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Abstract

In this paper we obtain the formula for computing the condition
number of a complex matrix, which is related to the outer generalized
inverse of a given matrix. We use the Schur decomposition of a ma-
trix. We characterize the spectral norm and the Frobenius norm of the
relative condition number of the generalized inverse, and the level-2
condition number of the generalized inverse. The sensitivity for the
generalized Drazin inverse solution of linear systems is presented. We
also present the structured perturbation of the generalized inverse.
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1 Introduction

In this paper we prove the formula for computing the condition number of
a given complex matrix, which is related to the outer generalized inverse of
a given matrix.

First, we present some introductional material. If A is a complex ma-
trix, then the smallest non-negative integer k, which satisfies rank(Ak+1) =
rank(Ak), is called the index of A, denoted by ind(A). If ind(A) = k, then we
know that there exists the unique matrix AD which satisfies the equations:

AkADA = Ak, ADAAD = AD, AAD = ADA.

The matrix A is the Drazin inverse of A. In the case ind(A) = 1, then AD

is the group inverse of A, which is denoted by Ag. Moreover, ind(A) = 0 if
and only if A is invertible, and ind this case A−1 = AD.

∗The authors are supported by the Ministry of Science, Republic of Serbia, grant no.
144003.
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More general situation appears if we assume that A is rectangular. For
this purpose, Let Cm×n be the set of m×n complex matrices. By rank(A),
A>, A∗, R(A) and N (A) we denote the rank, transpose, conjugate trans-
pose, range (column space) and null space, respectively, of A ∈ Cm×n. Let
W ∈ Cn×m. Then AW ∈ Cm×m and there exists the Drazin inverse of
AW , naturally denoted by (AW )D. Now, the weighted W -Drazin inverse
of A is defined as AD,W = ((AW )D)2A. For the properties of the weighted
W -Drazin inverse see [16].

Among other very nice properties, the Drazin inverse of a matrix is also
its outer inverse. The notion of outer generalized inverses is available for
rectangular matrices. If A ∈ Cm×n, then B ∈ Cn×m is an outer generalized
inverse of A, if BAB = B holds. The interesting case is B 6= 0. In this
paper we are focused to those outer generalized inverses of A that have
fixed null-space and range. From the well-known rank properties, it follows
that rank(B) ≤ rank(A). Outer generalized inverses have applications it
solving singular linear systems [1]. We formalize previous consideration in
the following definition.

Definition 1.1. Let A ∈ Cm×n be of rank r, let T be a subspace of Cn of
dimension s ≤ r, and let S be a subspace of Cm of dimension m − s. If a
matrix X ∈ Cn×m satisfies

XAX = X, R(X) = T, N (X) = S,

then X is called the outer inverse or generalized inverse of A, and the no-
tation X = A

(2)
T,S is common.

The main characterization of A
(2)
T,S-generalized inverse is given as follows.

Lemma 1.1. [1] Let A ∈ Cm×n be of rank r, let T be a subspace of Cn of
dimension s ≤ r, and let S be a subspace of Cm of dimension m− s. Then
A has an outer inverse X such that R(X) = T and N (X) = S if and only
if AT ⊕ S = Cm, and in this case X = A

(2)
T,S is unique.

We also need the following results.

Lemma 1.2. [18] Let A ∈ Cm×n be of rank r, let T be a subspace of Cn

of dimension s ≤ r, and let S be a subspace of Cm of dimension m− s. In
addition, suppose G ∈ Cn×m such that R(G) = T and N (G) = S. If A has
an outer inverse A

(2)
T,S, then ind(AG) = ind(GA) = 1. Further, we have

(1) A
(2)
T,S = (GA)gG = G(AG)g.
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Lemma 1.3. [13] If A satisfies the conditions of Lemma 1.2, then

rank(AG) = rank(GA) = rank(G).

If A is square and invertible, then the condition number of A is defined
as k(A) = ‖A‖ · ‖A−1‖, where ‖ · ‖ is some matrix norm. The study of
condition numbers is important in the theory of stability of linear systems.
If A is rectangular (or even square and singular), then we do not have
the condition number of A in the previous sense. But still, we have some
generalized inverse of A, say A−. Now, the ”generalized“ condition number
of A related to A− is defined as ‖A‖ · ‖A−‖. Generalized condition numbers
have applications in studying singular linear systems.

Higham [12] discussed different condition numbers of regular inverses
and nonsingular linear systems. Concerning generalized inverses and singu-
lar linear systems there are similar results on these problems. Gratton in
[11] investigated an m × n full rank real matrix A and obtained its condi-
tion number for the linear least squares problem. The authors studied the
(weighted) least squares solution in [5, 6, 9, 20, 21] and the (W-weighted)
Drazin-inverse solution in [4, 8, 19, 21, 22, 25, 26].

The following result is known as the Schur decomposition theorem.

Lemma 1.4. (Schur decomposition)[10] If A ∈ Cn×n, then there exists an
unitary U ∈ Cn×n such that

U∗AU = T = D + N

where D = diag(λ1, . . . , λn) and N ∈ Cn×n is strictly upper triangular.
Furthermore, U can be chosen so that the eigenvalues λi appear in any

order along the diagonal.

In [15] we characterized the condition number related to the W-Drazin
inverse and singular linear systems for restrained matrices, using the Schur
decomposition and the spectral norm. These results generalize some early
work including [2, 3], because of the well-posed properties of the Schur de-
composition. In [7, 24] some results are established for the condition number
of the generalized inverse and the generalized inverse solution of a linear sys-
tem, using a special norm called PQ-norm. We mention that the PQ-norm
depends on the Jordan canonical form of A. Note that, in general, the com-
putation of the Jordan canonical form is an ill-posed problem. The results
obtained in [7] are extended to linear bounded operators between Hilbert
spaces in [14]. In this paper we establish the condition number of the gen-
eralized inverse of a rectangular matrix by the Schur decomposition and the
familiar 2-norm instead of the PQ-norm in [7].
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2 Representation of the outer inverse

Let A ∈ Cn×n satisfies the following condition:

(2) rank(Ak) = r, ind(A) = k, R(Ak) = R(Ak∗).

In general, the Schur decomposition of A can be written as follows

(3) A = U

[
B D
0 C

]
U∗

where U is unitary, B is r× r upper triangular and nonsingular matrix, and
C = [ci,j ] is strictly upper triangular, i.e. ci,j = 0 whenever 1 ≤ j ≤ i ≤ n−r.

In [3] J. Chen and Z. Xu used the Schur decomposition of a restrained
matrix A to get its expression of Drazin inverse. Precisely, they proved the
following theorem.

Theorem 2.1. [3] Let A ∈ Cn×n. If A fulfills the condition (2), then the
Schur decomposition of A has the form as follows

(4) A = U

[
B 0
0 C

]
U∗,

where U is unitary, B is an r× r upper triangular and nonsingular matrix,
C is strictly upper triangular. Then

(5) AD = U

[
B−1 0

0 0

]
U∗.

We prove the following result.

Theorem 2.2. Let A, G, T and S be the same as in Lemma 1.2, p =
rank(AG), R(AG) = R((AG)∗) and R(GA) = R((GA)∗). Then we have

A = V

[
A1 0
0 A2

]
U∗, G = U

[
G1 0
0 0

]
V ∗

(6) A
(2)
T,S = U

[
A−1

1 0
0 0

]
V ∗,

where U and V are unitary matrices, A1 and G1 are nonsingular matrices.
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Proof. From Lemma 1.2 and Lemma 1.3, we have ind(AG) = ind(GA) =
1 and rank(GA) = rank(AG) = p. By Theorem 2.1, there is a Schur
decomposition of AG and GA as follows:

(7) AG = V

[
D 0
0 0

]
V ∗, GA = U

[
C 0
0 0

]
U∗,

where V ∈ Cm×m and U ∈ Cn×n are unitary matrices, C and D are p × p
upper triangular and nonsingular matrices.

We can represent A and W as

A = V

[
A1 A12

A21 A2

]
U∗, G = U

[
G1 G12

G21 G2

]
V ∗.

Then, we get

(GA)gG = U

[
C−1 0
0 0

]
U∗U

[
G1 G12

G21 G2

]
V ∗ = U

[
C−1G1 C−1G12

0 0

]
V ∗

and

G(AG)g = U

[
G1 G12

G21 G2

]
V ∗V

[
D−1 0

0 0

]
V ∗ = U

[
G1D

−1 0
G21D

−1 0

]
V ∗.

Using the equation A
(2)
T,S = (GA)gG = G(AG)g, we deduce C−1G12 = 0 and

G21D
−1 = 0. We know that C and D are nonsingular, thus G12 = G21 = 0,

i.e.

G = U

[
G1 0
0 G2

]
V ∗.

From

AG = V

[
A1 A12

A21 A2

]
U∗U

[
G1 0
0 G2

]
V ∗ = V

[
A1G1 A12G2

A21G1 A2G2

]
V ∗,

GA = U

[
G1 0
0 G2

]
V ∗V

[
A1 A12

A21 A2

]
U∗ = U

[
G1A1 G1A12

G2A21 G2A2

]
U∗

and (7), we obtain A1G1 = D, G1A1 = C, G1A12 = 0 and A21G1 = 0.
Hence, A1 and G1 are invertible, A12 = 0 and A21 = 0. So

A = V

[
A1 0
0 A2

]
U∗.
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Since G = GAA
(2)
T,S = A

(2)
T,SAG and AA

(2)
T,S = AG(AG)g, with A

(2)
T,SA =

(GA)gGA, we have

G = U

[
G1 0
0 G2

]
V ∗ = U

[
G1 0
0 G2

]
V ∗V

[
I 0
0 0

]
V ∗

= U

[
G1 0
0 0

]
V ∗,

i.e. G2 = 0.
Finally, we get

A
(2)
T,S = (GA)gG = U

[
A−1

1 0
0 0

]
V ∗.

This completes the proof.

3 Condition number related to the generalized in-
verse

In this section we consider the following linear system

Ax = b, x ∈ T,

where A ∈ Cm×n, b ∈ Cm. The generalized A
(2)
T,S-inverse solution x has the

form
x = A

(2)
T,Sb.

The definition of the absolute condition number was introduced by Rice
in [17]. If F is a continuously differentiable function

F : Cm×n × Cm −→ Cn

(A, x) 7−→ F (A, x),

then the absolute condition number of F at x is the scalar ‖F ′(x)‖. The
relative condition of F at x is

‖F ′(x)‖‖x‖
‖y‖ .

Consider the following operator:

F : Cm×n × Cm −→ Cn
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(A, b) 7−→ F (A, b) = A
(2)
T,Sb = x.

We know that the operator F is differentiable function, if the perturbation
E in A fulfils the following condition:

(8) R(E) ⊆ AT, R(E∗) ⊆ A∗S>.

It is easy to verify that (8) is equivalent to

(9) AA
(2)
T,SE = E, EA

(2)
T,SA = E.

We need the following result.

Lemma 3.1. [23] Let A,E ∈ Cm×n, and let T , S be subspace of Cn and
Cm, respectively, such that AT ⊕ S = Cm. If E satisfies the condition (8)
and ‖EA

(2)
T,S‖2 < 1, then

(A + E)(2)
T,S = (I + A

(2)
T,SE)−1A

(2)
T,S = A

(2)
T,S(I + EA

(2)
T,S)−1.

We choose the parameterized weighted Frobenius norm ‖[αA, βb]‖(F )
U,Q,

where U is defined as in (6) and Q = diag(U, 1), because we can take
different parameters α, β for different perturbations.

We get the explicit formula for the condition number of the generalized
A

(2)
T,S-inverse solution by means of the 2-norm and Frobenius norm.

Theorem 3.1. Let A, G, T and S be the same as in Lemma 1.2, p =
rank(AG), R(AG) = R((AG)∗) and R(GA) = R((GA)∗). If the perturba-
tion E in A fulfills the condition (8), then the absolute condition number of
the generalized A

(2)
T,S-inverse solution of a linear system, with the norm

‖[αA, βb]‖(F )
U,Q =

√
α2‖A‖2

F + β2‖b‖2
2

on the data (A, b), and the norm ‖x‖2 on the solution, is given by

C = ‖A(2)
T,S‖2

√
1
β2

+
‖x‖2

2

α2
,

where Q =
[

U 0
0 1

]
and U is the same matrix as in (6).
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Proof. We know that F (A, b) = A
(2)
T,Sb. Under the condition (8), F is a

differentiable function and F ′ is defined as follows

F ′(A, b)|(E,f) = lim
ε→0

(A + εE)(2)
T,S(b + εf)−A

(2)
T,Sb

ε
,

where E is the perturbation of A and f is the perturbation of b.
Since E satisfies the condition (8), we have

(A + εE)(2)
T,S = A

(2)
T,S − εA

(2)
T,SEA

(2)
T,S + O(ε2),

and then we can easily get that

F ′(A, b)|(E,f) = −A
(2)
T,SEx + A

(2)
T,Sf.

Then

‖F ′(A, b)|(E,f)‖2 = ‖F ′(A, b)|(E,f)‖F

= ‖A(2)
T,S(Ex− f)‖F

≤ ‖A(2)
T,S‖2(‖E‖F ‖x‖2 + ‖f‖2).

The norm of a linear map F ′(A, b) is the supermum of ‖F ′(A, b)|(E,f)‖F on
the unit ball of Cm×n × Cn. Since

(‖[αE, βf ]‖(F )
U,Q)2 = α2‖E‖2

F + β2‖f‖2
2

we get

‖F ′(A, b)‖ =

= sup
α2‖E‖2F +β2‖f‖22=1

‖A(2)
T,S(Ex− f)‖F

≤ sup
α2‖E‖2F +β2‖f‖22=1

‖A(2)
T,S‖2(‖E‖F ‖x‖2 + ‖f‖2)

= sup
α2‖E‖2F +β2‖f‖22=1

‖A(2)
T,S‖2

(
α‖E‖F

‖x‖2

α
+ β‖f‖2

1
β

)

= ‖A(2)
T,S‖2 sup

α2‖E‖2F +β2‖f‖22=1

(α‖E‖F , β‖f‖2) ·
(‖x‖2

α
,
1
β

)

where (α‖E‖F , β‖f‖2) and
(‖x‖2

α , 1
β

)
can be consider as vectors in R2.
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Therefore, from the Cauchy–Schwarz inequality, we get:

‖F ′(A, b)‖ ≤ ‖A(2)
T,S‖2

√
‖x‖2

2

α2
+

1
β2

.

Now we show that this upper bound is reachable. There are vectors u i v
such that

A−1
1 u = ‖A−1

1 ‖2v = ‖A(2)
T,S‖2v,

where ‖u‖2 = ‖v‖2 = 1.
Let

û = V

[
u
0

]
, v̂ = U

[
v
0

]
.

It is easy to check that
‖û‖2 = ‖v̂‖2 = 1.

Then

A
(2)
T,S û = U

[
A−1

1 0
0 0

]
V ∗V

[
u
0

]
= U

[
A−1

1 u
0

]

= U

[ ‖A−1
1 ‖2v
0

]
= ‖A−1

1 ‖2U

[
v
0

]

= ‖A(2)
T,S‖2v̂.

Now we take

η =

√
‖x‖2

2

α2
+

1
β2

, E = − 1
α2η

ûx∗, f =
1

β2η
û.

So we have

AA
(2)
T,SE = − 1

α2η
V

[
I 0
0 0

]
V ∗ûx∗

= − 1
α2η

V

[
I 0
0 0

]
V ∗V

[
u
0

]
x∗

= − 1
α2η

V

[
u
0

]
x∗

= − 1
α2η

ûx∗

= E,

9



and

EA
(2)
T,SA = − 1

α2η
ûx∗U

[
I 0
0 0

]
U∗

= − 1
α2η

û(A(2)
T,Sb)∗U

[
I 0
0 0

]
U∗

= − 1
α2η

ûb∗V
[

(A−1
1 )∗ 0
0 0

]
U∗U

[
I 0
0 0

]
U∗

= − 1
α2η

ûb∗V
[

(A−1
1 )∗ 0
0 0

]
U∗

= − 1
α2η

ûx∗

= E.

Hence, E fulfills the condition (8). Now we want to verify the perturba-
tion (E, f) is feasible, that is, α2‖E‖2

F + β2‖f‖2
2 = 1. Notice that

x = A
(2)
T,Sb = U

[
A−1

1 0
0 0

]
V ∗b,

and then

α2‖E‖2
F + β2‖f‖2

2

=
1

α2η2
‖ûx∗‖2

F +
1

β2η2
‖û‖2

2

=
1

α2η2
‖û‖2

2‖x∗‖2
2 +

1
β2η2

=
1
η2

(‖x‖2
2

α2
+

1
β2

)

= 1.

Then we have

F ′(A, b)|(E,f) = −A
(2)
T,SEx + A

(2)
T,Sf

=
1

α2η
A

(2)
T,S ûx∗x +

1
β2η

A
(2)
T,S û

=
1

α2η
‖A(2)

T,S‖2v̂‖x‖2
2 +

1
β2η

‖A(2)
T,S‖2v̂

= ‖A(2)
T,S‖2ηv̂.
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Then

‖F ′(A, b)|(E,f)‖2 = ‖A(2)
T,S‖2

√
‖x‖2

2

α2
+

1
β2

.

with α2‖E‖2
F + β2‖f‖2

2 = 1, implies

‖F ′(A, b)‖ ≥ ‖A(2)
T,S‖2

√
‖x‖2

2

α2
+

1
β2

,

and we complete the proof.

If E satisfies the condition (8), then the 2-norm relative condition number
of the generalized inverse A

(2)
T,S is defined as

Cond(A) = lim
ε→0+

sup
‖E‖2≤ε‖A‖2

‖(A + E)(2)
T,S −A

(2)
T,S‖2

ε‖A(2)
T,S‖2

and the corresponding condition number for the linear systems Ax = b is
defined as

Cond(A, b) = lim
ε→0+

sup
‖E‖2≤ε‖A‖2
‖f‖2≤ε‖b‖2

‖(A + E)(2)
T,S(b + f)−A

(2)
T,Sb‖2

ε‖A(2)
T,Sb‖2

.

The level-2 condition number of the generalized A
(2)
T,S-inverse is defined

as
Cond[2](A) = lim

ε→0
sup

‖E‖2≤ε‖A‖2

|Cond(A + E)− Cond(A)|
εCond(A)

and the level-2 corresponding condition number is defined as

Cond[2](A, b) = lim
ε→0

sup
‖E‖2≤ε‖A‖2
‖f‖2≤ε‖b‖2

|Cond(A + E, b + f)− Cond(A, b)|
εCond(A, b)

.

In [27], Zhang and Wei found the expressions for 2-norm condition num-
ber for A

(2)
T,S and the generalized inverse A

(2)
T,S solution, respectively

(10) Cond(A) = ‖A‖2‖A(2)
T,S‖2.

(11) Cond(A, b) = ‖A‖2‖A(2)
T,S‖2 +

‖A(2)
T,S‖2‖b‖2

‖A(2)
T,Sb‖2

.
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The following results show that for the generalized A
(2)
T,S-inverse for solv-

ing a linear system, the sensitivity of the condition number is approximately
given by the condition number itself.

First, we need the following lemmas.

Lemma 3.2. For û, v̂ in Theorem 2.1, there exists S ∈ Cm×n such that

Sv̂ = −û, ‖S‖2 = 1,

where S fulfills condition (8).

Proof. Let S = −ûv̂∗, then Sv̂ = −ûv̂∗v̂ = −û‖v̂‖2
2 = −û. Now let us study

the 2-norm of S
‖S‖2 = ‖ûv̂∗‖2 = ‖û‖2‖v̂‖2 = 1.

Now we verify that S satisfies condition (8). We have

AA
(2)
T,SS = −V

[
I 0
0 0

]
V ∗ûv̂∗ = −V

[
u
0

]
v̂∗ = S,

and

SA
(2)
T,SA = −ûv̂∗U

[
I 0
0 0

]
U∗ = −û

[
v∗ 0

]
U∗U

[
I 0
0 0

]
U∗

= −û
[

v∗ 0
]
U∗ = −ûv̂∗ = S.

Then S fulfills condition (8).

Lemma 3.3. Let A, G, T and S be the same as in Lemma 1.2, p =
rank(AG), R(AG) = R((AG)∗) and R(GA) = R((GA)∗). If ε → 0, then

max
‖E‖2≤ε‖A‖2

∣∣∣‖(A + E)(2)
T,S‖2 − ‖A(2)

T,S‖2

∣∣∣ = ε‖A(2)
T,S‖2Cond(A) +O(ε2),

provided that E fulfills the condition (8).

Proof. Since E fulfills the condition (8), we have

(A + E)(2)
T,S = A

(2)
T,S −A

(2)
T,SEA

(2)
T,S +O(ε2).

Now

max
‖E‖2≤ε‖A‖2

∣∣∣‖(A + E)(2)
T,S‖2 − ‖A‖2

∣∣∣ ≤ ε‖A(2)
T,S‖2Cond(A) +O(ε2).
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Set E = ε‖A‖2S, where S is defined in Lemma 3.2. Then

‖A(2)
T,S −A

(2)
T,SEA

(2)
T,S‖2

≥ ‖(A(2)
T,S −A

(2)
T,SEA

(2)
T,S)û‖2

= ‖A(2)
T,S û−A

(2)
T,SEA

(2)
T,S û‖2

= ‖A(2)
T,S û− ε‖A‖2A

(2)
T,SSA

(2)
T,S û‖2

=
∥∥∥‖A(2)

T,S‖2v̂ − ε‖A‖2‖A(2)
T,S‖2A

(2)
T,SSv̂

∥∥∥
2

= ‖A(2)
T,S‖2

∥∥∥v̂ + ε‖A‖2A
(2)
T,S û

∥∥∥
2

= ‖A(2)
T,S‖2

∥∥∥v̂ + ε‖A‖2‖A(2)
T,S‖2v̂

∥∥∥
2

= ‖A(2)
T,S‖2

(
1 + ε‖A‖2‖A(2)

T,S‖2

)
.

We now can obtain easily the following results from [7].

Corollary 3.1. [7] Let A, G, T and S be the same as in Lemma 1.2,
p = rank(AG), R(AG) = R((AG)∗) and R(GA) = R((GA)∗). If the per-
turbation E in A fulfills the condition (8), then the level-2 condition number

(12) Cond[2](A) = lim
ε→0

sup
‖E‖2≤ε‖A‖2

|Cond(A + E)− Cond(A)|
εCond(A)

satisfies

(13) |Cond[2](A)− Cond(A)| ≤ 1.

Corollary 3.2. [7] Let A, G, T and S be the same as in Lemma 1.2,
p = rank(AG), R(AG) = R((AG)∗) and R(GA) = R((GA)∗). If the per-
turbation E in A fulfills the condition (8), then the level-2 condition number
of linear systems Ax = b, x ∈ T ,

(14) Cond[2](A, b) = lim
ε→0

sup
‖E‖2≤ε‖A‖2
‖f‖2≤ε‖b‖2

|Cond(A + E, b + f)− Cond(A, b)|
εCond(A, b)

satisfies

(15)
Cond(A, b)

(1 + ζ)2
− 1

1 + ζ
≤ Cond[2](A, b) ≤ 3Cond(A, b) + 2,

where ζ = ‖b‖2
‖AA

(2)
T,Sb‖2

.
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4 Structured perturbation

In this section we present a structured perturbation of the generalized inverse
A

(2)
T,S by means of 2–norm. The notation |A| ≤ |B| means that |ai,j | ≤ |bi,j |

for A = (ai,j) and B = (bi,j).

Theorem 4.1. Let A, G, T and S be the same as in Lemma 1.2, p =
rank(AG), R(AG) = R((AG)∗) and R(GA) = R((GA)∗). If |V ∗EU | ≤
|V ∗AU | and ‖A(2)

T,SE‖2 < 1, then

(A + E)(2)
T,S = (I + A

(2)
T,SE)−1A

(2)
T,S ,

where U and V are the same matrices as in (6).

Proof. Consider the partition E = V

[
E1 E12

E21 E2

]
U∗. From Theorem 2.2

and |V ∗EU | ≤ |V ∗AU |, we get
∣∣∣∣
[

E1 E12

E21 E2

]∣∣∣∣ ≤
∣∣∣∣
[

A1 0
0 A2

]∣∣∣∣ .

It is obvious that E21 = 0, E12 = 0 and |E2| ≤ |A2|. Now, from E =

V

[
E1 0
0 E2

]
U∗, we easy obtain the structure of A + E

A + E = V

[
A1 + E1 0

0 A2 + E2

]
U∗.

Since ‖A(2)
T,SE‖2 < 1, we get that I + A

(2)
T,SE is nonsingular, i.e.

I + A
(2)
T,SE = U

[
A−1

1 (A1 + E1) 0
0 I

]
U∗

is nonsingular. Thus A−1
1 (A1 + E1) is nonsingular and A1 + E1 is also

nonsingular. It is not difficult to verify that (A + E)R(G) ⊕ N (G) = Cm.

14



Hence, (A + E)(2)
T,S exists and

(A + E)(2)
T,S = G[(A + E)G]g

= U

[
G1 0
0 0

]
V ∗

(
V

[
(A1 + E1)G1 0

0 0

]
V ∗

)

g

= U

[
G1 0
0 0

]
V ∗V

[
G−1

1 (A1 + E1)−1 0
0 0

]
V ∗

= U

[
(A1 + E1)−1 0

0 0

]
V ∗

= U

[
(I + A−1

1 E1)−1A−1
1 0

0 0

]
V ∗

= (I + A
(2)
T,SE)−1A

(2)
T,S .
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