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Abstract

In this paper we get the explicit condition number formulas for the
W —weighted Drazin inverse of a rectangular matrix using the Schur de-
composition and the spectral norm. We characterize the spectral norm
and the Frobenius norm of the relative condition number of the W—
weighted Drazin inverse, and the level-2 condition number of the W-
weighted Drazin inverse. The sensitivity for the W-weighted Drazin
inverse solution of linear systems is presented. We also present the
structured perturbation of the W—weighted Drazin inverse.
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1 Introduction

Let C™ ™ be the set of m x n complex matrices. By rank(A), AT, A*, R(A)
and NV (A) we denote the rank, the transpose, the conjugate transpose, the
range (column space) and the null space, respectively, of A € C™*".

Let A € C™*" W € C™™. Then AP'W = X € C™*" is the W-weighted
Drazin inverse of A if (see [7])

(AWFHLXW = (AW, XWAWX =X, AWX = XWA.

where k = ind(AW), the index of AW, is the smallest nonnegative integer
k for which rank [(AW)*] = rank [(AW)*]. If A € C"" and W = I,,,
then X = AP, where AP is the ordinary Drazin inverse of A.

The W-weighted Drazin inverse of A has the following properties:

AP = [(AW)PPA = A[(WA)PP?
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R(APT) = R((AW)F),  N(APW) = N(WA)Y),
rank((AW)*) = rank((WA)¥),

where k£ = max{ind(AW),ind(WA)}. Some interesting properties of the
Drazin and the W-weighted Drazin inverse can be found in [4].

J. Chen and Z. Xu (see [2]) characterized the condition number of the
Drazin inverse and singular linear systems for restrained matrices, by using
the Schur decomposition and the spectral norm instead of the P-norm, where
P is a transformation matrix of the Jordan canonical form of A. Note
that, in general, the computation of the Jordan canonical form is an ill-
posed problem. Their results generalize some early work including [10, 12],
because of well-posed properties of the Schur decomposition. In [1, 5, 9]
the authors established some results for the condition number of the W-
weighted Drazin inverse and the W—-weighted Drazin inverse solution of a
linear system, by using a special norm called PQ-norm. The definition of
the P@Q-norm depends on Jordan canonical form of A. The results obtained
in [1] are extended to linear bounded operators between Hilbert spaces in
[6]. In this paper, we establish the condition number of the W-weighted
Drazin inverse of a rectangular matrix by the Schur decomposition and the
familiar 2-norm instead of the PQ-norm in [1].

2 Representation of the W-Drazin inverse

We recall the next theorm.

Lemma 2.1. (Schur decomposition)[3] If A € C"*", then there ezists an
unitary U € C™™ such that

U*AU =T = D + N,

where D = diag(A1, ..., \n), and N € C™™ is strictly upper triangular.
Furthermore, U can be chosen so that the eigenvalues \; appear in any
order along the diagonal.

Let A € C™*™ satisfies the following condition:
(1) rank(A¥) =r, ind(A) =k, R(A*) = R((A%)),

and the Schur decomposition of A can be written as follows

(2) A:U[g g]U*,



where U is unitary, B is r X r upper triangular and nonsingular matrix, and

C = [¢;,4] is strictly upper triangular, i.e. ¢; j = 0 whenever 1 < j <1i < n—r.
In [2] J. Chen and Z. Xu used the Schur decomposition of a restrained

matrix A to get its expression of the Drazin inverse in the next theorem.

Theorem 2.1. [2] Let A € C™*". If A fulfills the condition (1), then the
Schur decomposition of A has the form as follows

(3) A:U[lg g]U

where U is unitary, B is an r X r upper triangular and nonsingular matriz,
C' is strictly upper triangular. Then

(4) AD:U[BO_1 B]U

Then we obtain the following theorem.

Theorem 2.2. Let A € C™*", W € C"*™, k1 = ind(AW), ko = ind(W A),
k = max{ki, ko}, r = rank((AW)F), R((AW)*1) = R(((AW)F)*), R(W A)F2) =
R(((WA)*2)*). Then we have

A—U[O AJV, W—V[O W2]U

Wi AiWq)~t 0
(5) AD’W:U ( 1431 1) V*,
0 0
where U € C™™ agnd V € C™*" are unitary matrices, A1 and W1 are non-
singular matrices, AsWs and WsAs are strictly upper triangular matrices.

Proof. We have rank((W A)¥) = rank((AW)¥) = r. From Theorem 2.1, we
have the Schur decomposition of AW and W A:

B 0

(6) AW:U[O e

D 0
}U*, WA:V[O F}V*,
where U € C™*™ and V' € C™ " are unitary matrices, B and D are r x
r upper triangular and nonsingular matrices, C and F' are strictly upper
triangular matrices.



We can represent A and W as
A Apg ] * [ Wy Wi } *
A=U V=, W=V U*.
[ Asy Ay Waor  Who

Since C' and F are strictly upper triangular matrices, we obtain C* = 0 and
F*¥ = 0. Now, we get

BF 0 A A BkA, BkA
ka * 1 12 - 1 12 *
(AW)A_U[ 0 O}UU[Aﬂ AQ}V—U[ 0 0 ]V

and

A A D* 0 A1D* 0

k _ 1 12 * * 1 *
A(VVA)—U{A21 A2:|VV|:0 O}V_U[AngkO]V'
Using the equation (AW)*A = A(W A)*¥, we deduce B*¥ A3 = 0 and Ay DF =
0. We know that B and D are nonsingular, thus Ajo = 0 and Ao =0, i.e.

oA 07,
vl v

_ A 0 * Wi Wi . _ AWy AWha *
AW—U[ 0 A2:|VV|:W21 ]U—U[ }U,

From

Wo

WA=V UU VE=V 1%
[ Wo W } [ 0 Ay ] [ Wy Ay Wads ]

and (6), we obtain AyW7 = B, WAy = D, AW, = C, WhAs = F,

A1Wi9 = 0 and Wy A; = 0. Hence, A1 and Wj are invertible, AsWs and
Wy As are strictly upper triangular matrices, Wi = 0 and Wy = 0. So

B Wy 0 .
W=V [ 0 W } U*.
Finally, by APW = [(AW)P]2A = A[(WA)P]?, we get

B724, 0 A1D2 0
DW _ 1 * _ 1 *
A U[ 0 0 ] 1% U[ 0 0 } V*,
i.e. B"2A; = A;D~2. Thus,

ADW _ 7 (W AiWp)~t 0 v
0 0
This completes the proof.



3 Condition numbers of W-Drazin inverse
In this section we consider the following linear system
WAWz = b,

where A € C™" W e C"™, ind(AW) = ki, ind WA) = kg, b €
R((WA)*2) and x € R((AW)¥1). The W-weighted Drazin-inverse solution

z has the form
x = APW,

The definition of the absolute condition number was introduced by Rice
in [8]. If F' is a continuously differentiable function

F:C™"xCr—C™
(A,z) — F(A, ),
the absolute condition number of F' at z is the scalar ||[F’(x)||. The relative

condition of F' at z is ,
£ ()]l

lyll
Introduce the following operator:

F:C™""xC"— C™
(A,b) — F(A,b) = APWh =g

We known that the operator F' is a differentiable function, when the pertur-
bation F in A fulfils the following condition:

(7) R(EW) € R((AW)Y),  N((WA)") S N(WE),

where k = max{k1, k2}. It is easy to verify that (7) is equivalent to

(8) APW (W AWYEW = EW, WEWAW)APYW = WE.
We need the following result.

Lemma 3.1. [11] Let A, E € C™*", W € C™"™, k = max{ind(AW),ind(WA)}.
If E satisfies the condition (7) and |APWWEW |2 < 1, then

(A+ EYPW = (I + APWWEW) 1 APW = ADW(1 + WEW APW)~L,



We choose the parameterized weighted Frobenius norm ||[a W AW, 3b]|| (UF227
where U is the same matrix as in (5) and @ = diag(U, 1), because we can
choose different parameters «, G for different perturbations.

We get the explicit formula for the condition number of the W-weighted
Drazin-inverse solution by means of the 2-norm and Frobenius norm which
generalize the main result in [1].

Theorem 3.1. Let A € C™*", W € C™™, ki = ind(AW), ky = ind(W A),

k= max{ki, ko}, 7 = rank((AW)F), R((AW)H) = R(((AW)F1)), R((WAY=) =
R((W A)F2)*). If the perturbation E in A fulfills the condition (7), then the
absolute condition number of the W-weighted Drazin inverse solution of lin-

ear system, with the norm

F
[ W AW, B8], = /a2 W AW % + 52 b3

on the data (A,b) and the norm ||x||2 on the solution, is

|1 =3
C = HAD,WHQ @ + a227
U 0

where QQ = [ 0 1 } and U is the same matriz as in (5).

Proof. We know that F(A,b) = AP:Wb. Under the condition (7), F is a
differentiable function and F" is defined as follows
DWW _ ADW
F’(A,b)\(ﬂf):lim (A+€E) (b+ef)— A b7

e—0 €

where F is the perturbation of A and f is the perturbation of b.
Since E satisfies the condition (7), we have (see [7])

(A+ eE)PW = APW _ e ADW W EW APW 4 O(e2),
and then we can easily get that
F'(A,b)|p,p = —APYVWEWz + APV f.
Then

| F"(A,0)| (5,5 ll2 IF'(A,b) (5,0 llF

APV (WEWz — f)|F
IAP W) (IWEW || ||zll2 + || f12)-

A



The norm of a linear map F'(A,b) is the supermum of ||F'(A,b)|g, f)llr on
the unit ball of C™*™ x C". Since

(llaWEW, 8115 5)? = o [WEWI|[% + 5| £113

we get

|F'(A,b)|| =
= sup ||AD’W(WEWac — Dl

o2 |WEW |[2482| f3=1
< sup AP Y2 (IWEW || pllll2 + 1 f]l2)

o2 |WEW |[2482 f3=1

ZI|l2 1

_ sup AP, (aHWEWHF” ” +ﬁ|!f!25>

a2 |WEW || 2+82||f|13=1 @

zll2 1
— (AP, sp (| WEWr B]7]2) - ( :
a2 |WEW ||2+62||f||3=1 «

where (a|[WEW /||, 5] f]l2) and (%, %) can be consider as vectors in R%.
Therefore, from the Cauchy—-Schwarz inequality, we get:

=l , 1
a2 B2

Now we show that this upper bound is reachable. There are vectors u i v
such that

1E" (A, B[] < (1AP ]2

(W Ay W)~ = [[(Wr Ay W) o = |AP WY g0,

where [Jull2 = |Jv]]2 = 1.

Let
. U . v
U_V[O}’ v—U[O].

It is easy to check that

lall2 = [|9]l2 = 1.



Then

DW .+~ _ -(W1A1W1)_1 0 % U
APVa = U 3 o vl
- U [ (W1A1W1)_1u
o i 0
_ [ 1AW~ se ]
0

— on Ao H

= [|[APV|50.
Now we take
s EEE ot
E:—O;nU[WS_I 8]V*ﬂx*U[Wé_l g]v*.
So we have
EW = —0;77U[W(1]_1 S]V*ﬁm*U[Wé_l S]V*x
X V[Vgl W%]U*
= —O;nU[Wé_l g]Vu:rU[é g]U
Since

APV (WAW) =U [ é 8 ] U*,

we can verify F fulfills the first equation of condition (8)

APW (W AW)EW =

1 I O] [ W7 0] s, [T 0
1 Wit 0] e s [T 07,4
__ozan[ 0 O]VuxU[OO}U

= EW.



In the same way, we have

_ 1 Wy 0 *
Wit 07 e o [ 07
X U[ 0 O]VumU[ 0 0 Vv

1 I o] Tul o[ Wit 07,
' [o oo ] o)

1 —1
R [ w0 ] Ve,

a?n 0 0
Since
(WAWYAPW — | L0y
0 0
then
1 w0 I0
DWW T paek 1 * *
WEWAW)A a%um U { 0 0 } Vv [ 0 0 ] Vv
b [ W 0] s
= WE.

Hence, F fulfills the condition (8). Now we want to verify the perturbation
(E, f) is feasible, that is, o?|WEW ||% + 82| f||3 = 1. Notice that

(W1A1W1)71 0

_ ADWp _
z=A b—U[ 0 0

] V*b,
and then

o?|[WEW||% + 5| 113
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Then we have

F'(A,b)|(5,p) —AD’WWEWJ: + APW s

o]

- DWA *
A U 0 0
ax*x + AP

a?

Uz

1
ADW
a?n 5277”
e3P e+ L
2 B%n
| APW |0,

Then

HAD,WH2 Hx”Q

|F'(A,b)|(g,pll2 =

with o2 ||WEW||% + 82| f|13 = 1, implies

113
o2

IF'(A,b)]| = AP,
and we complete the proof.
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If F satisfies the condition (7), then the 2-norm relative condition number
of the W—weighted Drazin inverse is defined as

A+ EYDW _ gADW
C’ond(A) = lim sup H( - )AD = ||2
—0F |WEW |2 <e|W AW |2 e AP W2

and the corresponding condition number for the linear systems W AWz = b
is defined as

D,W _ ADW
Cond(A,b) = lim sup (A + E) (b+f)—A bH2'

=0t |WEW ||y<c|WAW |3 e[| AD-Wb|o
171l <clibll2

The level-2 condition number of W—weighted Drazin inverse is defined
as

Cond?(A) = lim sup |Cond(A + E) — Cond(A)|
=0 | WEW||2<e|W AW |5 e Cond(A)

and the level-2 corresponding condition number is defined as

) Cond(A+ E,b+ f) — Cond(A,b)|
CondP(A,b) =1 | ’ e
ond™(4,b) = iy W EW o<t AWl e Cond(A, b)

1£12<elbll2

Theorem 3.2. Let A € C™*", W € C"*™, k1 = ind(AW), ko = ind(W A),
k= max{ky, ko}, r = rank((AW)F), R((AW)F) = R((AW)F"),
R((WA)k2) = R((WA)R2"). If the perturbation E in A fulfills the condition
(7), then the condition number

I(A+ E)PV — APV,

9 Cond(A) = lim sup ,
©) ) —0F | W EW|a<e|WAW |2 el APy
satisfies

(10) Cond(A) = HWAWHQHAD’WHQ.

Proof. By neglecting O(e?) terms in a standard expansion, it follows from
Lemma 3.1 that

(A4 E)PW — APW = — APWWw EW APW.

Let E = €| WAW ||oE, using [|[WEW ||y < ¢|W AW ||2, we have |[WEW||y <
1. Then

|APW W EW APW ||y < |APW |lo|[W EW [lo]| APW |12 < [ APV,

11



The result is proved if we can show that

sup  |[APWWEWAPW ||, = || APV 2.
IWEW |2<1

There exists vectors x and y such that ||z]j2 = ||y[le =1
(WA W1) " Hyll2 = [|l2* (Wi A W) 7o = [[(W A W) ™1 2.

Choose

e 23] 1[5 2]

We can verify that

A — Wl 0 * Wl_l 0 Yy *
IWEW |2 = 'V[O WJUU[ ) oHo [ 0]
F W 0] e, [ WL O .
“ 1 o o]vv[o WQ]U ,
o I 0 yr* 0 I 0 N
- Il o]1% o)Le o]v,
_ yr* 0]
- v o),
lyz™|[2
= lyll2llzll2
—- 1,
and
~ -1 *
JAPWWEWAPW |, — U (WAWY)™ 0 ]y [ 9™ 0 ey
0 0 0 O
[ —1
% (W1A1W1) 0 v
i 0 0 )
_ ‘ U [ (W1 AW) "y (a* (Wi Ay W) 1) 0 } v
0 0
2

(W1 A W)~ Lyllo]ja* (W1 A1 Wr) 7|2

= (Wi 4aW) " 1yll3
AP W3,

12



It is easy to check that

S wit ol[y] . Wil 0] . [ W0 ],
EW U[O 0}{0}[ 0][0 OVV 0 WQU
B Wyt oo yr* 0 X
- o[ e
and
- Wi 0 arr [ W 0Ty . Wit 0],
wE = V[O W2:|UU|: 0 0][0 [ O] 0 0 v
_ yx* 0 Wl_lO X
- v o) o)y
Now, from

and

~ * -1
WEWAW)APW = v[yf” OHW1 O]V*V{I O}V*

0 0 0 0 0 0
_ yr* 0 Wt oo -
-l 6]y
= WE,
we have that F satisfies the condition (7). We complete the proof. O

Then we consider the condition number with the Frobenius norm.

Theorem 3.3. Let A € C™*", W € C™™, ki = ind(AW), kg = ind(W A),

k = max{ky, ko}, r = rank((AW)*), R((AW)*1) = R(((AW)F1)*), R((W A)F2) =
R((WA)k2)*). If the perturbation E in A fulfills the condition (7), then the
condition number

A+ E DW _ AD,W
(11)  Condp(A) = lim sup A+ B~ - 7.
0T |WEW||p<e|WAW|| e| APV g

13



satisfies

DWW |2
(12) Condp(A) = ”WA’KLLFV% I
’ F

Proof. Analogously to the proof of Theorem 3.2, we should prove that

sup APV WEW APW |5 = || AP 2.

[WEW|2<1
Take . )
o Wl_ 0 ) * Wl_ 0 *
E—U[ i OHO}M o][ : O]V.

where [[zll2 = [ylz = 1 and [[(WiAiW1)"yll2 = [l2* (Wi AiW) " Hle =
||(W1A1W1)71H2. Thus

~ -1 *
| APV WEW AP | = ’U [ (W1A10W1) 8 ] VY [ v 8 } —

[ (W1A1W1)71 0 :|
L 0 0 F
_ ’U [ (WL AWh) " ly) (a* (WL AiW) ™ 1) 0 ] v
0
_ ’ [ (W1 A1)~y (a* (W A W) 1) 0 }
0 0
(W1 AW) "y Lol (W A W)~

= (Wi daW1) " Yyll3
AP 3.

V*

jam)

F

F

The proof is completed. O

Now we characterize the condition number of linear systems by means
of 2-norm.

Theorem 3.4. Let A € C™*", W € C"*™, ky = ind(AW), kg = ind(W A),
k = max{ky, ko}, 7 = rank((AW)F), R((AW)k1) = R(((AW)F1)*), R(WA)*2) =
R(((W A)k2)*). If the perturbation E in A fulfills the condition (7), then the

condition number of singular linear systems WAWz =b

A+ E)PW (b + f) — APVl

13) Cond(A,b) = lim su ,
(13) (4.9) e—0+ ||WEW||2§€I\)|WAWH2 e|AP-WD| |,
17 ll3<ellbll2

14



satisfies

AD,W
(14) Cond(A,b) = [WAW o] APW 1, + ‘”MVHV?I)’;";”?
Proof. From
A+ E)PW b+ )~ APV = [(A+ B)PW - APW]p 4 (A4 E)PW f
= —APWWEWAPWY 4 (A+ E)PWVf
= 7AD,WWEW:L_+AD,W]0+O(€2)’
we get

A+ B)PW (64 1) = APWoly < |APY o[ WEW alella + AP ] 1o
< AP (WA ol + [blo).
Hence,
AD,W 9 b|2
Conda,t) < W AW o 4P |, + Lol

Now, supposey =V [ N },Where |zll2 = 1, [|[(W1 A1 W1) " 22]lo = [|(W1 Ay W1) Yo,

0
Then we have ||y|l2 = 1 and
e I P I
0 011,
I W1A1W1) "2l
AP .
Let
_ o wWAW e T W 0T e e [ W 0] s
f = ey||b]|2, E——WU 0 0 Viyz™U 0 0 V.

It is easy to verify that AP (WAW)EW = EW and WE(W AW)APW =
WE, i.e. we can get that E fulfills the condition (7). Then

1fll2 = ellbllzllyllz = €l|ll2

15



and

€||[WAW |2 Wy 0 Wt oo
WEW = — ||V U*U 1 V*yz*U
Wit 0] e, [0 i}
% { 0 o_vv[o WQ]U ,
— * A, b* *
el VLo o V'V o @00 g o,
WAW -1
|2 0 0 0 0 0 5
_ €[|[WAW (|2 yb*V[(WlAlwl)_l O]U*
[E4P 0 0 2
_ E[WAW ||z,
= —— vzl
[E4[P
_ E[[WAW ||,
= — w2l
[E4IP
= €||[WAW||2.
Thus
[(A+EYPY (bt £) = AP Wby = || = APV WEWa + APV £,
A
€||W WHzAD’Wy.T*LL“—f-GHbHQAD’Wy
(E1P 2
= e([|WAW||a[lz]l2 + [|bll2) [ AP ]2
The proof is completed. O

Similarly, we can get the next theorem with Frobenius norm.

Theorem 3.5. Let A € C™*", W € C™™, ki = ind(AW), ky = ind(W A),

k= max{ky, kz}, 7 = rank((AW)F), R(AW)H) = R(((AW)*1)7), R((WA)*2) =
R((W A)F2)*). If the perturbation E in A fulfills the condition (7), then the
condition number of singular linear systems WAWz =b

(15)
. 1A+ E)PW(b+ f) — APWb||p
Condp(A,b) = 1 ,
ondr(4,0) o0t HWEWHFSEEII)\WAWIIF e|AP-Wb||
£l p<ellbll g
satisfies
DW [AP W]l ]|b]l2

16



Proof. Analogously to the proof of Theorem 3.4, we can prove this theorem
also. O

The next results show that for the W-weighted Drazin inverse, or for
solving a linear system, the sensitivity of the condition number is approxi-
mately given by the condition number itself.

Firstly, we need the following lemmas.

Lemma 3.2. For 4,0 in Theorem 2.1, there exists S € C™*" such that
WSWo =—a, |[WSW|9 =1,

where S fulfills condition (7).

Proof. Let
s— [ Wi O peapep [ W 0]y
- 0 0 0 0 '
Then
o w0 e [ W 0T s
WSWo = V[ 0 W2}UU[ 0 0:|VUUU
Wit 0] e, [Wi O .
X [ 0 O]VV[O W2:|U’U
I 0 N U | oy I 0 * v
st A L P CO
= —abd*D
= —a|9|3

A~

= —u.

Now let us study the 2-norm of W.SW

o I 0 X
IWSWly = 'uv U [ 0 0 ] U

2

R N N I 0 "
u[v O]UU[O O}U

2
[a0* |2

[all2]19]l2

= 1

17



Now we verify S satisfies condition (7). First we know,

B Wit 0] s [ W7 0], [ WA 0 .
SW = —U[ 0 0:|VUUU|: 0 0 Vv 0 Wy U
_ Wit 0 yupoerr [ 1 0] e
= —U[ 0 0:|VUUU|:O O}U
Thus
DWW _ I 0 * Wl_l 0 ® oA Ak I o0 *
A (WAW)SW = U{O 0 utvu 0 0 V*uo*U 0 0 U
_ Wit 07 e [ 10 ] 1
= —U[ 0 0:|VUUU|:O O}U
= SW.
In the same way, we have
om0 e W 0] e [ W 0]
wSs = V[ 0 WQ]UU[ 0 O]VuvU[ 0 0 v
B I 07 ounnrr [ W7 0]
= —V[O 0:|VUUU|: 0 O_V'
Now
pw T 0] e [Wih O] [T 0 .
WS(WAW)A = V[O 0 VuvU_ 0 0 Vv 0 0 Vv
= WS§,
then S fulfills condition (7). O

Lemma 3.3. Let A € C™*", W € C™™, k1 = ind(AW), ko = ind(W A),
E = ma{ky, b}, 7 = rank((AW)E), R((AW)H) = R(((AW))*), R((W A)2) =
R((WA)k2)*). When € — 0, we have

max I(A+E)P W [l ]| AP |2| = €| AW ||2Cond(A)+O(€),
IWEW [2<e[W AW |2

for E fulfills the condition (7).

Proof. Since E fulfills the condition (7), we have

(A+ E)PW = APW — APWWEW APY + 0(e?).

18



Now

max I(A+E)PW 2= [[ AP || < e AP [l2Cond(A)+O(€?).
[WEW ||l2<e[[W AW |2

Set E = ¢|WAW/||2S, where S is defined in Lemma 3.2. Then
|ADW _ APV my ADW |,
> [|(APW — APWW EW AP Wi,
= | APWa — APWWEW AP Wi,
= | APW i — e |WAW ||, APW W SW AP W )|
= [ 142 120 — e W AW 5| AP |2 APV W SW

2
= (|42

O+ €| WAW ||, AP W4 )

= [ APY 3| |o + € W AW 5| AP |20

2
= APy (14 | AW 2| AP ).

We now can get easy the following results.
Theorem 3.6. [1] Let A € C™", W € C"™, ky = ind(AW), ky =
ind(WA), k =max{ky, ka}, r = rank((AW)F), R((AW)F) = R(((AW)k1)*),
R((WA)F2) = R((WA)*2)*). If the perturbation E in A fulfills the condi-
tion (7), then the level-2 condition number

|Cond(A + E) — Cond(A)|

17 Cond?(A4) = lim sup

1 “ 0|\ WEW [2<c|W AW |3 cCond(A)
satisfies

(18) |Cond? (A) — Cond(A)| < 1.

Theorem 3.7. [1] Let A € C™*", W € C™™, ki = ind(AW), ko =
ind(WA), k=max{ky, ka}, 7 = rank((AW)F), R((AW)k1) = R(((AW)k1)*),
R((WAk2) = R(((WA)k2)*). If the perturbation E in A fulfills the con-
dition (7), then the level-2 condition number of singular linear systems
WAWzxz =b

(19)
. Cond(A+ E,b+ f) — Cond(A,b)|
Cond? (A,b) =1 | ’ ’
ond™(4,b) = fing W EW [ < AWl eCond(A,b)
1712 <ellbll2
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satisfies

Cond(A,b) 1

(20) 1 -5 < Cond®(A,b) < 3Cond(A,b) + 2.

4 Structured perturbation

In this section, we present a structured perturbation of the W-—weighted
Drazin inverse by means of 2-norm. The notation |A| < |B| means that

\am\ S ‘bi’j’ for A = (ai,j) and B = (b@j).

Theorem 4.1. Let A € C™*", W € C"*™, k1 = ind(AW), ko = ind(W A),

k = max{ky, ko}, r = rank((AW)F), R((AW)k1) = R(((AW)k1)*), R((W A)k2) =
R(WAk)*). If U EWU| < |[U*AWU|, |V*WEV| < |V*WAV| and
|APW|o|WEW]||2 < 1, then

(A+ E)PY = (I + APWWEW)=1APW,
where U and V are the same matrices as in (5).

Proof. Consider the partition £ = U [ Ev P
Eyn  Es
and [U*EWU| < |[U*AWU|, we get

ExWh E1aWs < AW, 0
EoyW1  EaW, 0 AWy ||

It is obvious that Fo W7 = 0 and |EoWa| < |A2Ws|. Since W is invertible
and AoWjy is strictly upper triangular matrix, we have Fo; = 0 and EoWy
is strictly upper triangular matrix.

Similarly from |V*WEV| < |V*WAV|, we have Ej2 = 0 and W) Es is
strictly upper triangular matrix.

B Er 0
Now,fromE—U[ 0 By

} V*. i{From Theorem 2.2

] V*, we easy obtain the structure of A+ FE

A—I—E:U|:A1+E1 0 :|V*,

0 A+ Ey

and

(A+E)W—U[ (AL + B, 0 ] .

0 (Ag + E2)Wy
Since ||APW||3||WEW ||z < 1, then I + APWW EW is nonsingular, i.e.

W ATH AL+ ED)WL 0 ] .

DW _
I+ A WEW U[ 0 7
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is nonsingular. Thus Wl_lAl_l(Al + E1)W; is nonsingular and A; + Fj is
also nonsingular, (Ag + Fo)Ws is strictly upper triangular matrix. Hence,

(A+E)PY = ((A+E)WP)* (A+E)
g Wfl(A1+E1)_1Wfl 0 e
0 0

= (I+APWWEW)-1APW,
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