EXPLICIT SOLUTION OF THE OPERATOR EQUATION $A^*X + X^*A = B$

Dragan S. Djordjević

November 15, 2005

Abstract

In this paper we find the explicit solution of the equation

 $A^*X + X^*A = B$

for linear bounded operators on Hilbert spaces, where X is the unknown operator. This solution is expressed in terms of the Moore-Penrose inverse of the operator A. Thus, results of J. H. Hodges (Ann. Mat. Pura Appl. **44** (1957) 245–550) are extended to the infinite dimensional settings.

Department of Mathematics, Faculty of Sciences and Mathematics, University of Niš, P.O. Box 224, Višegradska 33,18000 Niš, Serbia *E-mail*: dragan@pmf.ni.ac.yu ganedj@EUnet.ni.ac.yu

1 Introduction

In this paper H and K denote arbitrary Hilbert spaces. We use $\mathcal{L}(\mathcal{H}, \mathcal{K})$ to denote the set of all linear bounded operators from H to K. Also, $\mathcal{L}(\mathcal{H}) = \mathcal{L}(\mathcal{H}, \mathcal{H})$.

Key words and phrases: Operator equations, Moore-Penrose inverse. 2000 Mathematics Subject Classification: 47A62, 47A52, 15A24. Supported by Grant No. 144003 of the Ministry of Science, Republic of Serbia.

For given operators $A \in \mathcal{L}(\mathcal{H}, \mathcal{K})$ and $B \in \mathcal{L}(\mathcal{H})$, we are interested in finding the solution $X \in \mathcal{L}(\mathcal{H}, \mathcal{K})$ of the equation

$$A^*X + X^*A = B \tag{1}$$

This equation is considered for matrices over a finite field (see [7]).

We mention similar matrix equations, which have applications in control theory. These equations are investigated for matrices over fields, mostly **R** or **C**. The equation $CX - XA^{\top} = B$ is the Sylvester equation [8]. More general equation AX - XF = BY is considered in [10]. One special and important case is the Lyapunov equation $AX + XA^{\top} = B$ [9]. Also, the generalized Sylvester equation AV+BW = EVJ+R with unknown matrices V and W, has many applications in linear systems theory (see [4]).

Present paper deals with the extension of results from [7] to infinite dimensional settings.

For $A \in \mathcal{L}(\mathcal{H}, \mathcal{K})$ we use $\mathcal{R}(\mathcal{A})$ and $\mathcal{N}(A)$, respectively, to denote the range and the null-space of A. The Moore-Penrose inverse of A, denoted by A^{\dagger} , is the unique operator $A \in \mathcal{L}(\mathcal{K}, \mathcal{H})$ satisfying the following conditions:

$$AA^{\dagger}A = A, \ A^{\dagger}AA^{\dagger} = A^{\dagger}, \ (AA^{\dagger})^* = AA^{\dagger}, \ (A^{\dagger}A)^* = A^{\dagger}A.$$

It is well-known that A^{\dagger} exists if and only if $\mathcal{R}(\mathcal{A})$ is closed. For properties and applications of the Moore-Penrose inverse see [1, 3, 2, 5].

Let $A \in \mathcal{L}(\mathcal{H}, \mathcal{K})$ have a closed range. Then AA^{\dagger} is the orthogonal projection from K onto $\mathcal{R}(\mathcal{A})$ (parallel to $\mathcal{N}(A^{\dagger}) = \mathcal{N}(A^*)$) and $A^{\dagger}A$ is the orthogonal projection from H onto $\mathcal{R}(\mathcal{A}^{\dagger}) = \mathcal{R}(\mathcal{A}^*)$ (parallel to $\mathcal{N}(A)$). It follows that A has the following matrix form:

$$A = \left[\begin{array}{cc} A_1 & 0 \\ 0 & 0 \end{array} \right] : \left[\begin{array}{c} \mathcal{R}(\mathcal{A}^*) \\ \mathcal{N}(A) \end{array} \right] \to \left[\begin{array}{c} \mathcal{R}(\mathcal{A}) \\ \mathcal{N}(A^*) \end{array} \right],$$

where A_1 is invertible. Now, the operator A^{\dagger} has the following form:

$$A^{\dagger} = \left[\begin{array}{cc} A_1^{-1} & 0 \\ 0 & 0 \end{array} \right] : \left[\begin{array}{c} \mathcal{R}(\mathcal{A}) \\ \mathcal{N}(A^*) \end{array} \right] \to \left[\begin{array}{c} \mathcal{R}(\mathcal{A}^*) \\ \mathcal{N}(A) \end{array} \right].$$

Using these matrix forms of operators with closed ranges and properties of the Moore-Penrose inverse, we solve the equation (1).

2 Results

First, we solve the equation (1) in the case when A is invertible. It can easily be seen that the proof of the following Theorem 2.1 is valid in rings with involution.

Theorem 2.1 Let $A \in \mathcal{L}(\mathcal{H}, \mathcal{K})$ be invertible and $B \in \mathcal{L}(\mathcal{H})$. Then the following statements are equivalent:

- (a) There exists a solution $X \in \mathcal{L}(\mathcal{H}, \mathcal{K})$ of the equation (1).
- (b) $B = B^*$.

If (a) or (b) is satisfied, then any solution of the equation (1) has the form

$$X = \frac{1}{2} (A^*)^{-1} B + ZA \tag{2}$$

where $Z \in \mathcal{L}(\mathcal{K})$ satisfy $Z^* = -Z$.

Proof. (a) \rightarrow (b): Obvious.

(b) \rightarrow (a): It is easy to see that any operator X of the form (2) is a solution of the equation (1). On the other hand, let X be any solution of (1). Then $X = (A^*)^{-1}B - (A^*)^{-1}X^*A$ and $(A^*)^{-1}X^* = (A^*)^{-1}BA^{-1} - XA^{-1}$. We have

$$X = \frac{1}{2} (A^*)^{-1} B + \left(\frac{1}{2} (A^*)^{-1} B A^{-1} - (A^*)^{-1} X^*\right) A$$

= $\frac{1}{2} (A^*)^{-1} B + \left(\frac{1}{2} \left[(A^*)^{-1} X^* + X A^{-1} \right] - (A^*)^{-1} X^* \right) A$
= $\frac{1}{2} (A^*)^{-1} B + \frac{1}{2} (X A^{-1} - (A^*)^{-1} X^*) A.$

Taking $Z = \frac{1}{2} (XA^{-1} - (A^*)^{-1}X^*)$, we get $Z^* = -Z$. \Box

Now, we solve the equation (1) in the case when A has a closed range.

Theorem 2.2 Let $A \in \mathcal{L}(\mathcal{H}, \mathcal{K})$ have a closed range and $B \in \mathcal{L}(\mathcal{H})$. Then the following statements are equivalent:

- (a) There exists a solution $X \in \mathcal{L}(\mathcal{H}, \mathcal{K})$ of the equation (1).
- (b) $B = B^*$ and $(I A^{\dagger}A)B(I A^{\dagger}A) = 0$.

If (a) or (b) is satisfied, then any solution of the equation (1) has the form

$$X = \frac{1}{2} (A^*)^{\dagger} B A^{\dagger} A + (A^*)^{\dagger} B (I - A^{\dagger} A) + (I - A A^{\dagger}) Y + A A^{\dagger} Z A, \qquad (3)$$

where $Z \in \mathcal{L}(\mathcal{K})$ satisfies $A^*(Z + Z^*)A = 0$, and $Y \in \mathcal{L}(\mathcal{H}, \mathcal{K})$ is arbitrary.

Proof. (a) \rightarrow (b): Obviously, $B^* = B$. Also,

$$(I - A^{\dagger}A)B(I - A^{\dagger}A) = (I - A^{\dagger}A)(A^{*}X + X^{*}A)(I - A^{\dagger}A)$$

= $(A^{*} - (AA^{\dagger}A)^{*})X(I - A^{\dagger}A) + (I - A^{\dagger}A)X^{*}A(I - A^{\dagger}A) = 0.$

(b) \rightarrow (a): Notice that the condition $(I - A^{\dagger}A)B(I - A^{\dagger}A) = 0$ is equivalent to $B = A^{\dagger}AB + BA^{\dagger}A - A^{\dagger}ABA^{\dagger}A$. Any operator X of the form (3) is a solution of the equation (1).

On the other hand, suppose that X is a solution of the equation (1). Since $\mathcal{R}(\mathcal{A})$ is closed, we have $H = \mathcal{R}(\mathcal{A}^*) \oplus \mathcal{N}(\mathcal{A})$ and $K = \mathcal{R}(\mathcal{A}) \oplus \mathcal{N}(\mathcal{A}^*)$. Now, A has the matrix form $A = \begin{bmatrix} A_1 & 0 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(\mathcal{A}^*) \\ \mathcal{N}(A) \end{bmatrix} \to \begin{bmatrix} \mathcal{R}(\mathcal{A}) \\ \mathcal{N}(A^*) \end{bmatrix}$, where A_1 is invertible. Conditions $B = B^*$ and $(I - A^{\dagger}A)B(I - A^{\dagger}A) = 0$ imply that B has the form $B = \begin{bmatrix} B_1 & B_2 \\ B_2^* & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(\mathcal{A}) \\ \mathcal{N}(A) \end{bmatrix} \to \begin{bmatrix} \mathcal{R}(\mathcal{A}) \\ \mathcal{N}(A^*) \end{bmatrix}$, where $B_1^* = B_1$. Let X have the form $X = \begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{bmatrix} : \begin{bmatrix} \mathcal{R}(\mathcal{A}^*) \\ \mathcal{N}(A) \end{bmatrix} \to \begin{bmatrix} \mathcal{R}(\mathcal{A}) \\ \mathcal{N}(A) \end{bmatrix}$. $\begin{bmatrix} \mathcal{R}(\mathcal{A}) \\ \mathcal{N}(A^*) \end{bmatrix}$. Then $A^*X + X^*A = B$ implies $A_1^*X_{11} + X_{11}^*A_1 = B_1$ and $A^*X = B$. Hence $X = (X_1 + X_1)$

 $A_1^*X_{12} = B_2$. Hence, $X_{12} = (A_1^*)^{-1}B_2$. Since A_1 is invertible, from Theorem 2.1 it follows that X_{11} has the form $X_{11} = \frac{1}{2}(A_1^*)^{-1}B_1 + Z_1A_1$, for some operator $Z_1 \in \mathcal{L}(\mathcal{R}(\mathcal{A}))$ satisfying $Z_1^* = -Z_1$. Hence,

$$X = \begin{bmatrix} \frac{1}{2}(A_1^*)^{-1}B_1 + Z_1A_1 & (A_1^*)^{-1}B_2 \\ X_{21} & X_{22} \end{bmatrix},$$

$$\begin{split} X_{21} \text{ and } X_{22} \text{ can be taken arbitrary. Let } Y &= \begin{bmatrix} Y_{11} & Y_{12} \\ X_{21} & X_{22} \end{bmatrix} : \begin{bmatrix} \mathcal{R}(\mathcal{A}^*) \\ \mathcal{N}(A) \end{bmatrix} \rightarrow \\ \begin{bmatrix} \mathcal{R}(\mathcal{A}) \\ \mathcal{N}(A^*) \end{bmatrix} \text{ and } Z &= \begin{bmatrix} Z_1 & Z_{12} \\ -Z_{12}^* & Z_{22} \end{bmatrix} : \begin{bmatrix} \mathcal{R}(\mathcal{A}) \\ \mathcal{N}(A^*) \end{bmatrix} \rightarrow \begin{bmatrix} \mathcal{R}(\mathcal{A}) \\ \mathcal{N}(A^*) \end{bmatrix}, \text{ where } \\ Y_{11}, Y_{12} \text{ and } Z_2 \text{ are arbitrary. Notice that } A^*(Z + Z^*)A = 0. \end{split}$$

Then
$$\frac{1}{2}(A^*)^{\dagger}BA^{\dagger}A = \begin{bmatrix} \frac{1}{2}(A_1)^{-1}B_1 & 0\\ 0 & 0 \end{bmatrix}, (A^*)^{\dagger}B(I-A^{\dagger}A) = \begin{bmatrix} 0 & (A_1^*)^{-1}B_2\\ 0 & 0 \end{bmatrix},$$

 $(I - AA^{\dagger})Y = \begin{bmatrix} 0 & 0\\ X_{21} & X_{22} \end{bmatrix} \text{ and } AA^{\dagger}ZA = \begin{bmatrix} Z_1A_1 & 0\\ 0 & 0 \end{bmatrix}.$ Consequently,
X has the form (3). \Box

It is a consequence of the Gelfand-Naimark-Segal theorem and the Harte-Mbekhta theorem [6] that Theorem 2.2 holds in C^* -algebras also.

By exactly similar arguments, we obtain the following analogue of Theorem 2.2, in which equation (1) is replaced by

$$A^*X - X^*A = B. (4)$$

Theorem 2.3 Let $A \in \mathcal{L}(\mathcal{H}, \mathcal{K})$ have a closed range and $B \in \mathcal{L}(\mathcal{H})$. Then the following statements are equivalent:

(a) There exists a solution $X \in \mathcal{L}(\mathcal{H}, \mathcal{K})$ of the equation (4).

(b) $B = -B^*$ and $(I - A^{\dagger}A)B(I - A^{\dagger}A) = 0$.

If (a) or (b) is satisfied, then any solution of the equation (4) has the form

$$X = \frac{1}{2} (A^*)^{\dagger} B A^{\dagger} A + (A^*)^{\dagger} B (I - A^{\dagger} A) + (I - A A^{\dagger}) Y + A A^{\dagger} Z A,$$
(5)

where $Z \in \mathcal{L}(\mathcal{K})$ satisfies $A^*(Z - Z^*)A = 0$, and $Y \in \mathcal{L}(\mathcal{H}, \mathcal{K})$ is arbitrary.

Acknowledgement. I am grateful to both of referees for helpful comments concerning the paper.

References

- [1] A. Ben-Israel and T. N. E. Greville, *Generalized inverses: theory and applications*, Second Ed., Springer, 2003.
- [2] S. L. Campbell and C. D. Meyer Jr., Generalized inverses of linear transformations, Dover Publications, Inc., New York, 1991.

- [3] S. R. Caradus, Generalized inverses and operator theory, Queen's Paper in Pure and Applied Mathematics, Queen's University, Kingston, Ontario, 1978.
- [4] G. R. Duan, The solution to the matrix equation AV + BW = EVJ + R, Appl. Math. Letters **17** (2004), 1197–1202.
- [5] R. E. Harte, Invertibility and singularity for bounded linear operators, New York, Marcel Dekker, 1988.
- [6] R. E. Harte and M. Mbekhta, On generalized inverses in C^{*}-algebras, Studia Math. 103 (1992), 71–77.
- [7] J. H. Hodges, Some matrix equations over a finite field, Ann. Mat. Pura Appl. IV. Ser. 44 (1957), 245–250.
- [8] P. Kirrinnis, Fast algorithms for the Sylvester equation $AX XB^{\top} = C$, Theoretical Computer Science **259** (2001), 623–638.
- [9] D. C. Sorensen and A. C. Antoulas, The Sylvester equation and approximate balanced reduction, Linear Algebra Appl. 351-352 (2002, 671–700.
- [10] B. Zhou and G. R. Duan, An explicit solution to the matrix equation AX XF = BY, Linear Algebra Appl. **402** (2005), 345–366.