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Abstract

In this paper we find the explicit solution of the equation
A*X+X*A=B

for linear bounded operators on Hilbert spaces, where X is the un-
known operator. This solution is expressed in terms of the Moore-
Penrose inverse of the operator A. Thus, results of J. H. Hodges (Ann.
Mat. Pura Appl. 44 (1957) 245-550) are extended to the infinite
dimensional settings.

Department of Mathematics, Faculty of Sciences and Mathematics,
University of Nis,
P.O. Box 224, Visegradska 33,18000 Nis, Serbia
E-mail: dragan@pmf .ni.ac.yu ganedj@EUnet.ni.ac.yu

1 Introduction

In this paper H and K denote arbitrary Hilbert spaces. We use L(H, K) to
denote the set of all linear bounded operators from H to K. Also, L(H) =
L(H,H).
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For given operators A € L(H,K) and B € L(H), we are interested in
finding the solution X € L(H, K) of the equation

A*X + X*A=DB (1)

This equation is considered for matrices over a finite field (see [7]).

We mention similar matrix equations, which have applications in control
theory. These equations are investigated for matrices over fields, mostly R
or C. The equation CX — XA" = B is the Sylvester equation [8]. More
general equation AX — XF = BY is considered in [10]. One special and
important case is the Lyapunov equation AX + XAT = B [9]. Also, the
generalized Sylvester equation AV+BW = EV J+ R with unknown matrices
V and W, has many applications in linear systems theory (see [4]).

Present paper deals with the extension of results from [7] to infinite
dimensional settings.

For A € L(H,K) we use R(A) and N(A), respectively, to denote the
range and the null-space of A. The Moore-Penrose inverse of A, denoted by
AT, is the unique operator A € £L(K,H) satisfying the following conditions:

AATA = A, ATAAT = AT, (AAT)* = AAT, (ATA) = ATA.

It is well-known that AT exists if and only if R(A) is closed. For properties
and applications of the Moore-Penrose inverse see [1, 3, 2, 5].

Let A € L(H,K) have a closed range. Then AA' is the orthogonal
projection from K onto R(A) (parallel to N'(A") = N(A*)) and ATA is the
orthogonal projection from H onto R(A") = R(A*) (parallel to N'(A)). It
follows that A has the following matrix form:

AlAl OlllR(A*)]_)[R(A)]
1o ol NA N(A%) |

where A; is invertible. Now, the operator A’ has the following form:
g Aat o]l [ R ][R
0 0 N(A%) N(A)

Using these matrix forms of operators with closed ranges and properties of
the Moore-Penrose inverse, we solve the equation (1).



2 Results

First, we solve the equation (1) in the case when A is invertible. It can
easily be seen that the proof of the following Theorem 2.1 is valid in rings
with involution.

Theorem 2.1 Let A € L(H,K) be invertible and B € L(H). Then the
following statements are equivalent:

(a) There exists a solution X € L(H,K) of the equation (1).
(b) B = B*.

If (a) or (b) is satisfied, then any solution of the equation (1) has the
form
1
X = §(A*)_IB +ZA (2)
where Z € L(K) satisfy Z* = —Z.

Proof. (a)—(b): Obvious.

(b)—(a): It is easy to see that any operator X of the form (2) is a solution
of the equation (1). On the other hand, let X be any solution of (1). Then
X = (A)7IB - (4*)71X*A and (A*)71X* = (A*)"1BA™l — XA~L. We

have
X = %(A*)‘lB + (;(A*)_lBA_l - (A*)—1X*> A

_ %(A*)‘lB + (; (471X + x A7 - (A*)—1X*> A

Taking Z = 1 (XA™! — (4*)71X*), we get Z* = —Z. O

Now, we solve the equation (1) in the case when A has a closed range.

Theorem 2.2 Let A € L(H,K) have a closed range and B € L(H). Then
the following statements are equivalent:

(a) There exists a solution X € L(H,K) of the equation (1).
(b) B = B* and (I — ATA)B(I — ATA) = 0.



If (a) or (b) is satisfied, then any solution of the equation (1) has the
form

X = %(A*)TBATA + (AT B(I = ATA) + (I — AANY + AATZA,  (3)
where Z € L(K) satisfies A*(Z + Z*)A =0, and Y € L(H,K) is arbitrary.

Proof. (a)—(b): Obviously, B* = B. Also,

(I —ATA)B(I — ATA) = (I — ATA)(A*X + X*A)(I — ATA)
= (A" — (AATA))X (I — ATA) + (I — ATA)X*A(I — ATA) = 0.

(b)—(a): Notice that the condition (I — ATA)B(I — ATA) = 0 is equiv-
alent to B = ATAB + BATA — ATABATA. Any operator X of the form (3)
is a solution of the equation (1).

On the other hand, suppose that X is a solution of the equation (1).
Since R(A) is closed, we have H = R(A*) BN (A) and K = R(A) BN (A*).

] . A 0 | R(AY) R(A)
Now, A has the matrix form A = [ 0 0 ] A | - _ N(A%) _,
where A; is invertible. Conditions B = B* and (I — ATA_)B(I - ATA) =0
: _ | Bi B2 | | R(A) R(4)
imply that B has the form B = B 0 ] : [N’(A) - — _ N(A*) -7

L | X Xip || R(AY)
where By = By. Let X have the form X = [ Xo1 Xoo ] . [ N(4) -

l _/z;,((ﬁ*)) ] Then A*X + X*A = B implies A7 X1 + X{741 = B and
A% X192 = By. Hence, X1o = (A%)~!Bsy. Since A is invertible, from Theorem
2.1 it follows that Xj; has the form Xi; = %(AT)*IBl + Z1A;, for some
operator Z; € L(R(A)) satistying Z; = —Z;. Hence,

X — %(AT)_lBl + Z1 A (AT)_lBQ
Xo1 X292

Xo1 and X9 can be taken arbitrary. Let Y = [ ;;11 ;;12 l 7;;6‘;)) —
21 22
R(A) B Zy Zwn | | RA R(A)
lN(A*)landZ—l 7, 222].[/\/.( )1 [ , where

Y11, Y12 and Z, are arbitrary. Notice that A*(Z 4+ Z*)A



Al)_lBl 0

1
Then (A*)IBATA = [ 2 0 0

*\t _ At —
],(A)B(IAA) [0 )
0 0
Xo1 Xoo

X has the form (3). O

Z1A1 O

_ T —
(I — AANY o

] and AATZA = l ] Consequently,

It is a consequence of the Gelfand-Naimark-Segal theorem and the Harte-
Mbekhta theorem [6] that Theorem 2.2 holds in C*-algebras also.

By exactly similar arguments, we obtain the following analogue of The-
orem 2.2, in which equation (1) is replaced by

A*X — X*A=DB. (4)

Theorem 2.3 Let A € L(H,K) have a closed range and B € L(H). Then
the following statements are equivalent:

(a) There exists a solution X € L(H,K) of the equation (4).
(b) B=—B* and (I — ATA)B(I — ATA) = 0.

If (a) or (b) is satisfied, then any solution of the equation (4) has the
form

X — %(A*)TBATA 4 (A B(I — ATA) + (T — AADY + A4TZ4,  (5)

where Z € L(K) satisfies A*(Z — Z*)A =0, and Y € L(H,K) is arbitrary.
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