λ), w(λ) = λm(λb− as)−lak, m, k ≥ 0, s, l > 0.

If m < l, then the limit lim
λ→0

w(λ) exists if and only if ind(a) ≤ k. If m ≥ l,

then the limit lim
λ→0

w(λ) exists if and only if ind(a) ≤ s(m − l) + k + s. In

the case when w = lim
λ→0

w(λ) exists, it is given in the following way:

w =





0, 0 < m < l and ind(a) ≤ k;
0, m ≥ l and s(m− l) + k ≥ ind(a);
(−1)l(aD)slak, m = 0 and ind(a) ≤ k;(
m−1
l−1

)
as(m−l)+k(1− aaD)(bd)m, m ≥ l and

ind(a)− s ≤ s(m− l) + k < ind(a).

Proof. Obviously, 0 /∈ acc σ(as) for any integer s ≥ 1. Theorem 1.2 yields

that the following holds in a punctured neighborhood of 0:

(λb− as)−1 =
∞∑

n=1

λ−n(asbd)n−1bd(1− aad)−
∞∑

n=0

λn[(as)d]n+1bn.

We know that

(2) (as)n−1(1− aad)[(as)d]j+1 = 0, n ≥ 1, j ≥ 0.
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Recall v(n, l) from Lemma 2.2. For any integer l ≥ 1, using Lemma 2.2 and

(2), we conclude that

(λb− as)−l =

=
∞∑

n=l

λ−n

(
n− 1
l − 1

)
(asbd)n−l(bd)l(1− aad) + (−1)l

∞∑
n=0

λnv(n, l)[(as)d]n+lbn

=
∞∑

n=l

λ−n

(
n− 1
l − 1

)
(as)n−l(bd)n(1− aad) + (−1)l

∞∑
n=0

λnv(n, l)[(as)d]n+lbn.

Now, for arbitrary integers m ≥ 0 and k ≥ 0 we get

(3)

w(λ) =
∞∑

n=l

λm−n

(
n− 1
l − 1

)
(as)n−lak(bd)n(1− aad)

+ (−1)l
∞∑

n=0

λm+nv(n, l)[(as)d]n+lakbn.

We consider several cases.

Case I. Let m = 0. Since v(0, l) = 1, (3) becomes

(4)

w(λ) =
∞∑

n=l

λ−n

(
n− 1
l − 1

)
(as)n−lak(bd)n(1− aad) + (−1)l[(as)d]lak

+ (−1)lλ

∞∑
n=1

λn−1v(n, l)[(as)d]n+lakbn.

Obviously, the limit lim
λ→0

w(λ) exists if and only if the principal part of the

Laurent series (4) vanishes. It is enough to assume that the first coefficient of

the principal part of (4) is equal to 0, i.e. (bd)lak(1−aad) = 0. If ind(a) ≤ k,

then ak(1 − aad) = ak(1 − aaD) = 0 and the limit lim
λ→0

w(λ) exists. On the

other hand, if (bd)lak(1− aad) = 0, using Theorem 1.1 we conclude

0 = bl(bd)lak(1− aad) = ak(1− aad),

so ind(a) ≤ k.
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It is easy to see that ind(a) ≤ k implies

w = (−1)l[(as)D]lak = (−1)l(aD)slak.

Case II. Let 0 < m < l. Then it is obvious that m−n < 0 for all n ≥ l. It

follows that lim
λ→0

w(λ) exists if and only if the principal part of the Laurent

series (3) vanishes. As in Case I, using Theorem 1.1 we can prove that the

principal part of (3) vanishes if and only if (1− aad)ak = 0, i.e. ind(a) ≤ k.

Since the regular part of (3) has the form λB(λ), where λ 7→ B(λ) is a regular

function in a neighborhood of 0, it is easy to conclude w = lim
λ→0

w(λ) = 0.

Case III. Let m ≥ l. It follows that (3) has the form

(5)
w(λ) =

∞∑
n=m+1

λm−n

(
n− 1
l − 1

)
as(n−l)+k(bd)n(1− aad)

+
(

m− 1
l − 1

)
as(m−l)+k(1− aad)(bd)m + λC(λ),

where λ 7→ C(λ) is a regular function in a neighborhood of 0. The limit

lim
λ→0

w(λ) exists if and only if the principal part of (5) vanishes, i.e.

as(n−l)+k(1− aad)(bd)n = 0 for all n ≥ m + 1.

If ind(a) ≤ s(m − l) + k + s, then as(n−l)+k(1 − aad)(bd)n = 0 holds for all

n ≥ m + 1 and the limit lim
λ→0

w(λ) exists.

Now, suppose that as(n−l)+k(1 − aad)(bd)n = 0 holds for n ≥ m + 1.

Multiplying this equality by bn and applying Theorem 1.1, we conclude that

as(n−l)+k(1 − aad) = 0 for all n ≥ m + 1, so ind(a) ≤ s(m − l) + k + s.

Now it is easy to verify that w = 0 if s(m − l) + k ≥ ind(a), and w =(
m−1
l−1

)
as(m−l)+k(1− aad)(bd)m if ind(a)− s ≤ s(m− l) + k < ind(a). ¤

In [21] Rose proved the existence of the limit

lim
λ→0

λmAk(A + λI)−l,
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where A is a square matrix, l ≥ 1 and m + k ≥ ind(A). In the case when

a belongs to a Banach algebra A, the main part of our Theorem 2.2 is that

the existence of the limit

lim
λ→0

λm(λb− as)−lak

implies ind(a) < ∞.

As corollaries, we mention the most important results, which are well-

known for matrices and for a tiny class of bounded operators on an arbitrary

Banach space. We point out the well-known results from the papers [1, 14,

17, 18, 21, 22]. Notice that all of these corollaries are proved for complex

square matrices in the original papers.

Corollary 2.5. (Ji [14]) If a ∈ A, then ind(a) ≤ k if and only if the limit

w = lim
λ→0

(λ + a)−(k+1)ak

exists. In this case w = aD.

Corollary 2.6. (Meyer [18], Rothblum [22]) Let a ∈ A and let m, k be

non-negative integers. Then ind(a) ≤ m + k if and only if the limit

w = lim
λ→0

λm(λ + a)−1ak

exists. In this case

w =





0, m > 0, m + k > ind(a)

(−1)m−1(1− aad)aind(a)−1 m > 0, m + k = ind(a)
akaD, m = 0, k ≥ ind(a)

.

Analogous results for matrices of index zero or one are proved by Ben-

Israel in [1].
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Corollary 2.7. (Meyer [18]) Let a ∈ A. Then ind(a) ≤ k < ∞ if and only

if the limit

w = lim
λ→0

(λ + ak+1)−1ak

exists. In this case w = aD.

Some corollaries are also mentioned in [21].

3. Computing the Moore-Penrose inverse in C∗-algebras

In this section we introduce further applications of the generalized Drazin

inverse, such as the computation of the Moore-Penrose generalized inverse

in C∗-algebras.

If A is a C∗-algebra, then the Moore-Penrose inverse of a, denoted by a†,

exists if and only if a is g-invertible, as is shown in a paper of Harte and

Mbekhta [13].

We need the following result from the functional calculus in C∗-algebras.

Theorem 3.1. Let a ∈ A and f ∈ H(σ(a)∪σ(a∗)). If D(f) is the domain of

definition of f and f(z) = f(z) holds for all z ∈ D(f), then f(a∗) = f(a)∗.

Proof. Notice that we can take D(f) symmetrically with respect to the real

axis. Let γ+ denote the finite union of disjoint contours around σ(a∗),

positively oriented with respect to σ(a∗). Then γ∗− = {z : z ∈ γ+} is

negatively oriented with respect to σ(a). We may assume that γ+ and γ∗−

are contained in D(f). Using f(z) = f(z) we compute

f(a∗) =
1

2πi

∫

γ+
f(z)(z − a∗)−1dz =

[
− 1

2πi

∫

γ∗−
f(z)(z − a)−1dz

]∗

=
[

1
2πi

∫

γ∗+
f(z)(z − a)−1dz

]∗
= f(a)∗. ¤

As a corollary, we get some useful properties concerning the Drazin inverse

of selfadjoint and positive elements in C∗-algebras.
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Theorem 3.2. If a ∈ A is selfadjoint and 0 /∈ accσ(a), then ad is self-

adjoint. Moreover, if a ≥ 0, then ad ≥ 0.

If a is selfadjoint and ∆ is an arbitrary spectral subset of σ(a), then the

spectral idempotent of a corresponding to ∆ is positive, i.e. p(a,∆) ≥ 0.

Proof. Since a = a∗, the function f from the definition of the generalized

Drazin inverse of a satisfies the conditions from Theorem 3.1, so ad = f(a)

is selfadjoint.

Moreover, if a ≥ 0, then

σ(ad) \ {0} = {1/z : z ∈ σ(a) \ {0}} ⊂ (0,+∞), [15]

so ad is a spectral inverse of a (for the definition of spectral inverses see [2,

5]). We conclude that ad ≥ 0.

The rest of the theorem follows from the definition of the spectral idem-

potent and Theorem 3.1. ¤

We will use Theorem 1.2 and Theorem 3.2 to get some limit results con-

cerning the Moore-Penrose inverse in C∗-algebras.

Theorem 3.3. (a) Suppose a ∈ A, where A is a C∗-algebra and 0 /∈
accσ(r∗s), where r, s, t ∈ A are arbitrary. Then the limit

(6) lim
λ→0

(λ + r∗s)−1t = h

exists if and only if

(1− r∗s(r∗s)d)t = 0.

In this case h = (r∗s)dt.

(b) If 0 /∈ accσ(r∗s), then

lim
λ→0

r∗(λ + sr∗)−1 = r∗(sr∗)d = (r∗s)dr∗ = lim
λ→0

(λ + r∗s)−1r∗

if and only if

0 = r∗(1− sr∗(sr∗)d) = (1− r∗s(r∗s)d)r∗.
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(c) If 0 /∈ accσ(a∗a), then

lim
λ→0

(λ + a∗a)−1a∗ = lim
λ→0

a∗(λ + aa∗)−1 = a†

if and only if a∗ = a∗a(a∗a)da∗ = a∗aa∗(aa∗)d.

Proof. (a) Consider the expansion from Theorem 1.2 (for b = 1):

(7)

(λ + r∗s)−1t =

[
(r∗s)d

∞∑
n=0

(−1)n[(r∗s)d]nλn

+(1− r∗s(r∗s)d)
∞∑

n=0

(−1)n(r∗s)nλ−n−1

]
t.

Obviously, the limit (6) exists if and only if the principal part of the Laurent

series (7) vanishes, i.e. (1− r∗s(r∗s)d)t = 0. In this case h = (r∗s)dt.

(b) In this case we have t = r∗ and (a) holds. Since σ(r∗s) ∪ {0} =

σ(sr∗) ∪ {0}, we get 0 /∈ acc σ(sr∗). Consider the following expression in a

punctured neighbourhood of λ = 0:

r∗(λ + sr∗)−1 =
r∗

λ
(1 +

1
λ

sr∗)−1 =
1
λ

∞∑
n=0

(−1)nλ−nr∗(sr∗)n

=
1
λ

∞∑
n=0

(−1)n(r∗s)nr∗ = (λ + r∗s)−1r∗.

The rest of the proof follows in the same way as in (a).

(c) Now r = s = a = t∗ and (a) and (b) hold. Then the limit

lim
λ→0

(λ + a∗a)−1a∗ = h

exists if and only if a∗ = a∗a(a∗a)da∗ and in this case h = (a∗a)da∗. From

Theorem 3.2 it follows that (a∗a)d is selfadjoint in A. Now we verify h = a†.

Obviously, hah = h and ah = a(a∗a)da∗ is selfadjoint in A. The equality

a∗ = a∗a(a∗a)da∗ implies a = a(a∗a)da∗a = aha. Finally, ha = 1 − pa∗a,

where pa∗a is the spectral idempotent of a∗a corresponding to the point
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λ = 0. From Theorem 3.2 it follows that pa∗a is a selfadjoint idempotent in

A, so we get 0 ≤ pa∗a ≤ 1. It follows that ha ≥ 0 is a selfadjoint idempotent

in A. The rest of the proof follows from (b). ¤

Notice that the limit in Theorem 3.3 (c) is well-known for square matrices

(see for example [21, 25] and references cited there).

We mention a few computational methods related to the limit represen-

tations of generalized inverses of matrices. An imbedding method and a

finite algorithm for computation of the Drazin inverse, based on the limit

representation of the Drazin inverse given in Corollary 2.5, is introduced in

[8]. Ji obtained our Corollary 2.5 in [14]. He used this result to develop an

iterative method for computing the Drazin inverse of a given matrix. In [24]

a more general method for computing the limit expression of the form

lim
α→0

(αI + R∗S)−lR∗

is developed, where R and S are arbitrary complex matrices. Partially,

the method from [24] can be applied for computing generalized inverses

contained in the limit expression from our Theorem 3.3.

4. Outer inverses with prescribed range and kernel

In this section we will consider the generalized Drazin inverse as an outer

inverse with prescribed range and kernel. We restate some facts about outer

inverses. Let X and Y be Banach spaces and let L(X, Y ) be the set of all

bounded operators from X into Y . For A ∈ L(X, Y ), we use N (A) to denote

the kernel, and R(A) to denote the range of A. An operator B ∈ L(Y, X) is

an outer inverse of A, if BAB = B.

Consider the following problem. Let closed subspaces be given: T is a

subspace of X, and S is a subspace of Y . Can we choose B ∈ L(Y, X), such

that BAB = B, R(B) = T and N (B) = S? If such B exists, then B is
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denoted as A
(2)
T,S . It is well-known that for a given operator A ∈ L(X,Y ) and

closed subspaces T of X and S of Y , there exists an A
(2)
T,S inverse of A if and

only if T is a complemented subspace of X, the restriction A|T : T → A(T )

is invertible and A(T )⊕ S = Y . In this case the A
(2)
T,S inverse is unique.

For example, if ind(A) = k, we can take T = R(Ak) and S = N (Ak), to

get A
(2)
T,S = AD. In the case when X and Y are Hilbert spaces and A∗ is the

adjoint of A, we can take T = R(A∗) and S = N (A∗) to get A
(2)
T,S = A†,

the Moore-Penrose inverse of A. We shall show that Ad has some similar

properties.

The first result we state for a Banach algebra setting. We prove that

the generalized Drazin inverse can be computed as an outer inverse with

prescribed range and kernel, in form similar to [9, 26, 27].

Theorem 4.1. If a ∈ A, 0 /∈ accσ(a) and p = p(a, 0), then

ad = lim
λ→0

(ga− λ)−1g = lim
λ→0

g(ag − λ)−1,

where we take g = 1− p.

Proof. For an arbitrary λ ∈ C notice that

(ga− λ) = (a(1− p)− λ)p + (a(1− p)− λ)(1− p) = −λp + (a− λ)(1− p).

There exists an ε > 0 such that for all λ ∈ C, if 0 < |λ| < ε then a − λ is

invertible. Using Lemma 2.1 we conclude

(ga− λ)−1g =
[
− 1

λ
p + (a− λ)−1(1− p)

]
(1− p)

= (a− λ)−1(1− p) = [(a− λ)(1− p)]−1
(1−p)A(1−p).

Since a(1− p) is invertible in (1− p)A(1− p), it follows that

lim
λ→0

(ga− λ)g = [a(1− p)]−1
(1−p)A(1−p) = ad.

The second equality can be proved in a similar way. ¤



GENERALIZED DRAZIN INVERSE AND GENERALIZED RESOLVENT 17

In the case when ind(a) = 1, the Drazin inverse of a is known as the group

inverse, denoted by a#. In the next result we shall show how to use the group

inverse of an operator to get the A
(2)
T,S inverse. This statement represents a

generalization of the result from [26], stated for complex matrices.

Theorem 4.2. Let T and S be closed subspaces of X and Y , respectively,

such that for an operator A ∈ L(X,Y ) the A
(2)
T,S inverse exists . Let G ∈

L(Y, X) be an arbitrary operator which satisfies N (G) = S and R(G) = T .

Then

ind(AG) = ind(GA) = 1

and

A
(2)
T,S = G(AG)# = (GA)#G = J (GA|T )−1

G.

Here J : T → X denotes the natural inclusion.

Proof. Since the A
(2)
T,S inverse of A exists, we conclude X = T ⊕ T1 for some

closed subspace T1 of X. Also, the restriction A|T : T → A(T ) is invertible

and A(T )⊕ S = Y . We can write A in the matrix form

A =
[

A11 A12

0 A22

]
:
[

T
T1

]
→

[
A(T )

S

]
,

where A11 : T → A(T ) is invertible. Also, G has the matrix form

G =
[

G1 0
0 0

]
:
[

A(T )
S

]
→

[
T
T1

]
,

where G1 : A(T ) → T is invertible. We get

AG =
[

A11G1 0
0 0

]
, ind(AG) = 1 and (AG)# =

[
G−1

1 A−1
11 0

0 0

]
.

It is easy to verify that

G(AG)# =
[

A−1
11 0
0 0

]
= A

(2)
T,S .
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Notice that

GA =
[

G1A11 G1A12

0 0

]
.

It can be easily seen that

(GA)# =
[

A−1
11 G−1

1 A−1
11 G−1

1 A−1
11 A12

0 0

]
.

(Compare the last statement with our Corollary 5.2 in Section 5). It follows

that (GA)#G = A
(2)
T,S .

To prove that J(GA|T )−1G is also equal to A
(2)
T,S , we use slightly different

matrix decompositions. Let

A|T =
[

A11

0

]
: T →

[
A(T )

S

]
, G = [ G1 0 ] :

[
A(T )

S

]
→ T.

Obviously,

J =
[

I
0

]
: T →

[
T
T1

]
,

where I denotes the identity operator on T . Since GA|T = G1A11 : T → T

is invertible, we compute

J(GA|T )−1G =
[

A−1
11 G−1

1

0

]
[G1 0 ] = A

(2)
T,S . ¤

Let X = Y , A ∈ L(X) and 0 /∈ accσ(A). If P is the spectral idempotent

of A corresponding to 0, then we can take G = I − P in Theorem 4.2 (also

T = R(G) and S = N (G)), to get A
(2)
T,S = Ad.

Corollary 4.3. (i) If X,Y are Hilbert spaces and A ∈ L(X, Y ) has a closed

range, then

A† = [A∗A|R(A∗)]−1A∗ [7],

(ii) AD = [Ak+1|R(Ak)]−1Ak([26]) = [A|R(Ak)]−(k+1)Ak,

(iii) Ad = [(I−P )A|R(I−P )]−1(I−P ), where P is the spectral idempotent

of A corresponding to 0.
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5. Operator matrices

In this section we give a brief generalization of the well-known Meyer-

Rose result [19] concerning the Drazin inverse of block 2×2 upper triangular

matrices. A general problem with non-zero entries is also considered.

Let X, Y , Z be Banach spaces and Z = X⊕Y . For A ∈ L(X), B ∈ L(Y )

and C ∈ L(Y, X) consider the operator

M =
[

A C
0 B

]
∈ L(Z).

Theorem 5.1. If A and B have generalized Drazin inverses, then M has

the generalized Drazin inverse and

Md =
[

Ad S
0 Bd,

]

where

S = (Ad)2
[ ∞∑

n=0

(Ad)nCBn

]
(I −BBd) + (I −AAd)

[ ∞∑
n=0

AnC(Bd)n

]
(Bd)2

−AdCBd.

Proof. Since Ad and Bd exist, it follows that 0 /∈ accσ(A)∪ accσ(B). Since

σ(M) ⊂ σ(A) ∪ σ(B), we conclude 0 /∈ acc σ(M), so Md exists.

Consider the Laurent expansion

(λ−M)−1 =
∞∑

n=1

λ−nMn−1(I −MMd)−
∞∑

n=0

λn(Md)n+1

and similar expansions for (λ − A)−1 and (λ − B)−1 in a punctured neigh-

bourhood of 0. Notice that

(λ−M)−1 =
[

(λ−A)−1 (λ−A)−1C(λ−B)−1

0 (λ−B)−1

]
.

Comparing the coefficients at λ0 = 1, we get the statement of the theo-

rem. ¤

As a corollary we get the following well-known result [19].
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Corollary 5.2. (Meyer and Rose [19]) If ind(A) = k and ind(B) = l, then

the Drazin inverse of M exists and has the form

MD =
[

AD S
0 BD,

]

where

S = (AD)2
[

l−1∑
n=0

(AD)nCBn

]
(I −BBD)

+ (I −AAD)

[
k−1∑
n=0

AnC(BD)n

]
(BD)2 −ADCBD.

If M has the Drazin inverse and 0 /∈ accσ(A)∪accσ(B), then A and B also

have the Drazin inverses.

Finally, we use a recent result of Förster and Nagy [6], to prove another

representation of the generalized Drazin inverse of operator matrices.

Let V =
[

A B
C D

]
∈ L(Z) be a bounded operator on Z = X ⊕ Y . The

following result holds.

Theorem 5.3. If BC = BD = DC = 0 and 0 /∈ acc σ(A) ∪ accσ(D), then

0 /∈ acc σ(V ) and the generalized Drazin inverse of V has the form

V d =
[

Ad (Ad)2B
C(Ad)2 Dd + C(Ad)3B

]
.

Proof. In [6] it is proved that σ(A) ∪ σ(V ) = σ(A) ∪ σ(D), so we conclude

0 /∈ accσ(V ). We use ρ(A) = C \ σ(A) to denote the resolvent set of A.

Using [6, Lemma and Theorem] we know that for λ ∈ (ρ(A) ∩ ρ(V )) \ {0}
the resolvent operator of V has the form

(8) (λ− V )−1 =
[

(λ−A)−1 λ−1(λ−A)−1B
λ−1C(λ−A)−1 (λ−D)−1 + λ−2C(λ−A)−1B

]
.

There exist open sets U,W ⊂ C, such that 0 ∈ U and [σ(A)∪ σ(D)] \ {0} ⊂
W . Define a function f(λ) in the following way:

f(λ) =
{

0, λ ∈ U
1
λ , λ ∈ W

.
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Taking a suitable contour γ around V , we obtain

V d = f(V ) =
1

2πi

∫

γ

f(λ)(λ− V )−1dλ.

Using the well-known properties of the functional calculus and (8), we con-

clude that the statement of the theorem holds. ¤
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