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Abstract

In this paper we find the explicit solution of the equation

A∗X + X∗A = B

for linear bounded operators on Hilbert spaces, where X is the un-
known operator. This solution is expressed in terms of the Moore-
Penrose inverse of the operator A. Thus, results of J. H. Hodges (Ann.
Mat. Pura Appl. 44 (1957) 245–550) are extended to the infinite
dimensional settings.
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1 Introduction

In this paper H and K denote arbitrary Hilbert spaces. We use L(H,K) to
denote the set of all linear bounded operators from H to K. Also, L(H) =
L(H,H).
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For given operators A ∈ L(H,K) and B ∈ L(H), we are interested in
finding the solution X ∈ L(H,K) of the equation

A∗X + X∗A = B (1)

This equation is considered for matrices over a finite field (see [7]).
We mention similar matrix equations, which have applications in control

theory. These equations are investigated for matrices over fields, mostly R
or C. The equation CX − XA> = B is the Sylvester equation [8]. More
general equation AX − XF = BY is considered in [10]. One special and
important case is the Lyapunov equation AX + XA> = B [9]. Also, the
generalized Sylvester equation AV +BW = EV J+R with unknown matrices
V and W , has many applications in linear systems theory (see [4]).

Present paper deals with the extension of results from [7] to infinite
dimensional settings.

For A ∈ L(H,K) we use R(A) and N (A), respectively, to denote the
range and the null-space of A. The Moore-Penrose inverse of A, denoted by
A†, is the unique operator A ∈ L(K,H) satisfying the following conditions:

AA†A = A, A†AA† = A†, (AA†)∗ = AA†, (A†A)∗ = A†A.

It is well-known that A† exists if and only if R(A) is closed. For properties
and applications of the Moore-Penrose inverse see [1, 3, 2, 5].

Let A ∈ L(H,K) have a closed range. Then AA† is the orthogonal
projection from K onto R(A) (parallel to N (A†) = N (A∗)) and A†A is the
orthogonal projection from H onto R(A†) = R(A∗) (parallel to N (A)). It
follows that A has the following matrix form:

A =

[
A1 0
0 0

]
:

[
R(A∗)
N (A)

]
→

[
R(A)
N (A∗)

]
,

where A1 is invertible. Now, the operator A† has the following form:

A† =

[
A−1

1 0
0 0

]
:

[
R(A)
N (A∗)

]
→

[
R(A∗)
N (A)

]
.

Using these matrix forms of operators with closed ranges and properties of
the Moore-Penrose inverse, we solve the equation (1).
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2 Results

First, we solve the equation (1) in the case when A is invertible. It can
easily be seen that the proof of the following Theorem 2.1 is valid in rings
with involution.

Theorem 2.1 Let A ∈ L(H,K) be invertible and B ∈ L(H). Then the
following statements are equivalent:

(a) There exists a solution X ∈ L(H,K) of the equation (1).
(b) B = B∗.

If (a) or (b) is satisfied, then any solution of the equation (1) has the
form

X =
1
2
(A∗)−1B + ZA (2)

where Z ∈ L(K) satisfy Z∗ = −Z.

Proof. (a)→(b): Obvious.
(b)→(a): It is easy to see that any operator X of the form (2) is a solution

of the equation (1). On the other hand, let X be any solution of (1). Then
X = (A∗)−1B − (A∗)−1X∗A and (A∗)−1X∗ = (A∗)−1BA−1 − XA−1. We
have

X =
1
2
(A∗)−1B +

(
1
2
(A∗)−1BA−1 − (A∗)−1X∗

)
A

=
1
2
(A∗)−1B +

(
1
2

[
(A∗)−1X∗ + XA−1

]
− (A∗)−1X∗

)
A

=
1
2
(A∗)−1B +

1
2
(XA−1 − (A∗)−1X∗)A.

Taking Z = 1
2

(
XA−1 − (A∗)−1X∗), we get Z∗ = −Z. 2

Now, we solve the equation (1) in the case when A has a closed range.

Theorem 2.2 Let A ∈ L(H,K) have a closed range and B ∈ L(H). Then
the following statements are equivalent:

(a) There exists a solution X ∈ L(H,K) of the equation (1).
(b) B = B∗ and (I −A†A)B(I −A†A) = 0.
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If (a) or (b) is satisfied, then any solution of the equation (1) has the
form

X =
1
2
(A∗)†BA†A + (A∗)†B(I −A†A) + (I −AA†)Y + AA†ZA, (3)

where Z ∈ L(K) satisfies A∗(Z + Z∗)A = 0, and Y ∈ L(H,K) is arbitrary.

Proof. (a)→(b): Obviously, B∗ = B. Also,

(I −A†A)B(I −A†A) = (I −A†A)(A∗X + X∗A)(I −A†A)
= (A∗ − (AA†A)∗)X(I −A†A) + (I −A†A)X∗A(I −A†A) = 0.

(b)→(a): Notice that the condition (I − A†A)B(I − A†A) = 0 is equiv-
alent to B = A†AB + BA†A−A†ABA†A. Any operator X of the form (3)
is a solution of the equation (1).

On the other hand, suppose that X is a solution of the equation (1).
Since R(A) is closed, we have H = R(A∗)⊕N (A) and K = R(A)⊕N (A∗).
Now, A has the matrix form A =

[
A1 0
0 0

]
:

[
R(A∗)
N (A)

]
→

[
R(A)
N (A∗)

]
,

where A1 is invertible. Conditions B = B∗ and (I − A†A)B(I − A†A) = 0

imply that B has the form B =

[
B1 B2

B∗
2 0

]
:

[
R(A)
N (A)

]
→

[
R(A)
N (A∗)

]
,

where B∗
1 = B1. Let X have the form X =

[
X11 X12

X21 X22

]
:

[
R(A∗)
N (A)

]
→

[
R(A)
N (A∗)

]
. Then A∗X + X∗A = B implies A∗1X11 + X∗

11A1 = B1 and

A∗1X12 = B2. Hence, X12 = (A∗1)−1B2. Since A1 is invertible, from Theorem
2.1 it follows that X11 has the form X11 = 1

2(A∗1)−1B1 + Z1A1, for some
operator Z1 ∈ L(R(A)) satisfying Z∗1 = −Z1. Hence,

X =

[
1
2(A∗1)−1B1 + Z1A1 (A∗1)−1B2

X21 X22

]
,

X21 and X22 can be taken arbitrary. Let Y =

[
Y11 Y12

X21 X22

]
:

[
R(A∗)
N (A)

]
→

[
R(A)
N (A∗)

]
and Z =

[
Z1 Z12

−Z∗12 Z22

]
:

[
R(A)
N (A∗)

]
→

[
R(A)
N (A∗)

]
, where

Y11, Y12 and Z2 are arbitrary. Notice that A∗(Z + Z∗)A = 0.

4



Then 1
2(A∗)†BA†A =

[
1
2(A1)−1B1 0

0 0

]
, (A∗)†B(I−A†A) =

[
0 (A∗1)−1B2

0 0

]
,

(I − AA†)Y =

[
0 0

X21 X22

]
and AA†ZA =

[
Z1A1 0

0 0

]
. Consequently,

X has the form (3). 2

It is a consequence of the Gelfand-Naimark-Segal theorem and the Harte-
Mbekhta theorem [6] that Theorem 2.2 holds in C∗-algebras also.

By exactly similar arguments, we obtain the following analogue of The-
orem 2.2, in which equation (1) is replaced by

A∗X −X∗A = B. (4)

Theorem 2.3 Let A ∈ L(H,K) have a closed range and B ∈ L(H). Then
the following statements are equivalent:

(a) There exists a solution X ∈ L(H,K) of the equation (4).
(b) B = −B∗ and (I −A†A)B(I −A†A) = 0.

If (a) or (b) is satisfied, then any solution of the equation (4) has the
form

X =
1
2
(A∗)†BA†A + (A∗)†B(I −A†A) + (I −AA†)Y + AA†ZA, (5)

where Z ∈ L(K) satisfies A∗(Z − Z∗)A = 0, and Y ∈ L(H,K) is arbitrary.

Acknowledgement. I am grateful to both of referees for helpful
comments concerning the paper.
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