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In this paper we introduce and study Schur complement of positive elements in aC∗-algebra and prove results
on their extremal characterizations.

1 Introduction

Given a matrix

M =
(

A B
C D

)
,

with A nonsingular, the classical Schur complement ofA in M is the matrix

S = D − CA−1B. (1)

The formula (1) was first used by Schur [22], but the idea of the Schur complement goes back to Sylvester (1851),
and the term Schur complement was introduced by E. Haynsworth [16].

In the beginning Schur complements were used in the theory of matrices. M.G. Krein [19] and W.N. Ander-
son and G.E. Trapp [4] extended the notion of Schur complements of matrices to shorted operators in Hilbert
space operators, and Trapp defined the generalized Schur complement by replacing the ordinary inverse with
the generalized inverse. Schur complements and generalized Schur complements were studied by a number of
authors, have applications in statistics, matrix theory, electrical network theory, discrete-time regulator problem,
sophisticated techniques and some other fields (see [20], [11], [10], [5], [6]).

In this paper we introduce and study the Schur complement of positive elements in aC∗-algebraA and among
other things, we embark study the extremal characterizations of Schur complement.

LetA be a complexC∗-algebra with the unit1. The Moore-Penrose inverse of an elementa ofA is the unique
elementa† of A satisfying the equations

aa†a = a, a†aa† = a†, (aa†)∗ = aa†, (a†a)∗ = a†a

(see [14], [15], [17], [21]). The set of alla ∈ A that possess theMoore-Penrose inversewill be denoted byA†.
It is shown in ([14], [18]) thata ∈ A† if and only if a ∈ aAa. We also writeA−1 for the set of all invertible
elements inA. The word ‘projection’ will be reserved for an elementq ofAwhich is self-adjoint and idempotent,
that is,q∗ = q = q2. In this paperAh stands for the set of all selfadjoint elements ofA. The symbolsA•h,
A•h andA+ denote the sets of all idempotent, projection and positive elements ofA, respectively. Ifa, b ∈ Ah

anda − b ∈ A+, we writea ≥ b (or b ≤ a). We say thata ∈ A is relatively regular, provided that there exists
someb ∈ A such thataba = a. In this caseb is called aninner generalized inverseof a. We usea− to denote an
arbitrary inner generalized inverse ofa.
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Let a ∈ A ands ∈ A•h. Then we write

a = sas + sa(1− s) + (1− s)as + (1− s)a(1− s)

and use the notations

a11 = sas, a12 = sa(1− s), a21 = (1− s)as, a22 = (1− s)a(1− s).

Everys ∈ A•h induces a representation of arbitrary elementa ∈ A given by the following matrix

a =
(

sas sa(1− s)
(1− s)as (1− s)a(1− s)

)
=

(
a11 a12

a21 a22

)
.

Given an elementa ∈ A, let σ(a) denote thespectrumof a and letLa denote theleft regular representation
of a, i.e.,La(x) = ax, x ∈ A.

Let B(X) denote the set of all bounded linear operators on a Banach spaceX. For an elementT in B(X)
let N(T ) andR(T ) denote, respectively, the null space and the range ofT . Recall that thereduced minimum
modulusof T , γ(T ), is defined by

γ(T ) = inf{‖Tz‖/ dist (z,N(T )) : dist (z, N(T )) > 0}

and thatR(T ) is closed if and only ifγ(T ) > 0. If there is anS in B(X) such thatTST = T , thenR(T ) is
closed andγ(T ) ≥ 1/‖S‖ ([13]). Let us recall that ifa ∈ A†, then it is known that‖a†‖ = 1/γ(La) ([21], [14]).
Furthermore, (see [15]) if0 6= a ∈ A+ thenγ(La) = inf(σ(a) \ {0}).

2 Preliminary results

We start with the following auxiliary result.

Lemma 2.1 If s ∈ A•h anda∈A†∩sAs, thena† ∈ sAs.

P r o o f. Clearly,a ∈ sAs impliesa = sa = as = sas. Thus,

a(sa†s)a = aa†a = a, (sa†s)a(sa†s) = sa†aa†s = sa†s,

(a(sa†s))∗ = (aa†s)∗ = (saa†s)∗ = saa†s = a(sa†s),

((sa†s)a)∗ = (sa†a)∗ = (sa†as)∗ = sa†as = (sa†s)a,

that is,a† = sa†s ∈ sAs.

Now we continue with the following extension of of Albert’s results [2]. Let us remark that our methods of
proof are new.

Theorem 2.2 Let a ∈ Ah, s ∈ A•h anda11 ∈ A†. Thena ≥ 0 if and only if the following conditions are
satisfied:

(i) a11 ≥ 0,

(ii) a11a11
†a12 = a12,

(iii) a22 − a12
∗a11

†a12 ≥ 0.

P r o o f. Suppose thata ≥ 0. Then there existh ∈ A such thata = hh∗. Obviously,a11 = sh(sh)∗ ≥ 0. By
[14, Theorem 7] and [17, Theorem 2.4], it follows thatsh is relatively regular and

a11a11
† = (sh)(sh)∗((sh)(sh)∗)†

= (sh)(sh)∗((sh)∗)†(sh)†

= (sh)((sh)†(sh))∗(sh)†

= (sh)(sh)†.
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Hence,
a11a11

†a12 = (sh)(sh)†shh∗(1− s) = shh∗(1− s) = a12.

Finally,

a22 − a12
∗a†11a12 = a22 − a12

∗((sh)(sh)∗)†a12

= a22 − (1− s)hh∗s((sh)†)∗(sh)†shh∗(1− s)

= a22 − (1− s)h(sh)†shh∗(1− s)

= (1− s)h(1− (sh)†(sh))((1− s)h)∗

= [(1− s)h(1− (sh)†(sh))][(1− s)h(1− (sh)†(sh))]∗ ≥ 0.

On the contrary, suppose that the conditions (1), (2) and (3) hold. It is easy to see that

(1− a12
∗a11

†)a(1− a12
∗a11

†)∗ = a11 + (a22 − a12
∗a†11a12) ≥ 0.

Let us remark that1− a12
∗a11

† is invertible, and that(1− a12
∗a11

†)−1 = 1 + a12
∗a11

†. Thus,

a = (1 + a12
∗a11

†)(a11 + (a22 − a12
∗a†11a12))(1 + a12

∗a11
†)∗ ≥ 0,

and the proof is complete.

As a corollary, we obtain the following

Corollary 2.3 Let a ∈ Ah, s ∈ A•h anda22 ∈ A†. Thena ≥ 0 if and only if the following conditions are
satisfied:

(i) a22 ≥ 0,

(ii) a22a22
†a12

∗ = a12
∗,

(iii) a11 − a12a22
†a12

∗ ≥ 0.

P r o o f. This follows by Theorem 2.2 withs replaced by1− s.

We continue with aC∗-algebra type theorem of Krein [19] (see also [9]).

Theorem 2.4 Suppose thata ∈ A+, s ∈ A•h, a22 is relatively regular, and setM(a, s) = {x∈A :
0≤x≤a, sx = x}. Then

a11 − a12a22
†a21 = maxM(a, s).

P r o o f. Setb = a11 − a12a22
†a21. By Corollary 2.3 we have

b = a11 + a22a22
†a21 − a(1− s)a22

†a21

= a11 + a21 + a(1− s)a22
†a22 − a(1− s)a22

†(1− s)a

= a− a(1− s)a22
†(1− s)a.

Hence,
a− b = a(1− s)a22

†(1− s)a ≥ 0,

that is, b ≤ a. Again by Theorem 2.2, it follows thatb = a11 − a12a22
†a21 ≥ 0. Obviously,sb = b, so

b∈M(a, s). Let us prove thatx ∈M(a, s) impliesx ≤ b. Suppose thatx ∈M(a, s). Then0 ≤ x ≤ a, sx = x,
and it is easy to prove thatx ∈ sAs. Now a− x ≥ 0 impliesx ≤ b.

Finally, following Albert [2], Carlson, Haynsworth, and Markham [8], ifa ∈ A+, s ∈ A•h anda11 ∈ A†, we
define the Schur complement ofa with respect tos by

s(a) = a22 − a21a11
†a12. (2)

Let us remark that, by Theorem 2.4,
s(a) = maxM(a, 1− s).
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3 Extremal Characterizations

In this section, we give short proofs for the extremal characterizations of the generalized Schur complements(a).
Among other things, our results generalize some results for matrices [9].

Lemma 3.1 Suppose thats ∈ A•h, a, b ∈ A+ and thata11, b11, a11 + b11 are relatively regular. Then

(a12 + b12)∗(a11 + b11)†(a12 + b12) ≤ a12
∗a11

†a12 + b∗12b
†
11b12. (3)

P r o o f. Setc = as(sas)†sa. Clearly,(sas)† ≥ 0 impliesc ≥ 0. Also, we have thatc11 = scs = sas = a11.
By Theorem 2.2, it follows thatc12 = sc(1− s) = sas(sas)†sa(1− s) = a11a11

†a12 = a12. Obviously,c = c∗,
andc21 = c∗12 = a12

∗. Also, c22 = (1− s)c(1− s) = (1− s)as(sas)†sa(1− s) = a12
∗a11

†a12. Hence,c has
the matrix representation

c =
(

a11 a12

a12
∗ a12

∗a11
†a12

)
.

Now, setd = bs(sbs)†sb. From the proof forc, we conclude thatd ≥ 0 and thatd has the matrix representation

d =
(

b11 b12

b∗12 b∗12b
†
11b12

)
.

Thus,

c + d =
(

a11 + b11 a12 + b12

(a12 + b12)∗ a12
∗a11

†a12 + b∗12b
†
11b12

)
≥ 0. (4)

Now, Theorem 2.2 (3) and (4) imply (3).

Theorem 3.2 Suppose thats ∈ A•h, a ∈ A+, a11 is relatively regular,z ∈ (1− s)As andq = z + 1 − s.
Then

qaq∗ ≥ s(a) (5)

and

qaq∗ = s(a) (6)

if and only if

(z + a12
∗a11

†)a11 = 0. (7)

P r o o f. Becausez = (1− s)zs, we have

qaq∗ = ((1− s)zs + (1− s))a(sz∗(1− s) + (1− s))

= s(a) + (z + a12
∗a11

†)a11(a11
†a12 + z∗).

By Theorem 2.2,s(a) ≥ 0 anda11 ≥ 0. Furthermore,

(z + a12
∗a11

†)a11(a11
†a12 + z∗)

= ((z + a12
∗a11

†)a1/2
11 )((z + a12

∗a11
†)a1/2

11 )∗ ≥ 0,

and we obtain (5). Now, by (8), clearly we have (6) if and only if

(z + a12
∗a11

†)a11(a11
†a12 + z∗) = 0,

which is equivalent to (7).
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Corollary 3.3 Suppose thats ∈ A•h, a ∈ A+, a11 is relatively regular. Then

s(a) = min{qaq∗ : q = z + 1− s, z ∈ (1− s)As}
= (1− s− a12

∗a11
†)a(1− s− a12

∗a11
†)∗.

P r o o f. By (5), (6) and (7), we can choosez = −a12
∗a11

†.

Corollary 3.4 If a ∈ A+, a anda11 are relatively regular, thens(a) is relatively regular anda† is an inner
inverse ofs(a), that is,

s(a) = s(a)a†s(a). (8)

P r o o f. By Corollary 3.3, it follows thats(a) = uau∗, whereu = 1− s− a12
∗a11

†. Now,

s(a) = (ua)a†(au∗) = (ua)a†(ua)∗. (9)

By Theorem 2.2, we know thata11 ≥ 0, soa11
†a11 = a11a11

†. Now, by Lemma 2.1 and Theorem 2.2,

ua = (1− s− a12
∗a11

†)a

= a12
∗ + a22 − a12

∗a†11a11 − a12
∗a†11a12

= (a12
∗a12

∗a†11a11) + (a22 − a12
∗a†11a12)

= s(a).

Again by Theorem 2.2 (3),s(a) ≥ 0, and from (9) and (10) we obtain (8).

Now as a corollary we obtain an estimation for the spectrum ofa and the spectrum ofs(a).
Corollary 3.5 If a ∈ A+, a anda11 are relatively regular, then

inf(σ(a) \ {0}) ≤ inf(σ(s(a)) \ {0}). (10)

P r o o f. By (8) we have

γ(Ls(a)) ≥
1

‖a†‖ = γ(La),

and then by [15] (see (1.3)) we obtain (10).

Theorem 3.6 Suppose thats ∈ A•h, a, b ∈ A+, and thata11, b11 and a11 + b11 are relatively regular.

(i) We have
s(a + b) ≥ s(a) + s(b).

Furthermore,

s(a + b) = s(a) + s(b) (11)

if and only if there existz ∈ (1− s)As such that

(z + a12
∗a11

†)a11 = (z + b∗12b
†
11)b11 = 0. (12)

(ii) If a ≥ b, then
s(a) ≥ s(b),

and the equality

s(a) = s(b) (13)

holds if and only if there existz ∈ (1− s)As satisfying (12) and

(z − 1− s)(a− b) = 0. (14)
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P r o o f. (1) By Lemma 3.1 we have

s(a + b) = a22 + b22 − (a12 + b12)∗(a11 + b11)†(a12 + b12)

≥ a22 + b22 − a12
∗a11

†a12 − b∗12b
†
11b12

= s(a) + s(b).

If there existz ∈ (1 − s)As such that (12) holds, then by Theorem 3.2 and (8) we haves(a) = qaq∗ and
s(b) = qbq∗, whereq = z + 1− s. Thus,

s(a) + s(b) = q(a + b)q∗

≥ min{q(a + b)q∗ : q = z + 1− s, z ∈ (1− s)As}
= s(a + b).

Now suppose that (11) holds and let us show (12). By Theorem 3.2, there existz ∈ (1 − s)As such that for
q = z + 1− s we have

s(a + b) = q(a + b)q∗ = qaq∗ + qbq∗ = s(a) + p1 + s(b) + p2, (15)

wherep1 = (z + a12
∗a11

†)a11(a11
†a12 + z∗) andp2 = (z + b∗12b

†
11)b11(b

†
11b12 + z∗). Clearly,p1, p2 ≥ 0, and

by our assumption (11), we see that (15) impliesp1 + p2 = 0. Thusp1 = p2 = 0, which is equivalent to (12).
To prove (2), suppose thata ≥ b. Let z ∈ (1− s)As be such that(z + a12

∗a11
†)a11 = 0. By Theorem 3.2 we

have

s(a) = (z − 1− s)a(z − 1− s)∗ ≥ (z − 1− s)b(z − 1− s)∗ ≥ s(b). (16)

To prove (13), let us remark that the second inequality holds in (16) if and only ifz satisfies(z + b∗12b
†
11)b11 = 0,

and the first inequality holds in (16) if and only if

(z − 1− s)(a− b)(z − 1− s)∗ = 0.

Sincea− b ≥ 0, the last condition is equivalent to (14).

The authors would like to thank the referees for their comments on the presentation of this paper.
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