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Abstract

In this paper we get the explicit condition number formulas for the
W–weighted Drazin inverse of a rectangular matrix using the Schur de-
composition and the spectral norm. We characterize the spectral norm
and the Frobenius norm of the relative condition number of the W–
weighted Drazin inverse, and the level-2 condition number of the W–
weighted Drazin inverse. The sensitivity for the W–weighted Drazin
inverse solution of linear systems is presented. We also present the
structured perturbation of the W–weighted Drazin inverse.
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1 Introduction

Let Cm×n be the set of m×n complex matrices. By rank(A), A>, A∗, R(A)
and N (A) we denote the rank, the transpose, the conjugate transpose, the
range (column space) and the null space, respectively, of A ∈ Cm×n.

Let A ∈ Cm×n, W ∈ Cn×m. Then AD,W = X ∈ Cm×n is the W -weighted
Drazin inverse of A if (see [7])

(AW )k+1XW = (AW )k, XWAWX = X, AWX = XWA.

where k = ind(AW ), the index of AW , is the smallest nonnegative integer
k for which rank

[
(AW )k

]
= rank

[
(AW )k+1

]
. If A ∈ Cn×n and W = In,

then X = AD, where AD is the ordinary Drazin inverse of A.
The W -weighted Drazin inverse of A has the following properties:

AD,W = [(AW )D]2A = A[(WA)D]2

∗The authors are supported by the Ministry of Science, Republic of Serbia, grant no.
144003.
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R(AD,W ) = R((AW )k), N (AD,W ) = N ((WA)k),

rank((AW )k) = rank((WA)k),

where k = max{ind(AW ), ind(WA)}. Some interesting properties of the
Drazin and the W -weighted Drazin inverse can be found in [4].

J. Chen and Z. Xu (see [2]) characterized the condition number of the
Drazin inverse and singular linear systems for restrained matrices, by using
the Schur decomposition and the spectral norm instead of the P -norm, where
P is a transformation matrix of the Jordan canonical form of A. Note
that, in general, the computation of the Jordan canonical form is an ill-
posed problem. Their results generalize some early work including [10, 12],
because of well-posed properties of the Schur decomposition. In [1, 5, 9]
the authors established some results for the condition number of the W–
weighted Drazin inverse and the W–weighted Drazin inverse solution of a
linear system, by using a special norm called PQ-norm. The definition of
the PQ-norm depends on Jordan canonical form of A. The results obtained
in [1] are extended to linear bounded operators between Hilbert spaces in
[6]. In this paper, we establish the condition number of the W–weighted
Drazin inverse of a rectangular matrix by the Schur decomposition and the
familiar 2-norm instead of the PQ-norm in [1].

2 Representation of the W -Drazin inverse

We recall the next theorm.

Lemma 2.1. (Schur decomposition)[3] If A ∈ Cn×n, then there exists an
unitary U ∈ Cn×n such that

U∗AU = T = D + N,

where D = diag(λ1, . . . , λn), and N ∈ Cn×n is strictly upper triangular.
Furthermore, U can be chosen so that the eigenvalues λi appear in any

order along the diagonal.

Let A ∈ Cn×n satisfies the following condition:

(1) rank(Ak) = r, ind(A) = k, R(Ak) = R((Ak)∗),

and the Schur decomposition of A can be written as follows

(2) A = U

[
B D
0 C

]
U∗,
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where U is unitary, B is r× r upper triangular and nonsingular matrix, and
C = [ci,j ] is strictly upper triangular, i.e. ci,j = 0 whenever 1 ≤ j ≤ i ≤ n−r.

In [2] J. Chen and Z. Xu used the Schur decomposition of a restrained
matrix A to get its expression of the Drazin inverse in the next theorem.

Theorem 2.1. [2] Let A ∈ Cn×n. If A fulfills the condition (1), then the
Schur decomposition of A has the form as follows

(3) A = U

[
B 0
0 C

]
U∗,

where U is unitary, B is an r× r upper triangular and nonsingular matrix,
C is strictly upper triangular. Then

(4) AD = U

[
B−1 0

0 0

]
U∗.

Then we obtain the following theorem.

Theorem 2.2. Let A ∈ Cm×n, W ∈ Cn×m, k1 = ind(AW ), k2 = ind(WA),
k = max{k1, k2}, r = rank((AW )k), R((AW )k1) = R(((AW )k1)∗), R((WA)k2) =
R(((WA)k2)∗). Then we have

A = U

[
A1 0
0 A2

]
V ∗, W = V

[
W1 0
0 W2

]
U∗

(5) AD,W = U

[
(W1A1W1)−1 0

0 0

]
V ∗,

where U ∈ Cm×m and V ∈ Cn×n are unitary matrices, A1 and W1 are non-
singular matrices, A2W2 and W2A2 are strictly upper triangular matrices.

Proof. We have rank((WA)k) = rank((AW )k) = r. From Theorem 2.1, we
have the Schur decomposition of AW and WA:

(6) AW = U

[
B 0
0 C

]
U∗, WA = V

[
D 0
0 F

]
V ∗,

where U ∈ Cm×m and V ∈ Cn×n are unitary matrices, B and D are r ×
r upper triangular and nonsingular matrices, C and F are strictly upper
triangular matrices.
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We can represent A and W as

A = U

[
A1 A12

A21 A2

]
V ∗, W = V

[
W1 W12

W21 W2

]
U∗.

Since C and F are strictly upper triangular matrices, we obtain Ck = 0 and
F k = 0. Now, we get

(AW )kA = U

[
Bk 0
0 0

]
U∗U

[
A1 A12

A21 A2

]
V ∗ = U

[
BkA1 BkA12

0 0

]
V ∗

and

A(WA)k = U

[
A1 A12

A21 A2

]
V ∗V

[
Dk 0
0 0

]
V ∗ = U

[
A1D

k 0
A21D

k 0

]
V ∗.

Using the equation (AW )kA = A(WA)k, we deduce BkA12 = 0 and A21D
k =

0. We know that B and D are nonsingular, thus A12 = 0 and A21 = 0, i.e.

A = U

[
A1 0
0 A2

]
V ∗.

From

AW = U

[
A1 0
0 A2

]
V ∗V

[
W1 W12

W21 W2

]
U∗ = U

[
A1W1 A1W12

A2W21 A2W2

]
U∗,

WA = V

[
W1 W12

W21 W2

]
U∗U

[
A1 0
0 A2

]
V ∗ = V

[
W1A1 W12A2

W21A1 W2A2

]
V ∗

and (6), we obtain A1W1 = B, W1A1 = D, A2W2 = C, W2A2 = F ,
A1W12 = 0 and W21A1 = 0. Hence, A1 and W1 are invertible, A2W2 and
W2A2 are strictly upper triangular matrices, W12 = 0 and W21 = 0. So

W = V

[
W1 0
0 W2

]
U∗.

Finally, by AD,W = [(AW )D]2A = A[(WA)D]2, we get

AD,W = U

[
B−2A1 0

0 0

]
V ∗ = U

[
A1D

−2 0
0 0

]
V ∗,

i.e. B−2A1 = A1D
−2. Thus,

AD,W = U

[
(W1A1W1)−1 0

0 0

]
V ∗.

This completes the proof.
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3 Condition numbers of W-Drazin inverse

In this section we consider the following linear system

WAWx = b,

where A ∈ Cm×n, W ∈ Cn×m, ind(AW ) = k1, ind(WA) = k2, b ∈
R((WA)k2) and x ∈ R((AW )k1). The W -weighted Drazin-inverse solution
x has the form

x = AD,W b.

The definition of the absolute condition number was introduced by Rice
in [8]. If F is a continuously differentiable function

F : Cm×n × Cn −→ Cm

(A, x) 7−→ F (A, x),

the absolute condition number of F at x is the scalar ‖F ′(x)‖. The relative
condition of F at x is

‖F ′(x)‖‖x‖
‖y‖ .

Introduce the following operator:

F : Cm×n × Cn −→ Cm

(A, b) 7−→ F (A, b) = AD,W b = x.

We known that the operator F is a differentiable function, when the pertur-
bation E in A fulfils the following condition:

(7) R(EW ) ⊆ R((AW )k), N ((WA)k) ⊆ N (WE),

where k = max{k1, k2}. It is easy to verify that (7) is equivalent to

(8) AD,W (WAW )EW = EW, WE(WAW )AD,W = WE.

We need the following result.

Lemma 3.1. [11] Let A,E ∈ Cm×n, W ∈ Cn×m, k = max{ind(AW ), ind(WA)}.
If E satisfies the condition (7) and ‖AD,W WEW‖2 < 1, then

(A + E)D,W = (I + AD,W WEW )−1AD,W = AD,W (I + WEWAD,W )−1.
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We choose the parameterized weighted Frobenius norm ‖[αWAW,βb]‖(F )
U,Q,

where U is the same matrix as in (5) and Q = diag(U, 1), because we can
choose different parameters α, β for different perturbations.

We get the explicit formula for the condition number of the W -weighted
Drazin-inverse solution by means of the 2-norm and Frobenius norm which
generalize the main result in [1].

Theorem 3.1. Let A ∈ Cm×n, W ∈ Cn×m, k1 = ind(AW ), k2 = ind(WA),
k = max{k1, k2}, r = rank((AW )k), R((AW )k1) = R(((AW )k1)∗), R((WA)k2) =
R(((WA)k2)∗). If the perturbation E in A fulfills the condition (7), then the
absolute condition number of the W–weighted Drazin inverse solution of lin-
ear system, with the norm

‖[αWAW,βb]‖(F )
U,Q =

√
α2‖WAW‖2

F + β2‖b‖2
2

on the data (A, b) and the norm ‖x‖2 on the solution, is

C = ‖AD,W ‖2

√
1
β2

+
‖x‖2

2

α2
,

where Q =
[

U 0
0 1

]
and U is the same matrix as in (5).

Proof. We know that F (A, b) = AD,W b. Under the condition (7), F is a
differentiable function and F ′ is defined as follows

F ′(A, b)|(E,f) = lim
ε→0

(A + εE)D,W (b + εf)−AD,W b

ε
,

where E is the perturbation of A and f is the perturbation of b.
Since E satisfies the condition (7), we have (see [7])

(A + εE)D,W = AD,W − εAD,W WEWAD,W + O(ε2),

and then we can easily get that

F ′(A, b)|(E,f) = −AD,W WEWx + AD,W f.

Then

‖F ′(A, b)|(E,f)‖2 = ‖F ′(A, b)|(E,f)‖F

= ‖AD,W (WEWx− f)‖F

≤ ‖AD,W ‖2(‖WEW‖F ‖x‖2 + ‖f‖2).
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The norm of a linear map F ′(A, b) is the supermum of ‖F ′(A, b)|(E,f)‖F on
the unit ball of Cm×n × Cn. Since

(‖[αWEW,βf ]‖(F )
U,Q)2 = α2‖WEW‖2

F + β2‖f‖2
2

we get

‖F ′(A, b)‖ =
= sup

α2‖WEW‖2F +β2‖f‖22=1

‖AD,W (WEWx− f)‖F

≤ sup
α2‖WEW‖2F +β2‖f‖22=1

‖AD,W ‖2(‖WEW‖F ‖x‖2 + ‖f‖2)

= sup
α2‖WEW‖2F +β2‖f‖22=1

‖AD,W ‖2

(
α‖WEW‖F

‖x‖2

α
+ β‖f‖2

1
β

)

= ‖AD,W ‖2 sup
α2‖WEW‖2F +β2‖f‖22=1

(α‖WEW‖F , β‖f‖2) ·
(‖x‖2

α
,
1
β

)

where (α‖WEW‖F , β‖f‖2) and
(‖x‖2

α , 1
β

)
can be consider as vectors in R2.

Therefore, from the Cauchy–Schwarz inequality, we get:

‖F ′(A, b)‖ ≤ ‖AD,W ‖2

√
‖x‖2

2

α2
+

1
β2

.

Now we show that this upper bound is reachable. There are vectors u i v
such that

(W1A1W1)−1u = ‖(W1A1W1)−1‖2v = ‖AD,W ‖2v,

where ‖u‖2 = ‖v‖2 = 1.
Let

û = V

[
u
0

]
, v̂ = U

[
v
0

]
.

It is easy to check that
‖û‖2 = ‖v̂‖2 = 1.
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Then

AD,W û = U

[
(W1A1W1)−1 0

0 0

]
V ∗V

[
u
0

]

= U

[
(W1A1W1)−1u

0

]

= U

[ ‖(W1A1W1)−1‖2v
0

]

= ‖(W1A1W1)−1‖2U

[
v
0

]

= ‖AD,W ‖2v̂.

Now we take

η =

√
‖x‖2

2

α2
+

1
β2

, f =
1

β2η
û,

E = − 1
α2η

U

[
W−1

1 0
0 0

]
V ∗ûx∗U

[
W−1

1 0
0 0

]
V ∗.

So we have

EW = − 1
α2η

U

[
W−1

1 0
0 0

]
V ∗ûx∗U

[
W−1

1 0
0 0

]
V ∗ ×

× V

[
W1 0
0 W2

]
U∗

= − 1
α2η

U

[
W−1

1 0
0 0

]
V ∗ûx∗U

[
I 0
0 0

]
U∗

Since

AD,W (WAW ) = U

[
I 0
0 0

]
U∗,

we can verify E fulfills the first equation of condition (8)

AD,W (WAW )EW =

= − 1
α2η

U

[
I 0
0 0

]
U∗U

[
W−1

1 0
0 0

]
V ∗ûx∗U

[
I 0
0 0

]
U∗

= − 1
α2η

U

[
W−1

1 0
0 0

]
V ∗ûx∗U

[
I 0
0 0

]
U∗

= EW.
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In the same way, we have

WE = − 1
α2η

V

[
W1 0
0 W2

]
U∗ ×

× U

[
W−1

1 0
0 0

]
V ∗ûx∗U

[
W−1

1 0
0 0

]
V ∗

= − 1
α2η

V

[
I 0
0 0

] [
u
0

]
x∗U

[
W−1

1 0
0 0

]
V ∗

= − 1
α2η

ûx∗U
[

W−1
1 0
0 0

]
V ∗.

Since

(WAW )AD,W = V

[
I 0
0 0

]
V ∗,

then

WE(WAW )AD,W = − 1
α2η

ûx∗U
[

W−1
1 0
0 0

]
V ∗V

[
I 0
0 0

]
V ∗

= − 1
α2η

ûx∗U
[

W−1
1 0
0 0

]
V ∗

= WE.

Hence, E fulfills the condition (8). Now we want to verify the perturbation
(E, f) is feasible, that is, α2‖WEW‖2

F + β2‖f‖2
2 = 1. Notice that

x = AD,W b = U

[
(W1A1W1)−1 0

0 0

]
V ∗b,

and then

α2‖WEW‖2
F + β2‖f‖2

2
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=
1

α2η2

∥∥∥∥V

[
W1 0
0 W2

] [
W−1

1 0
0 0

]
V ∗ûx∗U

[
W−1

1 0
0 0

]
×

×
[

W1 0
0 W2

]
U∗

∥∥∥∥
2

F

+
1

β2η2
‖û‖2

2

=
1

α2η2

∥∥∥∥ûx∗U
[

I 0
0 0

]
U∗

∥∥∥∥
2

F

+
1

β2η2

=
1

α2η2

∥∥∥∥ûb∗V
[

(W1A1W1)−1 0
0 0

] [
I 0
0 0

]
U∗

∥∥∥∥
2

F

+
1

β2η2

=
1

α2η2

∥∥∥∥ûb∗V
[

(W1A1W1)−1 0
0 0

]
U∗

∥∥∥∥
2

F

+
1

β2η2

=
1

α2η2
‖ûx∗‖2

F +
1

β2η2

=
1

α2η2
‖û‖2

2‖x∗‖2
2 +

1
β2η2

=
1
η2

(‖x‖2
2

α2
+

1
β2

)

= 1.

Then we have

F ′(A, b)|(E,f) = −AD,W WEWx + AD,W f

=
1

α2η
AD,W ûx∗U

[
I 0
0 0

]
U∗x +

1
β2η

AD,W û

=
1

α2η
AD,W ûx∗x +

1
β2η

‖AD,W ‖2v̂

=
1

α2η
‖x‖2

2‖AD,W ‖2v̂ +
1

β2η
‖AD,W ‖2v̂

= ‖AD,W ‖2ηv̂.

Then

‖F ′(A, b)|(E,f)‖2 = ‖AD,W ‖2

√
‖x‖2

2

α2
+

1
β2

.

with α2‖WEW‖2
F + β2‖f‖2

2 = 1, implies

‖F ′(A, b)‖ ≥ ‖AD,W ‖2

√
‖x‖2

2

α2
+

1
β2

,

and we complete the proof.
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If E satisfies the condition (7), then the 2-norm relative condition number
of the W–weighted Drazin inverse is defined as

Cond(A) = lim
ε→0+

sup
‖WEW‖2≤ε‖WAW‖2

‖(A + E)D,W −AD,W ‖2

ε‖AD,W ‖2

and the corresponding condition number for the linear systems WAWx = b
is defined as

Cond(A, b) = lim
ε→0+

sup
‖WEW‖2≤ε‖WAW‖2

‖f‖2≤ε‖b‖2

‖(A + E)D,W (b + f)−AD,W b‖2

ε‖AD,W b‖2
.

The level-2 condition number of W–weighted Drazin inverse is defined
as

Cond[2](A) = lim
ε→0

sup
‖WEW‖2≤ε‖WAW‖2

|Cond(A + E)− Cond(A)|
εCond(A)

and the level-2 corresponding condition number is defined as

Cond[2](A, b) = lim
ε→0

sup
‖WEW‖2≤ε‖WAW‖2

‖f‖2≤ε‖b‖2

|Cond(A + E, b + f)− Cond(A, b)|
ε Cond(A, b)

.

Theorem 3.2. Let A ∈ Cm×n, W ∈ Cn×m, k1 = ind(AW ), k2 = ind(WA),
k = max{k1, k2}, r = rank((AW )k), R((AW )k1) = R((AW )k1

∗
),

R((WA)k2) = R((WA)k2
∗
). If the perturbation E in A fulfills the condition

(7), then the condition number

(9) Cond(A) = lim
ε→0+

sup
‖WEW‖2≤ε‖WAW‖2

‖(A + E)D,W −AD,W ‖2

ε‖AD,W ‖2
,

satisfies

(10) Cond(A) = ‖WAW‖2‖AD,W ‖2.

Proof. By neglecting O(ε2) terms in a standard expansion, it follows from
Lemma 3.1 that

(A + E)D,W −AD,W = −AD,W WEWAD,W .

Let E = ε‖WAW‖2Ê, using ‖WEW‖2 ≤ ε‖WAW‖2, we have ‖WÊW‖2 ≤
1. Then

‖AD,W WÊWAD,W ‖2 ≤ ‖AD,W ‖2‖WÊW‖2‖AD,W ‖2 ≤ ‖AD,W ‖2
2.
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The result is proved if we can show that

sup
‖WÊW‖2≤1

‖AD,W WÊWAD,W ‖2 = ‖AD,W ‖2
2.

There exists vectors x and y such that ‖x‖2 = ‖y‖2 = 1

‖(W1A1W1)−1y‖2 = ‖x∗(W1A1W1)−1‖2 = ‖(W1A1W1)−1‖2.

Choose

Ê = U

[
W−1

1 0
0 0

] [
y
0

] [
x∗ 0

] [
W−1

1 0
0 0

]
V ∗.

We can verify that

‖WÊW‖2 =
∥∥∥∥V

[
W1 0
0 W2

]
U∗U

[
W−1

1 0
0 0

] [
y
0

] [
x∗ 0

]

×
[

W−1
1 0
0 0

]
V ∗V

[
W1 0
0 W2

]
U∗

∥∥∥∥
2

=
∥∥∥∥V

[
I 0
0 0

] [
yx∗ 0
0 0

] [
I 0
0 0

]
U∗

∥∥∥∥
2

=
∥∥∥∥V

[
yx∗ 0
0 0

]
U∗

∥∥∥∥
2

= ‖yx∗‖2

= ‖y‖2‖x‖2

= 1,

and

‖AD,W WÊWAD,W ‖2 =
∥∥∥∥U

[
(W1A1W1)−1 0

0 0

]
V ∗V

[
yx∗ 0
0 0

]
U∗U

×
[

(W1A1W1)−1 0
0 0

]
V ∗

∥∥∥∥
2

=
∥∥∥∥U

[
((W1A1W1)−1y)(x∗(W1A1W1)−1) 0

0 0

]
V ∗

∥∥∥∥
2

= ‖(W1A1W1)−1y‖2‖x∗(W1A1W1)−1‖2

= ‖(W1A1W1)−1y‖2
2

= ‖AD,W ‖2
2.
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It is easy to check that

ÊW = U

[
W−1

1 0
0 0

] [
y
0

] [
x∗ 0

] [
W−1

1 0
0 0

]
V ∗V

[
W1 0
0 W2

]
U∗

= U

[
W−1

1 0
0 0

] [
yx∗ 0
0 0

]
U∗,

and

WÊ = V

[
W1 0
0 W2

]
U∗U

[
W−1

1 0
0 0

] [
y
0

] [
x∗ 0

] [
W−1

1 0
0 0

]
V ∗

= V

[
yx∗ 0
0 0

] [
W−1

1 0
0 0

]
V ∗.

Now, from

AD,W (WAW )ÊW = U

[
I 0
0 0

]
U∗U

[
W−1

1 0
0 0

] [
yx∗ 0
0 0

]
U∗

= U

[
W−1

1 0
0 0

] [
yx∗ 0
0 0

]
U∗

= ÊW,

and

WÊ(WAW )AD,W = V

[
yx∗ 0
0 0

] [
W−1

1 0
0 0

]
V ∗V

[
I 0
0 0

]
V ∗

= V

[
yx∗ 0
0 0

] [
W−1

1 0
0 0

]
V ∗

= WÊ,

we have that Ê satisfies the condition (7). We complete the proof.

Then we consider the condition number with the Frobenius norm.

Theorem 3.3. Let A ∈ Cm×n, W ∈ Cn×m, k1 = ind(AW ), k2 = ind(WA),
k = max{k1, k2}, r = rank((AW )k), R((AW )k1) = R(((AW )k1)∗), R((WA)k2) =
R(((WA)k2)∗). If the perturbation E in A fulfills the condition (7), then the
condition number

(11) CondF (A) = lim
ε→0+

sup
‖WEW‖F≤ε‖WAW‖F

‖(A + E)D,W −AD,W ‖F

ε‖AD,W ‖F
,

13



satisfies

(12) CondF (A) =
‖WAW‖F ‖AD,W ‖2

2

‖AD,W ‖F
.

Proof. Analogously to the proof of Theorem 3.2, we should prove that

sup
‖WÊW‖2≤1

‖AD,W WÊWAD,W ‖F = ‖AD,W ‖2
2.

Take

Ê = U

[
W−1

1 0
0 0

] [
y
0

] [
x∗ 0

] [
W−1

1 0
0 0

]
V ∗.

where ‖x‖2 = ‖y‖2 = 1 and ‖(W1A1W1)−1y‖2 = ‖x∗(W1A1W1)−1‖2 =
‖(W1A1W1)−1‖2. Thus

‖AD,W WÊWAD,W ‖F =
∥∥∥∥U

[
(W1A1W1)−1 0

0 0

]
V ∗V

[
yx∗ 0
0 0

]
U∗U

×
[

(W1A1W1)−1 0
0 0

]
V ∗

∥∥∥∥
F

=
∥∥∥∥U

[
((W1A1W1)−1y)(x∗(W1A1W1)−1) 0

0 0

]
V ∗

∥∥∥∥
F

=
∥∥∥∥
[

((W1A1W1)−1y)(x∗(W1A1W1)−1) 0
0 0

]∥∥∥∥
F

= ‖(W1A1W1)−1y‖2‖x∗(W1A1W1)−1‖2

= ‖(W1A1W1)−1y‖2
2

= ‖AD,W ‖2
2.

The proof is completed.

Now we characterize the condition number of linear systems by means
of 2-norm.

Theorem 3.4. Let A ∈ Cm×n, W ∈ Cn×m, k1 = ind(AW ), k2 = ind(WA),
k = max{k1, k2}, r = rank((AW )k), R((AW )k1) = R(((AW )k1)∗), R((WA)k2) =
R(((WA)k2)∗). If the perturbation E in A fulfills the condition (7), then the
condition number of singular linear systems WAWx = b

(13) Cond(A, b) = lim
ε→0+

sup
‖WEW‖2≤ε‖WAW‖2

‖f‖2≤ε‖b‖2

‖(A + E)D,W (b + f)−AD,W b‖2

ε‖AD,W b‖2
,

14



satisfies

(14) Cond(A, b) = ‖WAW‖2‖AD,W ‖2 +
‖AD,W ‖2‖b‖2

‖AD,W b‖2
.

Proof. From

(A + E)D,W (b + f)−AD,W b = [(A + E)D,W −AD,W ]b + (A + E)D,W f

= −AD,W WEWAD,W b + (A + E)D,W f

= −AD,W WEWx + AD,W f +O(ε2),

we get

‖(A + E)D,W (b + f)−AD,W b‖2 ≤ ‖AD,W ‖2‖WEW‖2‖x‖2 + ‖AD,W ‖2‖f‖2

≤ ε‖AD,W ‖2(‖WAW‖2‖x‖2 + ‖b‖2).

Hence,

Cond(a, b) ≤ ‖WAW‖2‖AD,W ‖2 +
‖AD,W ‖2‖b‖2

‖AD,W b‖2
.

Now, suppose y = V

[
z
0

]
, where ‖z‖2 = 1, ‖(W1A1W1)−1z‖2 = ‖(W1A1W1)−1‖2.

Then we have ‖y‖2 = 1 and

‖AD,W y‖2 =
∥∥∥∥U

[
(W1A1W1)−1 0

0 0

]
V ∗V

[
z
0

]∥∥∥∥
2

= ‖(W1A1W1)−1z‖2

= ‖AD,W ‖2.

Let

f = εy‖b‖2, E = −ε‖WAW‖2

‖x‖2
U

[
W−1

1 0
0 0

]
V ∗yx∗U

[
W−1

1 0
0 0

]
V ∗.

It is easy to verify that AD,W (WAW )EW = EW and WE(WAW )AD,W =
WE, i.e. we can get that E fulfills the condition (7). Then

‖f‖2 = ε‖b‖2‖y‖2 = ε‖b‖2

15



and

‖WEW‖2 =
ε‖WAW‖2

‖x‖2

∥∥∥∥V

[
W1 0
0 W2

]
U∗U

[
W−1

1 0
0 0

]
V ∗yx∗U

×
[

W−1
1 0
0 0

]
V ∗V

[
W1 0
0 W2

]
U∗

∥∥∥∥
2

=
ε‖WAW‖2

‖x‖2

∥∥∥∥V

[
I 0
0 0

]
V ∗V

[
z
0

]
(AD,W b)∗U

[
I 0
0 0

]
U∗

∥∥∥∥
2

=
ε‖WAW‖2

‖x‖2

∥∥∥∥V

[
z
0

]
b∗V

[
(W1A1W1)−1 0

0 0

]
U∗U

[
I 0
0 0

]
U∗

∥∥∥∥
2

=
ε‖WAW‖2

‖x‖2

∥∥∥∥yb∗V
[

(W1A1W1)−1 0
0 0

]
U∗

∥∥∥∥
2

=
ε‖WAW‖2

‖x‖2
‖yx∗‖2

=
ε‖WAW‖2

‖x‖2
‖y‖2‖x‖2

= ε‖WAW‖2.

Thus

‖(A + E)D,W (b + f)−AD,W b‖2 = ‖ −AD,W WEWx + AD,W f‖2

=
∥∥∥∥
ε‖WAW‖2

‖x‖2
AD,W yx∗x + ε‖b‖2A

D,W y

∥∥∥∥
2

= ε(‖WAW‖2‖x‖2 + ‖b‖2)‖AD,W ‖2

The proof is completed.

Similarly, we can get the next theorem with Frobenius norm.

Theorem 3.5. Let A ∈ Cm×n, W ∈ Cn×m, k1 = ind(AW ), k2 = ind(WA),
k = max{k1, k2}, r = rank((AW )k), R((AW )k1) = R(((AW )k1)∗), R((WA)k2) =
R(((WA)k2)∗). If the perturbation E in A fulfills the condition (7), then the
condition number of singular linear systems WAWx = b
(15)

CondF (A, b) = lim
ε→0+

sup
‖WEW‖F≤ε‖WAW‖F

‖f‖F≤ε‖b‖F

‖(A + E)D,W (b + f)−AD,W b‖F

ε‖AD,W b‖F
,

satisfies

(16) Cond(A, b)F = ‖WAW‖F ‖AD,W ‖2 +
‖AD,W ‖2‖b‖2

‖AD,W b‖2
.
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Proof. Analogously to the proof of Theorem 3.4, we can prove this theorem
also.

The next results show that for the W–weighted Drazin inverse, or for
solving a linear system, the sensitivity of the condition number is approxi-
mately given by the condition number itself.

Firstly, we need the following lemmas.

Lemma 3.2. For û, v̂ in Theorem 2.1, there exists S ∈ Cm×n such that

WSWv̂ = −û, ‖WSW‖2 = 1,

where S fulfills condition (7).

Proof. Let

S = −U

[
W−1

1 0
0 0

]
V ∗ûv̂∗U

[
W−1

1 0
0 0

]
V ∗.

Then

WSWv̂ = −V

[
W1 0
0 W2

]
U∗U

[
W−1

1 0
0 0

]
V ∗ûv̂∗U

×
[

W−1
1 0
0 0

]
V ∗V

[
W1 0
0 W2

]
U∗v̂

= −V

[
I 0
0 0

]
V ∗V

[
u
0

]
v̂∗U

[
I 0
0 0

]
U∗U

[
v
0

]

= −ûv̂∗v̂
= −û‖v̂‖2

2

= −û.

Now let us study the 2-norm of WSW

‖WSW‖2 =
∥∥∥∥ûv̂∗U

[
I 0
0 0

]
U∗

∥∥∥∥
2

=
∥∥∥∥û

[
v∗ 0

]
U∗U

[
I 0
0 0

]
U∗

∥∥∥∥
2

= ‖ûv̂∗‖2

= ‖û‖2‖v̂‖2

= 1.
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Now we verify S satisfies condition (7). First we know,

SW = −U

[
W−1

1 0
0 0

]
V ∗ûv̂∗U

[
W−1

1 0
0 0

]
V ∗V

[
W1 0
0 W2

]
U∗

= −U

[
W−1

1 0
0 0

]
V ∗ûv̂∗U

[
I 0
0 0

]
U∗

Thus

AD,W (WAW )SW = −U

[
I 0
0 0

]
U∗U

[
W−1

1 0
0 0

]
V ∗ûv̂∗U

[
I 0
0 0

]
U∗

= −U

[
W−1

1 0
0 0

]
V ∗ûv̂∗U

[
I 0
0 0

]
U∗

= SW.

In the same way, we have

WS = −V

[
W1 0
0 W2

]
U∗U

[
W−1

1 0
0 0

]
V ∗ûv̂∗U

[
W−1

1 0
0 0

]
V ∗

= −V

[
I 0
0 0

]
V ∗ûv̂∗U

[
W−1

1 0
0 0

]
V ∗.

Now

WS(WAW )AD,W = −V

[
I 0
0 0

]
V ∗ûv̂∗U

[
W−1

1 0
0 0

]
V ∗

[
I 0
0 0

]
V V ∗

= WS,

then S fulfills condition (7).

Lemma 3.3. Let A ∈ Cm×n, W ∈ Cn×m, k1 = ind(AW ), k2 = ind(WA),
k = max{k1, k2}, r = rank((AW )k), R((AW )k1) = R(((AW )k1)∗), R((WA)k2) =
R(((WA)k2)∗). When ε → 0, we have

max
‖WEW‖2≤ε‖WAW‖2

∣∣∣‖(A+E)D,W ‖2−‖AD,W ‖2

∣∣∣ = ε‖AD,W ‖2Cond(A)+O(ε2),

for E fulfills the condition (7).

Proof. Since E fulfills the condition (7), we have

(A + E)D,W = AD,W −AD,W WEWAD,W +O(ε2).
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Now

max
‖WEW‖2≤ε‖WAW‖2

∣∣∣‖(A+E)D,W ‖2−‖AD,W ‖2

∣∣∣ ≤ ε‖AD,W ‖2Cond(A)+O(ε2).

Set E = ε‖WAW‖2S, where S is defined in Lemma 3.2. Then

‖AD,W −AD,W WEWAD,W ‖2

≥ ‖(AD,W −AD,W WEWAD,W )û‖2

= ‖AD,W û−AD,W WEWAD,W û‖2

= ‖AD,W û− ε‖WAW‖2A
D,W WSWAD,W û‖2

=
∥∥∥‖AD,W ‖2v̂ − ε‖WAW‖2‖AD,W ‖2A

D,W WSWv̂
∥∥∥

2

= ‖AD,W ‖2

∥∥∥v̂ + ε‖WAW‖2A
D,W û

∥∥∥
2

= ‖AD,W ‖2

∥∥∥v̂ + ε‖WAW‖2‖AD,W ‖2v̂
∥∥∥

2

= ‖AD,W ‖2

(
1 + ε‖WAW‖2‖AD,W ‖2

)
.

We now can get easy the following results.

Theorem 3.6. [1] Let A ∈ Cm×n, W ∈ Cn×m, k1 = ind(AW ), k2 =
ind(WA), k = max{k1, k2}, r = rank((AW )k), R((AW )k1) = R(((AW )k1)∗),
R((WA)k2) = R(((WA)k2)∗). If the perturbation E in A fulfills the condi-
tion (7), then the level-2 condition number

(17) Cond[2](A) = lim
ε→0

sup
‖WEW‖2≤ε‖WAW‖2

|Cond(A + E)− Cond(A)|
εCond(A)

satisfies

(18) |Cond[2](A)− Cond(A)| ≤ 1.

Theorem 3.7. [1] Let A ∈ Cm×n, W ∈ Cn×m, k1 = ind(AW ), k2 =
ind(WA), k = max{k1, k2}, r = rank((AW )k), R((AW )k1) = R(((AW )k1)∗),
R((WA)k2) = R(((WA)k2)∗). If the perturbation E in A fulfills the con-
dition (7), then the level-2 condition number of singular linear systems
WAWx = b
(19)

Cond[2](A, b) = lim
ε→0

sup
‖WEW‖2≤ε‖WAW‖2

‖f‖2≤ε‖b‖2

|Cond(A + E, b + f)− Cond(A, b)|
εCond(A, b)
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satisfies

(20)
Cond(A, b)

4
− 1

2
≤ Cond[2](A, b) ≤ 3Cond(A, b) + 2.

4 Structured perturbation

In this section, we present a structured perturbation of the W–weighted
Drazin inverse by means of 2–norm. The notation |A| ≤ |B| means that
|ai,j | ≤ |bi,j | for A = (ai,j) and B = (bi,j).

Theorem 4.1. Let A ∈ Cm×n, W ∈ Cn×m, k1 = ind(AW ), k2 = ind(WA),
k = max{k1, k2}, r = rank((AW )k), R((AW )k1) = R(((AW )k1)∗), R((WA)k2) =
R(((WA)k2)∗). If |U∗EWU | ≤ |U∗AWU |, |V ∗WEV | ≤ |V ∗WAV | and
‖AD,W ‖2‖WEW‖2 < 1, then

(A + E)D,W = (I + AD,W WEW )−1AD,W ,

where U and V are the same matrices as in (5).

Proof. Consider the partition E = U

[
E1 E12

E21 E2

]
V ∗. ¿From Theorem 2.2

and |U∗EWU | ≤ |U∗AWU |, we get
∣∣∣∣
[

E1W1 E12W2

E21W1 E2W2

]∣∣∣∣ ≤
∣∣∣∣
[

A1W1 0
0 A2W2

]∣∣∣∣ .

It is obvious that E21W1 = 0 and |E2W2| ≤ |A2W2|. Since W1 is invertible
and A2W2 is strictly upper triangular matrix, we have E21 = 0 and E2W2

is strictly upper triangular matrix.
Similarly from |V ∗WEV | ≤ |V ∗WAV |, we have E12 = 0 and W2E2 is

strictly upper triangular matrix.

Now, from E = U

[
E1 0
0 E2

]
V ∗, we easy obtain the structure of A+E

A + E = U

[
A1 + E1 0

0 A2 + E2

]
V ∗,

and

(A + E)W = U

[
(A1 + E1)W1 0

0 (A2 + E2)W2

]
U∗.

Since ‖AD,W ‖2‖WEW‖2 < 1, then I + AD,W WEW is nonsingular, i.e.

I + AD,W WEW = U

[
W−1

1 A−1
1 (A1 + E1)W1 0

0 I

]
U∗
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is nonsingular. Thus W−1
1 A−1

1 (A1 + E1)W1 is nonsingular and A1 + E1 is
also nonsingular, (A2 + E2)W2 is strictly upper triangular matrix. Hence,

(A + E)D,W =
(
[(A + E)W ]D

)2
(A + E)

= U

[
W−1

1 (A1 + E1)−1W−1
1 0

0 0

]
V ∗

= (I + AD,W WEW )−1AD,W .
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