
SPLITTINGS OF OPERATORS

AND GENERALIZED INVERSES

Dragan S. Djordjević and Predrag S. Stanimirović

Abstract. In this paper we extend the notion of the proper splitting of
rectangular matrices introduced and investigated in ( Berman, A. and Neu-
mann, M., SIAM J. Appl. Math. 31 (1976), 307–312; and Berman, A. and
Plemmons, R. J., SIAM J. Numer. Anal. 11 (1974), 145–154) to g-invertible
operators on Banach spaces. Also, we extend and generalize the notion of
the index splitting of square matrices introduced and investigated in (Wei,
Y., Appl. Math. Comput., 95, (1998), 115–124) introducing the {T, S}-
splitting for arbitrary operators on Banach spaces. The index splitting is a
partial case of {T, S}-splitting. The obtained results extend and generalize
various well-known results for square and rectangular complex matrices.

1. Introduction

Several various types of matrix splittings can be found in [12] and [13].

The idea of splitting of matrices is originated in the regular splitting theory,

introduced in [9]. The concept of a regular splitting is used in characteriza-

tions of the usual inverse and in iterative methods for solving linear systems.

These results are extended to the Moore-Penrose inverse of a complex rect-

angular matrix and rectangular linear systems in [2], [3]. This extension is

based on the application of the proper splitting [3]. In [10] the index split-

ting of a singular square n × n matrix A and its relative iterations for the

minimal P -norm solution of a singular linear system Ax = b, x, b ∈ Cn are
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presented. Also a few representations of the Drazin inverse, based on the

index splitting, are introduced in [10].

In this paper we investigate a general problem of splittings for bounded

operators on Banach spaces. The concept of the proper splitting is ex-

tended to g-invertible operators on Banach spaces and the concept of the

{T, S}-splitting is introduced. The index splitting is a special cases of the

{T, S}-splitting. The introduced splittings are used in the representation of

generalized inverses as well as in the construction of iterative processes for

solving singular linear systems.

The paper is organized as follows. In Section 2 we introduce the proper

splitting for g-invertible operators on Banach spaces. In Section 3 we intro-

duce the {T, S}-splitting of bounded operators on Banach spaces.

2. Proper splitting on Banach spaces

Let X and Y denote arbitrary Banach spaces and let L(X, Y ) denote the

set of all bounded linear operators from X into Y . For A ∈ L(X,Y ) we use

R(A) and N (A), respectively, to denote the range and the kernel of A. If

A ∈ L(X), then ρ(A) denotes the spectral radius of A.

Recall that A ∈ L(X, Y ) is called g-invertible, if there exists an opera-

tor B ∈ L(Y, X), satisfying ABA = A. In this case B is called an inner

generalized inverse of A, and will be denoted by A(1). It is well-known that

A ∈ L(X,Y ) is g-invertible if and only if R(A) and N (A), respectively,

are closed and complemented subspaces of Y and X (see [5] and [8]). If

A ∈ L(X,Y ) is g-invertible, then let T be a closed subspace of X satis-

fying T ⊕ N (A) = X. Also, let S be a closed subspace of Y satisfying

R(A)⊕ S = Y . Then A has the following matrix form:

A =
[

A1 0
0 0

]
:
[

T
N (A)

]
→

[R(A)
S

]
,

where A1 = A|T : T → R(A) is invertible. Now, any inner generalized
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inverse of A can be defined as

A
(1)
T,S,M =

[
A−1

1 0
0 M

]
:
[R(A)

S

]
→

[
T

N (A)

]
,

where M : S → N (A) is an arbitrary bounded operator. If M = 0, then

A
(1)
T,S,0 = A

(1,2)
T,S becomes the unique reflexive generalized inverse of A (an

inner and outer generalized inverse of A) associated with the corresponding

subspaces T and S. Notice that if we have A(1), then we can define T =

R(A(1)A), S = R(I −AA(1)) and M = A(1)|S : S → N (A), i.e.
[

0 0
0 M

]
= (I −A(1)A)A(1)(I −AA(1)) :

[R(A)
S

]
→

[
T

N (A)

]
.

Hence, the unique correspondence between A(1) and T, S,M is established.

The existence of A
(1)
T,S,M enables us to define the following generalization

of the condition number:

κT,S,M (A) = ‖A‖‖A(1)
T,S,M‖.

The proper splitting for g-invertible operators on Banach spaces is intro-

duced by the following definition.

Definition 2.1. Let A ∈ L(X, Y ) be a g-invertible operator and let U, V ∈
L(X,Y ). Then the splitting A = U − V is called a proper splitting of A, if

R(A) = R(U) and N (A) = N (U).

Notice that the original definition of the proper splitting leads to the

Moore-Penrose inverse of a complex matrix. Since we consider operators on

Banach spaces, the usual concepts of the scalar product, orthogonality and

the Moore-Penrose inverse are not available. Hence, we use inner inverses of

a given operator.

Theorem 2.1. Let A ∈ L(X, Y ) be g-invertible and let A = U − V be a

proper splitting of A.

(a) If A(1) = A
(1)
T,S,M is an inner generalized inverse of A for some M :

S → N (A), then any inner generalized inverse of U has the form
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U
(1)
T,S,N for some N : S → N (A). In particular, there exists the inner

generalized inverse U
(1)
T,S,M of U .

(b) A
(1)
T,S,K − U

(1)
T,S,K = U

(1)
T,S,NV A

(1)
T,S,M = A

(1)
T,S,MV U

(1)
T,S,N for arbitrary

K, M, N : S → N (A).

(c) A
(1)
T,S,M = (I − U

(1)
T,S,MV )−1U

(1)
T,S,M = U

(1)
T,S,M (I − V U

(1)
T,S,M )−1 for

arbitrary M : S → N (A).

(d) U
(1)
T,S,M = (I + A

(1)
T,S,MV )−1A

(1)
T,S,M = A

(1)
T,S,M (I + V A

(1)
T,S,M )−1 for

arbitrary M : S → N (A).

(e) If x ∈ R(U (1)
T,S,M ) for some M : S → N (A), then x0 = A

(1)
T,S,Mb is

the unique solution of the equation x = U
(1)
T,S,MV x + U

(1)
T,S,Mb in the

subspace R(A(1)
T,S,M ).

(f) The iteration xi+1 = U
(1)
T,S,MV xi + U

(1)
T,S,Mb converges to A

(1)
T,S,Mb

for every x0 ∈ X and arbitrary M : S → N (A), if and only if

ρ(U (1)
T,S,MV ) < 1.

(g) If ‖A(1)
T,S,MV ‖ < 1 for some M : S → N (A), then

‖U (1)
T,S,M −A

(1)
T,S,M‖ ≤

‖A(1)
T,S,MV ‖‖A(1)

T,S,M‖
1− ‖A(1)

T,S,MV ‖

≤ κT,S,M (A)
‖A(1)

T,S,MV ‖
‖A‖(1− ‖A(1)

T,S,MV ‖)
.

Proof. Let us take T = R(A(1)A) and S = R(I−AA(1)). Then, with respect

to the previous consideration, we have

A =
[

A1 0
0 0

]
and A(1) = A

(1)
T,S,M =

[
A−1

1 0
0 M

]
,

where M ∈ L(S,N (A)) is arbitrary.

(a) Since N (U) = N (A) and R(U) = R(A), we conclude that U must

have the following form

U =
[

U1 0
0 0

]
:
[

T
N (A)

]
→

[R(A)
S

]
,
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where U1 = U |T : T → R(A) is invertible. Hence, an arbitrary inner

generalized inverse of U has the form

U (1) = U
(1)
T,S,N =

[
U−1

1 0
0 N

]
:
[R(A)

S

]
→

[
T

N (A)

]
,

where N ∈ L(S,N (A)) is arbitrary. In particular, U
(1)
T,S,M exists.

(b) In this case V has the form V =
[

U1−A1 0

0 0

]
and hence

U
(1)
T,S,NV A

(1)
T,S,M =

[
U−1

1 0
0 N

] [
U1 −A1 0

0 0

] [
A−1

1 0
0 M

]

=
[

A−1
1 − U−1

1 0
0 0

]
= A

(1)
T,S,K − U

(1)
T,S,K .

The second equality can be verified in the same way.

(c) Since the operator

I − U
(1)
T,S,MV =

[
U−1

1 A1 0
0 I

]

is invertible, we have

(I − U
(1)
T,S,MV )−1U

(1)
T,S,M =

[
A−1

1 U1 0
0 I

] [
U−1

1 0
0 M

]
= A

(1)
T,S,M .

The second equality can be obtained in the same manner.

(d) This part follows from the part (c), since U = A− (−V ) is the proper

splitting of U .

(e) To prove this part, it is enough to notice thatR(A(1)
T,S,M ) = R(U (1)

T,S,M )

and use part (c).

(f) This part follows immediately from the part (e), knowing that for any

B ∈ L(X) the following equivalence holds: Bn → 0 if and only if ρ(B) < 1.

(g) Since ‖A(1)
T,S,MV ‖ < 1, from part (d) we get

U
(1)
T,S,M −A

(1)
T,S,M = (I + A

(1)
T,S,MV )−1A

(1)
T,S,M −A

(1)
T,S,M

=

( ∞∑

k=0

(−1)k(A(1)
T,S,MV )k − I

)
A

(1)
T,S,M

=
∞∑

k=1

(−1)k(A(1)
T,S,MV )kA

(1)
T,S,M .
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Hence

‖U (1)
T,S,M −A

(1)
T,S,M‖ ≤

‖A(1)
T,S,MV ‖‖A(1)

T,S,M‖
1− ‖A(1)

T,S,MV ‖

≤ κT,S,M (A)
‖A(1)

T,S,MV ‖
‖A‖(1− ‖A(1)

T,S,MV ‖)
. ¤

The operator W = U
(1)
T,S,MV is called the iteration operator corresponding

to a proper splitting A = U − V . Notice that V has the matrix form V =[
U1−A1 0

0 0

]
. Hence,

W = U
(1)
T,S,MV =

[
I − U−1

1 A1 0
0 0

]
,

R(W ) ⊂ T and N (W ) ⊃ N (A). Also, I −W is invertible. In the next theo-

rem we show how we can reconstruct a proper splitting of a given operator,

if the iteration operator is already known.

Theorem 2.2. Let A ∈ L(X,Y ) be g-invertible, let T be a closed subspace

of X satisfying X = T ⊕N (A), and let W ∈ L(X) be an operator, such that

I −W is invertible, R(W ) ⊂ T and N (W ) ⊃ N (A). Then there exists the

unique proper splitting A = U − V of A, such that W is the corresponding

iteration operator, i.e. W = U
(1)
T,S,MV for any M ∈ L(S,N (A)). Moreover,

this splitting can be reconstructed as U = A(I −W )−1 and V = U −A.

Proof. From R(W ) ⊂ T and N (W ) ⊃ N (A) we conclude that W has the

matrix form

W =
[

W1 0
0 0

]
:
[

T
N (A)

]
→

[
T

N (A)

]
.

Since I−W =
[

I−W1 0

0 I

]
is invertible, we get that I−W1 is invertible. First

we show that the proper splitting can be reconstructed. Let us take

U = A(I −W )−1 =
[

A1(I −W1)−1 0
0 0

]
:
[

T
N (A)

]
→

[R(A)
S

]
.
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Then U
(1)
T,S,M has the form

U
(1)
T,S,M =

[
(I −W1)A−1

1 0
0 M

]

for an arbitrary M ∈ L(S,N (A)). Taking V = U − A we easily verify that

W = U
(1)
T,S,MV is the corresponding iteration operator.

To prove the uniqueness, suppose that A = K − L is another proper

splitting of A such that W = K
(1)
T,S,ML for any M ∈ L(S,N (A)). Then K

has the matrix form

K =
[

K1 0
0 0

]
:
[

T
N (A)

]
→

[R(A)
S

]
,

where K1 is invertible, and L =
[

K1−A1 0

0 0

]
. From W = K

(1)
T,S,ML =

U
(1)
T,S,MV we get I − K−1

1 A1 = I − U−1
1 A1, hence U1 = K1, U = K and

V = L. Thus, the uniqueness is proved. ¤

If the iteration operator W is given and a proper splitting A = U −
V is constructed such that W = U

(1)
T,S,MV , then A = U − V is called a

proper splitting induced by the iteration operator W . The previous result is

a generalization of the corresponding result from [11], stated for complex

matrices. This result is used in [4] for constructing iterative methods for

solving certain systems of equations.

3. {T,S}-splitting on Banach spaces

In this section we introduce the {T, S}-splitting for operators on Banach

spaces, which is induced a particular outer generalized inverse. As a special

case of the {T, S}-splitting we get the index splitting.

Basic references for the following results are [5] and [8]. If A ∈ L(X, Y )

is a non-zero operator, then there always exists an non-zero operator B ∈
L(Y, X) satisfying BAB = B. This operator B is an outer generalized in-

verse of A. In this case let T = R(B) and S = N (B). Then B is denoted
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by A
(2)
T,S . If T and S, respectively, are given subspaces of X and Y , then

for A ∈ L(X, Y ) there exists A
(2)
T,S ∈ L(Y, X) if and only if the following is

satisfied: T , A(T ) and S, respectively, are closed and complemented sub-

spaces of X, Y and Y , the restriction A|T : T → A(T ) is invertible and

A(T ) ⊕ S = Y . In this case A
(2)
T,S is the unique outer generalized inverse of

A satisfying R(A) = T and N (A) = S. Also, the matrix form of A is given

by

A =
[

A1 A2

0 A3

]
:
[

T
T1

]
→

[
A(T )

S

]
.

Here T1 is an arbitrary closed subspace of X complementary to T and A1 =

A|T : T → A(T ) is invertible. Then A
(2)
T,S has the matrix form

A
(2)
T,S =

[
A−1

1 0
0 0

]
:
[

A(T )
S

]
→

[
T
T1

]
.

If T can be chosen such that T ⊕ N (A) = X, then A
(2)
T,S = A

(1,2)
T,S is the

unique reflexive generalized inverse of A corresponding to subspaces T and

S. The applications of the generalized inverse A
(2)
T,S can be found in [1], [6],

[11].

The existence of A
(2)
T,S enables us to define the following generalization of

the condition number:

κT,S(A) = ‖A‖‖A(2)
T,S‖.

We associate a {T, S}-splitting to an outer generalized inverse of a given

operator.

Definition 3.1. Let A ∈ L(X,Y ) and T , S be subspaces of X and Y , such

that there exists the generalized inverse A
(2)
T,S . Then A = U − V is called a

{T, S}-splitting of A if U
(2)
T,S exists.

In the proof of the main result of this section, we shall use the following

well-known statement (see, for example [1, Exercise 23, p. 55]).
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Lemma 3.1. If B ∈ L(X), L and M are closed subspaces of X such that

X = L⊕M and PL,M is the projection from X onto L parallel to L, then

(a) PL,MB = B if and only if R(B) ⊆ L;

(b) BPL,M = B if and only if N (B) ⊇ M .

Theorem 3.1. Let A ∈ L(X,Y ) be given, and closed subspaces T and S,

respectively, such that there exists the generalized inverse A
(2)
T,S. If A = U−V

is a {T, S}-splitting of A, then the following results hold:

(a) A
(2)
T,S − U

(2)
T,S = U

(2)
T,SV A

(2)
T,S = A

(2)
T,SV U

(2)
T,S .

(b) A
(2)
T,S = (I − U

(2)
T,SV )−1U

(2)
T,S = U

(2)
T,S(I − V U

(2)
T,S)−1.

(c) U
(2)
T,S = (I + A

(2)
T,SV )−1A

(2)
T,S = A

(2)
T,S(I + V A

(2)
T,S)−1.

(d) If x ∈ T , then x0 = A
(2)
T,Sb is the unique solution of the equation

x = U
(2)
T,SV x + U

(2)
T,Sb in the subspace T .

(e) The iteration xi+1 = U
(2)
T,SV xi + U

(2)
T,Sb converges to A

(2)
T,Sb for every

x0 ∈ X if and only if ρ(U (2)
T,SV ) < 1.

(f) If ‖A(2)
T,SV ‖ < 1, then

‖U (2)
T,S −A

(2)
T,S‖ ≤

‖A(2)
T,SV ‖‖A(2)

T,S‖
1− ‖A(2)

T,SV ‖
≤ κT,S(A)

‖A(2)
T,SV ‖

‖A‖(1− ‖A(2)
T,SV ‖)

.

Proof. (a) By Definition 3.1 the generalized inverse U
(2)
T,S exists. From the

matrix form of A (and, similarly, the matrix form of U), we can verify that

A
(2)
T,SA and U

(2)
T,SU are projections from X onto T , but AA

(2)
T,S = PA(T ),S and

UU
(2)
T,S = PU(T ),S . Using Lemma 3.1 we compute

U
(2)
T,SV A = U

(2)
T,S(U −A)A(2)

T,S = U
(2)
T,SUA

(2)
T,S − U

(2)
T,SAA

(2)
T,S = A

(2)
T,S − U

(2)
T,S .

The second equality of (a) can be proved in the same way.
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(b) From (a) we have A
(2)
T,S(I − V U

(2)
T,S) = U

(2)
T,S . Notice that

I − V U
(2)
T,S = I − UU

(2)
T,S + AU

(2)
T,S .

We see that I − UU
(2)
T,S is the projection from Y onto S parallel to U(T ),

AU
(2)
T,S is an invertible operator from U(T ) to A(T ) and N (AU

(2)
T,S) = S.

Since Y = U(T )⊕S = A(T )⊕S, we easily prove that I −UU
(2)
T,S +AU

(2)
T,S is

invertible. Hence, it follows A
(2)
T,S = U

(2)
T,S(I − V U

(2)
T,S)−1. The first equality

in (b) can be proved similarly.

(c) Since U = A− (−V ) is a {T, S}-splitting of U , the statement from (c)

follows from (b).

Part (d) follows from the part (b), and the part (e) follows from part (d).

Finally, the part (f) can be proved in the same way as part (g) of Theorem

2.1. ¤

If A = U − V is a {T, S}-splitting of A ∈ L(X, Y ), then the operator

W = U
(2)
T,SV is called the corresponding iteration operator. This operator

obviously satisfies R(W ) ⊂ T and I −W is invertible. In the next theorem

we show how to reconstruct a {T, S}-splitting if the corresponding iteration

operator is given.

Theorem 3.2. Let A ∈ L(X, Y ), T and S be given such that there exists

the generalized inverse A
(2)
T,S. If W ∈ L(X) satisfies R(W ) ⊂ T and I −W

is invertible, then the operators U = A(I − W )−1 and V = U − A induce

a {T, S}-splitting A = U − V of A and W = U
(2)
T,SV is the corresponding

iteration operator.

Proof. Taking T1 = N (A(2)
T,SA) we obtain A

(2)
T,SA = PT,T1 . Using the matrix

forms presented above we get

A
(2)
T,SA =

[
I A−1

1 A2

0 0

]
=

[
I 0
0 0

]
:
[

T
T1

]
→

[
T
T1

]
.
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Hence A2 = 0 and A =
[

A1 0

0 A3

]
. Since R(W ) ⊂ T we conclude that W has

the matrix form

W =
[

W1 W2

0 0

]
:
[

T
T1

]
→

[
T
T1

]
.

The operator

I −W =
[

I −W1 −W2

0 I

]

is invertible, so I −W1 must be invertible,

(I −W )−1 =
[

(I −W1)−1 (I −W1)−1W2

0 I

]

and

U = A(I −W )−1 =
[

A1(I −W1)−1 A1(I −W1)−1W2

0 A3

]
.

Since the restriction U |T = A(I −W1)−1 : T → U(T ) = A(T ) is invertible

and U(T ) ⊕ S = Y , we conclude that there exists the unique U
(2)
T,S inverse

given as

U
(2)
T,S =

[
(I −W1)A−1

1 0
0 0

]
:
[

A(T )
S

]
→

[
T
T1

]
.

Now we take

V = U −A =
[

A1((I −W1)−1 − I) A1(I −W1)−1W2

0 −A3

]

and a simple matrix calculation shows that W = U
(2)
T,SV holds. ¤

If the iteration operator W is given and a {T, S}-splitting A = U − V

is constructed such that W = U
(2)
T,SV , then A = U − V is called a {T, S}-

splitting induced by the iteration operator W .

The previous result is also a generalization of the corresponding result

from [11].
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4. Particular cases

As corollaries, many representations and properties of the well-known

generalized inverses can be obtained. In [7] the generalized Drazin inverse is

introduced in the following way. Let accG denote the set of all accumulation

point of the set G, G ⊂ C. Let A ∈ L(X), 0 /∈ accσ(A) and P = P (A, 0)

be the spectral idempotent of A corresponding to {0}. In this case X =

N (P )⊕R(P ) and

A =
[

A1 0
0 A2

]
:
[N (P )
R(P )

]
→

[N (P )
R(P )

]
,

where A1 = A|N (P ) : N (P ) → N (P ) is invertible and A2 : R(P ) →R(P ) is

quasinilpotent. In this case the generalized Drazin inverse of A has the form

Ad =
[

A−1
1 0
0 0

]
:
[N (P )
R(P )

]
→

[N (P )
R(P )

]
.

Obviously the generalized Drazin inverse can be chosen as a particular outer

generalized inverse with prescribed range and kernel: Ad = A
(2)
N (P ),R(P ).

If A2 is nilpotent, i.e. there exists the least non-negative integer k such

that Ak
2 = 0, then ind(A) = k and Ad reduces to the well-known Drazin

inverse of A, usually denoted by AD. If ind(A) = 0, then A is invertible

and AD = A−1. If ind(A) = 1, then AD = A# is well-known as the group

inverse of A. Notice that A# is also an inner generalized inverse of A.

One special case of {T, S} splittings can be used for the representation

of the generalized Drazin inverse. The following result is a generalization

of the well-known representation for the Drazin inverse of a complex square

matrix [10].

Corollary 4.1. Let A ∈ L(X), 0 /∈ accσ(A) and P be the spectral projection

of A corresponding to {0}. If U ∈ L(X) satisfies R(U) = N (P ) and N (U) =

R(P ), then A = U − V is a {N (P ),R(P )}-splitting of A and

Ad = (I − U#V )−1U#.
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Proof. From R(U) = N (P ) and N (U) = R(P ), we get ind(U) ≤ 1 and

U
(2)
N (P ),R(P ) = U#. The rest of the proof follows from Theorem 3.1. ¤

Now, suppose that X and Y are Hilbert spaces. If A ∈ L(X, Y ) has closed

range, then A† denotes the Moore-Penrose inverse of A. The Moore-Penrose

inverse of A is the unique operator A† ∈ L(Y, X) satisfying AA†A = A,

A†AA† = A†, (AA†)∗ = AA† and (A†A)∗ = A†A. The Moore-Penrose in-

verse can also be obtained as an outer inverse with prescribed range and

kernel. Let A∗ denote the conjugate operator of A. If R(A) is closed, then

A† = A
(2)
R(A∗),N (A∗). Thus the connection with Section 3 is established. No-

tice that the same result can be obtained from Section 1: A† = A
(1)
R(A∗),N (A∗).

As a corollary we get the following result.

Corollary 4.2. Suppose that X, Y are Hilbert spaces and A ∈ L(X, Y ) has

closed range. If A = U − V is the proper splitting of A, then

A† = (I − U†V )−1U†.

Proof. Obviously, U† exists and U† = U
(1)
R(A∗),N (A∗),0 = U

(2)
R(A∗),N (A∗). Now

the result can be deduced from Theorem 2.1 or Theorem 3.1. ¤
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