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In this paper we introduce and study Schur complement of positive elemenéiralgebra and prove results
on their extremal characterizations.

1 Introduction
Given a matrix 1 B
v=(& D)
with A nonsingular, the classical Schur complementioh M is the matrix
S=D-CA'B. (1)

The formula (1) was first used by Schur [22], but the idea of the Schur complement goes back to Sylvester (1851),
and the term Schur complement was introduced by E. Haynsworth [16].

In the beginning Schur complements were used in the theory of matrices. M.G. Krein [19] and W.N. Ander-
son and G.E. Trapp [4] extended the notion of Schur complements of matrices to shorted operators in Hilbert
space operators, and Trapp defined the generalized Schur complement by replacing the ordinary inverse with
the generalized inverse. Schur complements and generalized Schur complements were studied by a number of
authors, have applications in statistics, matrix theory, electrical network theory, discrete-time regulator problem,
sophisticated techniques and some other fields (see [20], [11], [10], [5], [6]).

In this paper we introduce and study the Schur complement of positive elemertts ialgebrad and among
other things, we embark study the extremal characterizations of Schur complement.

Let.A be a complex_*-algebra with the unit. The Moore-Penrose inverse of an elemeaf A is the unique
elementa’ of A satisfying the equations

ac’a = a, a'aa’ = af| (aa")* = aal, (a'a)* = ala

(see [14], [15], [17], [21]). The set of all € A that possess thidoore-Penrose inverseill be denoted byAT.

It is shown in ([14], [18]) thatz € AT if and only if a € a.4a. We also write A~ for the set of all invertible
elements ind. The word ‘projection’ will be reserved for an elemertf .4 which is self-adjoint and idempotent,
that is,¢* = ¢ = ¢2. In this paperA,;, stands for the set of all selfadjoint elements4f The symbolsA4®;,,
A*, and A, denote the sets of all idempotent, projection and positive elemends refspectively. Ifa, b € A,
anda — b € A, we writea > b (orb < a). We say that: € A is relatively regular, provided that there exists
someb € A such thatuba = a. In this casé is called arinner generalized inversaf a. We usen™ to denote an
arbitrary inner generalized inverse af
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Leta € A ands € A*;,. Then we write
a=sas+ sa(l —s)+ (1 —s)as+ (1 — s)a(l — s)
and use the notations
ain = sas, ajz =sa(l —s), as =(1—s)as, a2 =(1-2s)a(l—s).

Everys € A*®;, induces a representation of arbitrary elemest A given by the following matrix

- sas sa(l —s) (a1 ae
“= (I-=9)as (1—s)a(l—5)) \ag1 ax)’
Given an element € A, leto(a) denote thespectrunof a and letZ, denote thdeft regular representation
ofa, i.e.,Ly(x) = ax,z € A.
Let B(X) denote the set of all bounded linear operators on a Banach spa€er an element” in B(X)

let N(T') and R(T') denote, respectively, the null space and the rang€.dRecall that theeduced minimum
modulusof T', v(T), is defined by

~(T) = inf{||Tz||/ dist (z, N(T)) : dist (2, N(T')) > 0}

and thatR(T) is closed if and only ify(T) > 0. If there is anS in B(X) such thatl'ST = T, thenR(T) is
closed andy(T) > 1/||S|| ([13]). Let us recall that if: € AT, then it is known thalja®|| = 1/v(L,) ([21], [14]).
Furthermore, (see [15]) f # a € A, thenvy(L,) = inf(c(a) \ {0}).

2 Preliminary results

We start with the following auxiliary result.
Lemma 2.1 If s € A%, andaeATNsAs, thena® € sAs.
Proof. Clearly,a € sAs impliesa = sa = as = sas. Thus,
a(sa's)a = aa’a = a, (sa's)a(sa’s) = sa'aa’s = sa's,
(a(sa's))* = (aa’s)* = (saa's)* = saa's = a(sa's),
((sa's)a)* = (sa'a)* = (sa'as)* = salas = (sa's)a,
thatis,a’ = sa's € sAs. O

Now we continue with the following extension of of Albert’s results [2]. Let us remark that our methods of
proof are new.

Theorem 2.2 Leta € A, s € A®, anday;, € Af. Thena > 0 if and only if the following conditions are
satisfied:

() a1 >0,
(i) araii’aiz = ara,
(i) age — a1*ay1fary > 0.

Proof. Suppose that > 0. Then there exisk € 4 such thats = hh*. Obviously,a;; = sh(sh)* > 0. By
[14, Theorem 7] and [17, Theorem 2.4], it follows thétis relatively regular and

arrary’ = (sh)(sh)*((sh)(sh)*)"
= (sh)(sh)*((sh)")(sh)"
= (sh)((sh)"(sh))* (sh)!
= (sh)(sh).
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Hence,
ay1a1rars = (sh)(sh)Tshh*(1 — s) = shh*(1 — s) = ays.

Finally,
age — a12*a11a12 = Qg2 — (112*((371)(5]1)*)T
= a9y — (1 — s)hh*s((sh)")*(sh)Tshh* (1 — s)
= a9y — (1 — s)h(sh)Tshh*(1 — )
= (1= s)h(1 = (sh)T(sh))((1 = s)n)*
= [(1 = $)h(L = (sh) (sh)][(1 = $)h(1 — (sh)'(sh))]* = 0.
On the contrary, suppose that the conditions (1), (2) and (3) hold. It is easy to see that

a12

(1 —aia*anNa(l — ara*an")* = ay + (age — a12*a11a12) > 0.
Let us remark that — ajo*aq; ' is invertible, and thatl — a12*a117) ™ = 1 + ajo*a1;'. Thus,
a=(1+ax*a11")(a + (az — a12*a11a12))(1 +ar*an ) >0,
and the proof is complete. O
As a corollary, we obtain the following

Corollary 2.3 Leta € A, s € A®, andag, € Af. Thena > 0 if and only if the following conditions are
satisfied:

() a2 >0,
(i) axaztar” = a”,
(il a1 — apamta* > 0.
Proof. This follows by Theorem 2.2 with replaced byl — s. O

We continue with aC*-algebra type theorem of Krein [19] (see also [9]).

Theorem 2.4 Suppose that € A, s € A%, as is relatively regular, and seiM(a,s) = {z€A :
0<z<a, sz = z}. Then
a1 — a12a29" ag; = max M(a, s).

Proof. Seth = a;; — a1za22"as;. By Corollary 2.3 we have

b= a1 + agnass'asn — a(l — s)ag!

az1
=ay1 +as +a(l — s)aggTagg —a(l— s)aggt(l —s)a
=a—a(l — s)ags'(1 — s)a.

Hence,

a—b=a(l —s)ag(1—s)a >0,
that is,b < a. Again by Theorem 2.2, it follows thdt = a;; — aj2a22tas; > 0. Obviously,sb = b, so
beM(a, s). Let us prove that € M(a, s) impliesz < b. Suppose that € M(a, s). Then0 < z < a, sz = z,
and it is easy to prove thate s As. Nowa — x > 0 impliesz < b. O

Finally, following Albert [2], Carlson, Haynsworth, and Markham [8]ait A, s € A%, anda;; € AT, we
define the Schur complement@ivith respect ta by

s(a) = azs — a21a11Ta12- (2)

Let us remark that, by Theorem 2.4,
s(a) = maxM(a,1 — s).
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3 Extremal Characterizations

In this section, we give short proofs for the extremal characterizations of the generalized Schur comglement
Among other things, our results generalize some results for matrices [9].

Lemma 3.1 Suppose that € A%, a,b € A, and thatai1,b11,a11 + by1 are relatively regular. Then
(@12 + b12)*(a11 + bll)f(alz +b12) < 012*a11fa12 + ngbLblz- 3
Proof. Setc = as(sas)sa. Clearly,(sas)’ > 0 impliesc > 0. Also, we have that;; = scs = sas = ay;.
By Theorem 2.2, it follows that;, = sc(1 — s) = sas(sas)sa(1 —s) = ay1a117a12 = a1o. Obviously,c = ¢,

andey; = ¢fy = ajo*. Als0,cos = (1 — s)c(1 — s) = (1 — s)as(sas)sa(l — s) = a12*a117ar12. Hencec has

the matrix representation
c— aii a12
a12*  aix*aiitass

Now, setd = bs(sbs)Tsb. From the proof for, we conclude that > 0 and thatd has the matrix representation

d:(bll b12 )
fa bigblibio

Thus,
ai1 + b11 a1z + b1 )
c+d= > 0. 4
((alz + byo)* ap*aifags + ngbhblz - “)
Now, Theorem 2.2 (3) and (4) imply (3). O

Theorem 3.2 Suppose that € A%, a € A, ay; is relatively regular,z € (1 —s)Asandg = 2z + 1 — s.
Then

qaq” > s(a) )
and

qaq” = s(a) (6)
if and only if

(z 4+ aa*a1;May; = 0. )

Proof. Because = (1 — s)zs, we have
qaq” = (1 8)zs + (1 — 8))a(sz"(1 — s) + (1 - 5))
= s(a) + (z + a12*a11 Nai (a1 Tars + 2%).
By Theorem 2.2s(a) > 0 anda;; > 0. Furthermore,

(z+ a12*a117)a11(a11Ta12 +2%)
1/2

= ((z + arz"an ay)*) (2 + ar2*an ay)®)* > 0,
and we obtain (5). Now, by (8), clearly we have (6) if and only if

(2 + a12*anari (arfarz + 2°) = 0,

which is equivalent to (7). O
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Corollary 3.3 Suppose that € A%y, a € A, a1; is relatively regular. Then
s(a) =min{qaq* : q=2+1—3s, z € (1 — s)As}
=(1—s—ap anNa(l —s—apa’)".
Proof. By (5), (6) and (7), we can choose= —a;2*a;; . O

Corollary 3.4 If a € Ay, a anday; are relatively regular, them(a) is relatively regular and:' is an inner
inverse ofs(a), that is,

s(a) = s(a)a's(a). (8)
Proof. By Corollary 3.3, it follows thak(a) = uau*, whereu = 1 — s — a;2*a1; . Now,
s(a) = (ua)a' (au*) = (ua)a’ (ua)*. 9)

By Theorem 2.2, we know that;; > 0, sS0a1;Ta;; = ai1a117. Now, by Lemma 2.1 and Theorem 2.2,
ua=(1—s— a12*a11T)a
=a12™ + ag — a12*a11a11 - 012*a11a12
= (alz*alz*ahan) + (a2 — 612*011012)
= s(a).
Again by Theorem 2.2 (3x(a) > 0, and from (9) and (10) we obtain (8). O

Now as a corollary we obtain an estimation for the spectrumanfd the spectrum of(a).
Corollary 3.5 If a € A4, a anday; are relatively regular, then

inf(o(a) \ {0}) < inf(o(s(a)) \ {0}). (10)

Proof. By (8) we have
1
'VLsa, > =7 Lav
( ()) ||aT|| ( )

and then by [15] (see (1.3)) we obtain (10). O

Theorem 3.6 Suppose that € A®;, a,b € A,, and thata;1, b1; and a1; + by1 are relatively regular.

(i) We have
s(a+b) > s(a) + s(b).

Furthermore,

s(a+b) = s(a) + s(b) (11)
if and only if there exist € (1 — s).As such that

(z+ alg*auT)au =(z+ b*{QbJ{l)bu =0. (12)

(i) If a > b, then
s(a) > s(b),

and the equality

s(a) = s(b) (13)
holds if and only if there exist € (1 — s).4s satisfying (12) and

(z—1—=s)(a—0b)=0. (14)
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Proof. (1) By Lemma 3.1 we have

s(a+b) = ass + bao — (a12 + b12)*(a11 + b11) ' (ar2 + bi2)
> g + by — arz*arifar — ngbLblz
= s(a) + s(b).
If there existz € (1 — s).As such that (12) holds, then by Theorem 3.2 and (8) we h&u¢ = gag™ and
s(b) = gbg*, whereq = z + 1 — s. Thus,
s(a) + s(b) = qla + b)g"

>min{g(a+b)¢*:qg=2+1—s, z€ (1 —s)As}

=s(a+Db).
Now suppose that (11) holds and let us show (12). By Theorem 3.2, therezexigtl — s).As such that for
q=z+1— swe have

s(a+b) =qla+b)q" = qaq” + gbg™ = s(a) + p1 + s(b) + p2, (15)

wherep; = (Z + alg*auT)CLu(auTalg + Z*) andp, = (Z + b;szl)bll(bilbm + Z*) Clearly,pl,pg >0, and
by our assumption (11), we see that (15) impfiest po = 0. Thusp; = p. = 0, which is equivalent to (12).

To prove (2), suppose that> b. Letz € (1 — s).As be such thatz + a12*a;17)a;; = 0. By Theorem 3.2 we
have

s(a)=(z—1=9)a(z—1=5)">(z—1—=5)b(z —1—35)* > s(b). (16)

To prove (13), let us remark that the second inequality holds in (16) if and onlyafisfies > + b{zbh)bn =0,
and the first inequality holds in (16) if and only if

(z=1=s)a=b)(z—1—3s)"=0.
Sincea — b > 0, the last condition is equivalent to (14). O

The authors would like to thank the referees for their comments on the presentation of this paper.
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