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Abstract

In this paper we prove the formula for the expression (A+B)d,W in
terms of A, B,W,Ad,W , Bd,W , assuming some conditions for A,B and
W . Here Sd,W denotes the generalized W -weighted Drazin inverse of
a linear bounded operator S on a Banach space.
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1 Introduction

Let X and Y denote arbitrary Banach spaces. We use B(X,Y ) to denote
the set of all linear bounded operators from X to Y . Set B(X) = B(X, X).
Let A ∈ B(X,Y ) and W ∈ B(Y, X) be nonzero operators. If there exists
some S ∈ B(X,Y ) satisfying

(AW )k+1SW = (AW )k, SWAWS = S, AWS = SWA,

for some nonnegative integer k, then S is called the W-weighted Drazin
inverse of A and denoted by S = AD,W [12], [13], [15]. If there exists AD,W ,
then we say that A is W -Drazin invertible and AD,W must be unique [12].
If X = Y , A ∈ B(X) and W = I, then S = AD, the ordinary Drazin inverse
of A. Further related results can also be found in [3, 4, 7, 11, 14, 16, 17].

Let BW (X, Y ) be the space B(X, Y ) equipped with the multiplication
A ∗ B = AWB and the norm ‖A‖W = ‖A‖‖W‖. Then BW (X, Y ) becomes
a Banach algebra [6]. BW (X, Y ) has the unit if and only if W is invertible,
in which case W−1 is that unit.

∗The authors are supported by the Ministry of Science, Republic of Serbia, grant no.
144003.
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Let A be a Banach algebra. Then a ∈ A is quasipolar if and only if there
exists b ∈ A such that

ab = ba, bab = b, a− aba is quasinilpotent.

The element b, if exists, is unique [9] (Theorem 7.5.3), [10]. Such b is the
generalized Drazin inverse, or Koliha-Drazin inverse of a, and it is denoted
by ad.

Let W ∈ B(Y, X) be a fixed nonzero operator. An operator A ∈ B(X, Y )
is called Wg–Drazin invertible if A is quasipolar in the Banach algebra
BW (X, Y ). The Wg–Drazin inverse Ad,W of A is defined as the g–Drazin
inverse of A in the Banach algebra BW (X,Y ) [6].

Let us recall that if A ∈ B(X, Y ) and W ∈ B(Y, X) then the following
conditions are equivalent [6]:

(1) A is Wg-Drazin invertible,

(2) AW is quasipolar in B(Y ) with (AW )d = Ad,W W ,

(3) WA is quasipolar in B(X) with (WA)d = WAd,W .

Then, the Wg-Drazin inverse Ad,W of A satisfies

Ad,W = ((AW )d)2A = A((WA)d)2.

Lemma 1.1 [6] Let A ∈ B(X, Y ) and W ∈ B(Y, X)\{0}. Then A is W g-
Drazin invertible if and only if there exist topological direct sums X = X1⊕
X2, Y = Y1 ⊕ Y2 such that

A = A1 ⊕A2, W = W1 ⊕W2,

where Ai ∈ B(Xi, Yi), Wi ∈ B(Yi, Xi), with A1, W1 invertibe, and W2A2

and A2W2 quasinilpotent in B(X2) and B(Y2), respectively. The W g-Drazin
inverse of A is given by

Ad,W = (W1A1W1)−1 ⊕ 0

with (W1A1W1)−1 ∈ B(X1, Y1) and 0 ∈ B(X2, Y2).

Recall that if AD and BD exist, it is possible that (A+B)D does not exist.
Moreover, if (A + B)D exists, then we do not always know how to calculate
(A + B)D in terms of A, B, AD, BD. In this paper we investigate some
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special cases of this phenomenon. In [5] Hartwig, Wang and Wei obtained
a formula for the Drazin inverse of a sum of two matrices, when one of the
products of these matrices vanishes. Djordjević and Wei generalized their
results to bounded linear operators on Banach spaces [8]. In [1], Castro
Gonzalez extended these additive Drazin inverse results to complex matrices
using weaker conditions. Finally, Castro-Gonzalez and Koliha extended the
results for the generalized Drazin inverse of Banach algebra elements [2]. In
this paper we extend previous results to linear bounbed operators on Banach
spaces, and give a formula for computing the Wg-Drazin inverse of a sum
of two operators.

We state one lemma concerning g–Drazin inverse of a partitioned matrix
that will be needed later (see Djordjević and Wei [8]).

Lemma 1.2 If A ∈ B(X) and B ∈ B(Y ) are g–Drazin invertible, C ∈
B(Y, X) and D ∈ B(X, Y ), then

M =

[
A C
0 B

]
and N =

[
A 0
D B

]

are also g–Drazin invertible and

Md =

[
Ad S
0 Bd

]
, Nd =

[
Ad 0
R Bd

]
,

where

S = (Ad)2
[ ∞∑

n=0

(Ad)nCBn

]
(I −BBd) +

+ (I −AAd)

[ ∞∑

n=0

AnC(Bd)n

]
(Bd)2 −AdCBd

and

R = (Bd)2
[ ∞∑

n=0

(Bd)nDAn

]
(I −AAd) +

+ (I −BBd)

[ ∞∑

n=0

BnD(Ad)n

]
(Ad)2 −BdDAd.

We also need the following important results from [8].
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Lemma 1.3 If P, Q ∈ B(X) are quasinilpotent and PQ = 0 or PQ = QP ,
then P + Q is also quasinilpotent. Hence, (P + Q)d = 0.

Lemma 1.4 If P ∈ B(X) is g–Drazin invertible, Q ∈ B(X) is quasinilpo-
tent and PQ = 0, then P + Q is g–Drazin invertible and

(P + Q)d =
∞∑

i=0

Qi(P d)i+1.

We also state the following useful result.

Lemma 1.5 Let A be a complex Banach algebra with the unit 1, and let p
be an idempotent of A. If x ∈ pAp, then σpAp(x) = σA(x), where σA(x)
denotes the spectrum of x in the algebra A, and σpAp(x) denotes the spectrum
of x in the algebra pAp.

2 Wg–Drazin inverse of a sum of two operators

First we state one particular case of our main result.

Theorem 2.1 Let W ∈ B(Y,X), and let B ∈ B(X, Y ) be Wg–Drazin in-
vertible and N ∈ B(X, Y ) such that WN ∈ B(X) is quasinilpotent. If
NWBd,W = 0 and (I −WBWBd,W )WNWB = 0, then

(WN + WB)d = (WB)d + ((WB)d)2
( ∞∑

i=0

((WB)d)iWNS(i)

)
,(1)

where

S(i) = (I −WBWBd,W )(WN + WB)i(2)

= (I −WBWBd,W )




i∑

j=0

(WB)i−j(WN)j


 .

Moreover, for all i ≥ l ≥ 1, we have

S(i) = (WB)i−l+1S(l − 1) = S(l − 1)(WN)i−l+1.

Proof. Since B is Wg–Drazin invertible, by Lemma 1.1, we conclude that
B and W have the matrix forms

B =

[
B1 0
0 B2

]
, W =

[
W1 0
0 W2

]
,
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where B1,W1 are invertible, and W2B2 is quasinilpotent. From NWBd,W =
0 it follows that N has the matrix form

N =

[
0 N1

0 N2

]
.

Since WN =

[
0 W1N1

0 W2N2

]
is quasinilpotent, from Lemma 1.5 we conclude

that W2N2 is quasinilpotent. From (I−WBWBd,W )WNWB = 0 it follows
that W2N2W2B2 = 0. Thus, for any i ≥ 0,

(W2N2 + W2B2)i =
i∑

j=0

(W2B2)i−j(W2N2)j =
i∑

j=0

(W2B2)j(W2N2)i−j .

From Lemma 1.4, we see that W2N2 + W2B2 is quasinilpotent. Now, from
Lemma 1.2, we get

(WN + WB)d =

([
W1 0
0 W2

] [
0 N1

0 N2

]
+

[
W1 0
0 W2

] [
B1 0
0 B2

])d

=

[
W1B1 W1N1

0 W2N2 + W2B2

]d

=

[
(W1B1)−1 X

0 0

]

where

X = (W1B1)−2

[ ∞∑

i=0

(W1B1)−iW1N1(W2N2 + W2B2)i

]

= (W1B1)−2



∞∑

i=0

(W1B1)−iW1N1




i∑

j=0

(W2B2)i−j(W2N2)j





 .

Write S(i) = (I −WBWBd,W )

(
i∑

j=0
(WB)i−j(WN)j

)
, for all i ≥ 0. Now,

for all i ≥ 1, we have

S(i) =

[
0 0
0 (W2B2)i

]
+

i∑

j=1

[
0 0
0 (W2B2)i−j

] [
0 W1N1(W2N2)j−1

0 (W2N2)j

]

=




0 0

0
i∑

j=0
(W2B2)i−j(W2N2)j


 .
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Hence,

(WB)d + ((WB)d)2
( ∞∑

i=0

((WB)d)iWNS(i)

)
=

=


 (W1B1)−1

∞∑
i=0

(W1B1)−(i+2)W1N1

(
i∑

j=0
(W2B2)i−j(W2N2)j

)

0 0




=

[
(W1B1)−1 X

0 0

]
= (WN + WB)d.

The second statement of the theorem are easily verified. 2

As corollaries we obtain the following results.

Corollary 2.1 Let B, N ∈ B(X,Y ) satisfy conditions of Theorem 2.1. Then
we have

(WN + WB)d(WN + WB) = (WB)dWB +

( ∞∑

i=0

((WB)d)i+1WNS(i)

)
,

where S(i) is defined in (2).

Corollary 2.2 Let B, N ∈ B(X, Y ) satisfy conditions of Theorem 2.1.

(i) If (WN)2 = 0, then

(WN + WB)d = (WB)d + ((WB)d)2
( ∞∑

i=0

((WB)d)iWN(WB)i

)

+ ((WB)d)3
( ∞∑

i=1

((WB)d)iWN(WB)i

)
WN.

(ii) If WNWR = 0, for all R ∈ B(X, Y ), then

(WN + WB)dWR

= (WB)dWR + ((WB)d)2
( ∞∑

i=1

((WB)d)iWN(WB)i

)
WR.

(iii) If (WB)2 = WB, then

(WN + WB)d = (I −WN)−1WB.
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Proof. Each of these cases follows directly from Theorem 2.1 and the
following simplification.

Write S(i) = (I −WBWBd,W )

(
i∑

j=0
(WB)i−j(WN)j

)
, for all i ≥ 0.

(i) Since (WN)2 = 0, WNS(i) = WN(WB)i + WN(WB)i−1WN for all
i ≥ 1.

(ii) Since WNWR = 0, WNS(i)WR = WN(WB)iWR.

(iii) Since (WB)2 = WB, (WB)d = WB and then the hypothesis NWBd,W =
0 implies NWB = N(WB)d = NWBd,W = 0. Then from Lemma 1.4
it follows

(WN + WB)d =
∞∑

i=0

(WN)i((WB)d)i+1

=
∞∑

i=0

(WN)i(WB)i+1

=

( ∞∑

i=0

(WN)i

)
WB

= (I −WN)−1WB.

2

Now, we state and prove the main result.

Theorem 2.2 Let W ∈ B(Y, X), and let A,B ∈ B(X,Y ) be Wg–Drazin in-
vertible. If Ad,W WB = 0, AWBd,W = 0 and (I−WBWBd,W )WAWB(I−
WAWAd,W ) = 0, then A + B is Wg-Drazin invertible and

(A + B)d,W =

= (A + B)

[
(WB)d

(
I +

∞∑

i=0

(
(WB)d

)i+1
WAZ(i)

)
(I −WAWAd,W )

]2

+ (A + B)(I −WBWBd,W )

(
I +

∞∑

i=0

Z(i)WB
(
(WA)d

)i+1
) (

(WA)d
)2

− (A + B)
(
(WB)d

)2
( ∞∑

i=0

(
(WB)d

)i
WAZ(i)WB

) (
(WA)d

)2
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− (A + B)(WB)d

( ∞∑

i=0

WAZ(i)WB
(
(WA)d

)i
) (

(WA)d
)3

− (A + B)
(
(WB)d

)2 ×

×
( ∞∑

i=0

∞∑

k=0

(
(WB)d

)i
WAZ(i + k + 1)WB

(
(WA)d

)k
) (

(WA)d
)3

− (A + B)×

×
[
(WB)d

(
I +

∞∑

i=0

(
(WB)d

)i+1
WAZ(i)

)
(I −WAWAd,W )

]2

×

×WB(WA)d,

(3)

where

Z(i) = (I −WBWBd,W )




i∑

j=0

(WB)i−j(WA)j


 (I −WAWAd,W ).(4)

Moreover, for all i ≥ l ≥ 1, we have

Z(i) = (WB)i−l+1Z(l − 1) = Z(l − 1)(WA)i−l+1.

Proof. Since A is Wg–Drazin invertible, by Lemma 1.1, we conclude that
A and W have the matrix forms

A =

[
A1 0
0 A2

]
, W =

[
W1 0
0 W2

]
,

where A1, W1 are invertible and W2A2 is quasinilpotent. From Ad,W WB = 0
it follows that B can be written as

B =

[
0 0

B1 B2

]
.

We use Lemma 1.2 to compute (WB)d which in turn equals WBd,W . From
the assumptions AWBd,W = 0 and (I − WBWBd,W )WAWB(I −
WAWAd,W ) = 0, we get that A2W2B

d,W2
2 = 0 and (I − W2B2W2B

d,W2
2 )

W2A2W2B2 = 0. We see that the conditions of Theorem 2.1 are satisfied
with: B2,W2, A2, respectively, instead of B, W,N .
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From Lemma 1.2 we have that

(A + B)d,W = (A + B)((W (A + B))d)2 = (A + B)((WA + WB)d)2

= (A + B)




[
W1A1 0
W2B1 W2A2 + W2B2

]d



2

= (A + B)

[
(W1A1)−1 0

X (W2A2 + W2B2)d

]2

=

[
A1 0
B1 A2 + B2

]
×

×
[

(W1A1)−2 0
X(W1A1)−1 + (W2A2 + W2B2)dX ((W2A2 + W2B2)d)2

]

=

[
A1(W1A1)−2 0

X ′ (A2 + B2)((W2A2 + W2B2)d)2

]
,

where

X = (I − (W2A2 + W2B2)(W2A2 + W2B2)d)×

×
( ∞∑

i=0

(W2A2 + W2B2)iW2B1(W1A1)−i

)
(W1A1)−2

− (W2A2 + W2B2)dW2B1(W1A1)−1

and

X ′ = B1(W1A1)−2 + (A2 + B2)[X(W1A1)−1 + (W2A2 + W2B2)dX].

Using Theorem 2.1 we get

(W2A2 + W2B2)d = (W2B2)d + ((W2B2)d)2
( ∞∑

i=0

((W2B2)d)iW2A2S(i)

)
,

where S(i) = (I − W2B2W2B
d,W2
2 )

(
i∑

j=0
(W2B2)j(W2A2)i−j

)
for all i ≥ 0.

Now, we have

I − (W2A2 + W2B2)(W2A2 + W2B2)d

= I −W2B2(W2B2)d − (W2B2)d

( ∞∑

i=0

((W2B2)d)iW2A2S(i)

)
.
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Since

(W2A2 + W2B2)dX = −
(
(W2A2 + W2B2)d

)2
W2B1(W1A1)−1,

we get

X ′ = B1(W1A1)−2 + (A2 + B2)

[ (
I −W2B2(W2B2)d

− (W2B2)d
∞∑

i=0

((W2B2)d)iW2A2S(i)

)
×

×
( ∞∑

i=0

(W2A2 + W2B2)iW2B1(W1A1)−(i+3)

)

− (W2A2 + W2B2)dW2B1(W1A1)−2

−
(
(W2A2 + W2B2)d

)2
W2B1(W1A1)−1

]

= B1

(
(W1A1)−1

)2
+ X1 + X2 + X3 + X4,

where X1, X2, X3 and X4 are the following terms:

X1 = (A2 + B2)(I −W2B2(W2B2)d)×

×
( ∞∑

i=0

(W2A2 + W2B2)iW2B1(W1A1)−i

)
(W1A1)−3

= (A2 + B2)(I −W2B2(W2B2)d)×

×
( ∞∑

i=0

S(i)W2B1(W1A1)−i

)
(W1A1)−3

and the last equality follows by using (2) in Theorem 2.1. Moreover,

X2 = −(A2 + B2)(W2B2)d

( ∞∑

i=0

(
(W2B2)d

)i
W2A2S(i)

)
×

×
( ∞∑

i=0

(W2A2 + W2B2)iW2B1(W1A1)−i

)
(W1A1)−3

= −(A2 + B2)(W2B2)d

( ∞∑

k=0

W2A2S(k)W2B1(W1A1)−(k+3)

)
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− (A2 + B2)(W2B2)d ×

×
( ∞∑

i=0

∞∑

k=0

(
(W2B2)d

)i+1
W2A2S(i + k + 1)W2B1(W1A1)−(k+3)

)

and the last equality follows by using (2) to obtain that S(i)(W2A2 +
W2B2)k = (I − W2B2W2B

d,W
2 )(W2A2 + W2B2)i+k = S(i + k) and after

we change i by i− 1 in the last sum. Also

X3 = −(A2 + B2)(W2A2 + W2B2)dW2B1(W1A1)−2

= −(A2 + B2)(W2B2)dW2B1(W1A1)−2

− (A2 + B2)
(
(W2B2)d

)2 ×

×
( ∞∑

i=0

(
(W2B2)d

)i
W2A2S(i)W2B1

)
(W1A1)−2.

Finally,

X4 = −(A2 + B2)
(
(W2A2 + W2B2)d

)2
W2B1(W1A1)−1.

Write Z(i) = (I−WBWBd,W )

(
i∑

j=0
(WB)i−j(WA)j

)
(I−WAWAd,W ).

By direct computations, for all i ≥ 1 we have,

Z(i) =

[
I 0

−(W2B2)dW2B1 I −W2B2(W2B2)d

]
×

×




i−1∑

j=0

[
0 0

(W2B2)i−j−1W2B1 (W2B2)i−j

] [
0 0
0 (W2A2)j

]

+

[
0 0
0 (W2A2)i

]}

=




0 0

0 (I −W2B2(W2B2)d)
i∑

j=0
(W2B2)i−j(W2A2)j




=

[
0 0
0 S(i)

]
,
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and

WAZ(i)WB
(
(WA)d

)q
=

[
0 0

W2A2S(i)W2B1(W1A1)−q 0

]
, for all q ≥ 1.

Now, we compute the terms of the expressions (3) for (A + B)d,W using
the block decomposition:

Σ1 = (A + B)

[
(WB)d

(
I +

∞∑

i=0

(
(WB)d

)i+1
WAZ(i)

)
(I −WAWAd,W )

]2

= (A + B)

{[
0 0
0 (W2B2)d

]

+
∞∑

i=0


 0 0(

(W2B2)d
)i+3

W2B1

(
(W2B2)d

)i+2




[
0 0
0 W2A2S(i)

]



2

= (A + B)




0 0

0 (W2B2)d +
∞∑
i=0

(
(W2B2)d

)i+2
W2A2S(i)




2

=

[
A1 0
B1 A2 + B2

] 
 0 0

0
(
(W2A2 + W2B2)d

)2




=


 0 0

0 (A2 + B2)
(
(W2A2 + W2B2)d

)2


 ,

Σ2 = (A + B)(I −WBWBd,W )

(
I +

∞∑

k=0

Z(k)WB
(
(WA)d

)k+1
) (

(WA)d
)2

=

[
A1 0
B1 A2 + B2

] [
I 0

−(W2B2)dW2B1 I −W2B2(W2B2)d

]
×

×



(W1A1)−2 0
∞∑

k=0
S(k)W2B1(W1A1)−(k+3) 0




=

[
A1(W1A1)−2 0

X ′′ 0

]
,
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where

X ′′ = B1(W1A1)−2

− (A2 + B2)
[
(W2B2)dW2B1(W1A1)−2

+ (I −W2B2(W2B2)d)

( ∞∑

k=0

S(k)W2B1(W1A1)−(k+3)

)]
,

Σ3 = −(A + B)
(
(WB)d

)2
( ∞∑

i=0

(
(WB)d

)i
WAZ(i)WB

) (
(WA)d

)2

= −(A + B)




0 0
∞∑
i=0

(
(W2B2)d

)i+2
W2A2S(i)W2B1(W1A1)−2 0




= −



0 0

(A2 + B2)
∞∑
i=0

(
(W2B2)d

)i+2
W2A2S(i)W2B1(W1A1)−2 0


 ,

Σ4 = −(A + B)(WB)d

( ∞∑

i=0

WAZ(i)WB
(
(WA)d

)i
) (

(WA)d
)3

= −(A + B)




0 0

(W2B2)d
∞∑
i=0

W2A2S(i)W2B1(W1A1)−(i+3) 0




= −



0 0

(A2 + B2)(W2B2)d
∞∑
i=0

W2A2S(i)W2B1(W1A1)−(i+3) 0


 ,

Σ5 = −(A + B)
(
(WB)d

)2 ×

×
( ∞∑

i=0

∞∑

k=0

(
(WB)d

)i
WAZ(i + k + 1)WB

(
(WA)d

)k
) (

(WA)d
)3

= −
[

A1 0
B1 A2 + B2

] [
0 0

X ′′′ 0

]

= −
[

0 0
(A2 + B2)X ′′′ 0

]
,
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where

X ′′′ =
∞∑

i=0

∞∑

k=0

(
(W2B2)d

)i+2
W2A2S(i + k + 1)W2B1(W1A1)−(k+3),

Σ6 = −(A + B)×

×
[
(WB)d

(
I +

∞∑

i=0

(
(WB)d

)i+1
WAZ(i)

)
(I −WAWAd,W )

]2

×

× WB(WA)d

= −(A + B)


 0 0

0
(
(W2A2 + W2B2)d

)2




[
0 0

W2B1(W1A1)−1 0

]

= −

 0 0

(A2 + B2)
(
(W2A2 + W2B2)d

)2
W2B1(W1A1)−1 0


 .

Thus,
Σ1 + Σ2 + Σ3 + Σ4 + Σ5 + Σ6

=

[
A1(W1A1)−2 0

X ′ (A2 + B2)((W2A2 + W2B2)d)2

]

completing the proof of (3). The second statement of the theorem can easily
be verified. 2

We obtain some corollaries as follows.

Corollary 2.3 Let W ∈ B(Y,X), and let A,B ∈ B(X,Y ) be Wg–Drazin
invertible. If Ad,W WB = 0 and AWB(I −WAWAd,W ) = 0, then

(A + B)d,W

= (A + B)

[( ∞∑

i=0

(
(WB)d

)i+1
(WA)i

)
(I −WAWAd,W )

]2

+ (A + B)(I −WBWBd,W )

( ∞∑

i=0

(WB)i
(
(WA)d

)i+2

+
∞∑

i=1

i∑

j=1

(WB)i−j(WA)jWB
(
(WA)d

)i+3




14



− (A + B)
(
(WB)d

)2
( ∞∑

i=0

(
(WB)d

)i
(WA)i+1WB

) (
(WA)d

)2

− (A + B)(WB)d

( ∞∑

i=0

(WA)i+1WB
(
(WA)d

)i
) (

(WA)d
)3

− (A + B)
(
(WB)d

)2 ×

×
( ∞∑

i=0

∞∑

k=0

(
(WB)d

)i
(WA)i+k+2WB

(
(WA)d

)k
) (

(WA)d
)3

− (A + B)

[( ∞∑

i=0

(
(WB)d

)i+1
(WA)i)

)
(I −WAWAd,W )

]2

WB(WA)d.

Proof. From Ad,W WB = 0 and AWB(I − WAWAd,W ) = 0 it follows
that

A(WB)2 = AWB(I −WAWAd,W )WB + AWBWAWAd,W WB

= AWBWAWAd,W WB

= 0

and thus

AWBd,W = A(WB)d = AWB
(
(WB)d

)2
= A(WB)2

(
(WB)d

)3
= 0.

Then we apply Theorem 2.2, together with the simplification WAZ(i) =
(WA)i+1(I−WAWAd,W ) for all i ≥ 0, to get the statement of this corollary.
2

Corollary 2.4 Let W ∈ B(Y,X), and let A,B ∈ B(X,Y ) be Wg–Drazin
invertible. Suppose that Ad,W WB = 0 and AWB(I −WAWAd,W ) = 0.

(i) If (WB)2 = WB, then

(A + B)d,W

= (A + B)

[(
WB

∞∑

i=0

(WA)i

)
(I −WAWAd,W )

]2

+ (A + B)(I −WB)

((
(WA)d

)2
+

∞∑

i=1

(WA)iWB
(
(WA)d

)i+3
)
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− (A + B)WB

( ∞∑

i=0

(WA)i+1WB

) (
(WA)d

)2

− (A + B)WB

( ∞∑

i=0

(WA)i+1WB(
(
(WA)d

)i
) (

(WA)d
)3

− (A + B)WB

( ∞∑

i=0

∞∑

k=0

(WA)i+k+2WB(
(
(WA)d

)k
) (

(WA)d
)3

− (A + B)

[(
WB

∞∑

i=0

(WA)i

)
(I −WAWAd,W )

]2

WB(WA)d.

(ii) If WB is quasinilpotent, then

(A + B)d,W = (A + B)
[(

(WA)d
)2

+



∞∑

i=0

i∑

j=0

(WB)i−j(WA)jWB
(
(WA)d

)i




(
(WA)d

)3


 .

(iii) If (WB)2 = 0, then

(A + B)d,W = (A + B)
[(

(WA)d
)2

+ WB

( ∞∑

i=0

(WA)iWB
(
(WA)d

)i
) (

(WA)d
)4

+

( ∞∑

i=0

(WA)iWB
(
(WA)d

)i
) (

(WA)d
)3

]
.

Proof. Each of these cases follows directly from Corollary 2.3 and the
following simplifications:

(i) Since (WB)2 = WB, we have WBd,W = (WB)d = WB and (I −
WBWBd,W )WB = 0.

(ii) Since WB is quasinilpotent, we get (WB)d = 0.

(iii) Since (WB)2 = 0, it follows that

(WB)d = WB
(
(WB)d

)2
= (WB)2

(
(WB)d

)3
= 0. 2
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Corollary 2.5 Let W ∈ B(Y,X), and let A,B ∈ B(X,Y ) be Wg–Drazin
invertible. If AWBd,W = 0 and (I −WBWBd,W )WAWB = 0, then

(A + B)d,W

= (A + B)

[( ∞∑

i=0

(
(WB)d

)i+1
(WA)i

+
∞∑

i=1

i∑

j=1

(
(WB)d

)i+2
WA(WB)j(WA)i−j


 (I −WAWAd,W )




2

+ (A + B)(I −WBWBd,W )

( ∞∑

i=0

(WB)i
(
(WA)d

)i+2
)

− (A + B)
(
(WB)d

)2
( ∞∑

i=0

(
(WB)d

)i
WA(WB)i+1

) (
(WA)d

)2

− (A + B)(WB)d

( ∞∑

i=0

WA(WB)i+1
(
(WA)d

)i
) (

(WA)d
)3

− (A + B)
(
(WB)d

)2
( ∞∑

i=0

∞∑

k=0

(
(WB)d

)i
WA(WB)i+k+2

(
(WA)d

)k+3
)

− (A + B)

[( ∞∑

i=0

(
(WB)d

)i+1
(WA)i

+
∞∑

i=1

i∑

j=1

(
(WB)d

)i+2
WA(WB)j(WA)i−j


 (I −WAWAd,W )




2

×WB(WA)d.

Proof. From AWBd,W = 0 and (I −WBWBd,W )WAWB = 0 it follows
that

(AW )2B = A(I −WBWBd,W )WAWB + AWBWBd,W WAWB

= AWBd,W WBWAWB

= 0

and thus

Ad,W WB = (AW )dB =
(
(AW )d

)2
AWB =

(
(AW )d

)3
(AW )2B = 0.

Then we apply Theorem 2.2, together with the simplification Z(i)WB =
(I −WBWBd,W )(WB)i+1 for all i ≥ 0, to get the result of this corollary.
2
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Corollary 2.6 Let W ∈ B(Y,X), and let A,B ∈ B(X,Y ) be Wg–Drazin
invertible. Suppose that AWBd,W = 0 and (I −WBWBd,W )WAWB = 0.

(i) If (WA)2 = WA, then

(A + B)d,W

= (A + B)

[(
(WB)d +

∞∑

i=1

(
(WB)d

)i+2
WA(WB)i

)
(I −WA)

]2

+ (A + B)(I −WBWBd,W )

( ∞∑

i=0

(WB)i

)
WA

− (A + B)
(
(WB)d

)2
( ∞∑

i=0

(
(WB)d

)i
WA(WB)i+1

)
WA

− (A + B)(WB)d

( ∞∑

i=0

WA(WB)i+1

)
WA

− (A + B)
(
(WB)d

)2
( ∞∑

i=0

∞∑

k=0

(
(WB)d

)i
WA(WB)i+k+2

)
WA

− (A + B)

[(
(WB)d +

∞∑

i=1

(
(WB)d

)i+2
WA(WB)i

)
(I −WA)

]2

×WB(WA)d.

(ii) If WA is quasinilpotent, then

(A + B)d,W

= (A + B)


(WB)d +

∞∑

i=0

i∑

j=0

(
(WB)d

)i+2
WA(WB)j(WA)i−j




2

.

Proof. We apply Corollary 2.5 and the following simplifications:

(i) Since (WA)2 = WA, we have WAd,W = (WA)d = WA and (WA)j(I−
WAWAd,W ) = 0 for all j ≥ 1.

(ii) Since WA is quasinilpotent, we get (WA)d = 0. 2

Corollary 2.7 Let A,B ∈ B(X, Y ) be Wg–Drazin invertible. If AWB = 0,
then

(A + B)d,W
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= (A + B)

[
(WB)d

( ∞∑

i=0

(
(WB)d

)i
(WA)i

)
(I −WAWAd,W )

]2

+ (A + B)(I −WBWBd,W )

( ∞∑

i=0

(WB)i
(
(WA)d

)i
) (

(WA)d
)2

− (A + B)

[
(WB)d

( ∞∑

i=0

(
(WB)d

)i
(WA)i

)
(I −WAWAd,W )

]2

×WB(WA)d.

Proof. Since AWB = 0, then it follows that

Ad,W WB = Ad,W WAWAd,W WB = (Ad,W W )2AWB = 0,

(I − WBWBd,W )WAWB = 0, AWB(I − WAWAd,W ) = 0 and then
Ad,W WB = 0. Thus, we apply Corollary 2.3, or Corollary 2.5, to get the
above result. 2
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[8] D. Djordjević, Y. Wei, Additive results for the generalized Drazin in-
verse, J. Austral. Math. Soc. 73(1) (2002), 115–126.

[9] R. E. Harte, Invertibility and singularity for bounded linear operators,
New York, Marcel Dekker, 1988.

[10] J. J. Koliha, A generalized Drazin inverse, Glasgow Math. J. 38 (1996),
367–381.

[11] T. Lei, Y. Wei, C. W. Woo, Condition numbers and strucured pertur-
bation of the W–weighted Drazin inverse, Appl. Math. Comput. 165(1)
(2005), 185–194.
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