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Abstract. The reverse order rule (AB)† = B†A† for the Moore-Penrose
inverse is established in several equivalent forms. Results related to other
generalized inverses are also proved.

1. Introduction

Throughout this paper H, K, L denote arbitrary Hilbert spaces. We use

L(H, K) to denote the set of all linear bounded operators from H to K.

Also, L(H) = L(H,H). For A ∈ L(H, K) we use R(A) to denote the range,

and N (A) to denote the null-space of A. The Moore-Penrose inverse of A is

denoted by A†. It is well-known that the Moore-Penrose inverse of A exists

if and only if R(A) is closed. We assume that the reader is familiar with the

properties of the Moore-Penrose inverse (see, for example, [BIG], [C], [He],

[K], [N], [NV]). We also assume that the following classes of operators are

well-known: A{1}, A{1, 3}, A{1, 4}, A{1, 2, 3}, A{1, 2, 4}.
Some equivalent conditions of the reverse order rule

(1) (AB)† = B†A†
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are well-known (see all references). We shall prove some new conditions,

which are equivalent to (1). Also, conditions

B{1, 3} ·A{1, 3} ⊂ (BA){1, 3}
B{1, 4} ·A{1, 3} ⊂ (BA){1, 4}

B†A† ∈ (AB){1, 2, 3}
B†A† ∈ (AB){1, 2, 4}

B†A† ∈ (AB){1, 3}
B†A† ∈ (AB){1, 4}

will be investigated. By now, some of these conditions are investigated for

complex matrices.

The aim of this paper is to prove some equivalence results for linear

bounded Hilbert space operators, and thus obtain well-known results con-

nected to the reverse order rule (1).

2. Results

We begin with the following auxiliary result, which can be found in [BIG]

for complex matrices. For the completeness, we give its proof.

Lemma 2.1. Let A ∈ L(H,K) have a closed range and B ∈ L(K,H). Then

the following statements are equivalent:

(1) ABA = A and (AB)∗ = AB;

(2) there exists some X ∈ L(K, H), such that B = A† + (I −A†A)X.

Proof. (2) =⇒ (1): Obvious.

(1) =⇒ (2): Since A =
[

A1 0

0 0

]
:

[R(A∗)
N (A)

]
→

[ R(A)

N (A∗)

]
, where A1 is in-

vertible, it follows that A† =
[

A−1
1 0

0 0

]
. An elementary calculation shows

that B =
[

A−1
1 0

U V

]
, where U, V are arbitrary linear and bounded. Now, take

X =
[

X1 X2

U V

]
, for arbitrary X1, X2 linear and bounded. ¤

Now, we prove the main result of the paper.
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Theorem 2.2. Let A ∈ L(H,K) and B ∈ L(K, L) be such that A,B,AB

have closed ranges. Then the following statements are equivalent:

(1) R(A∗AB) ⊂ R(B);

(2) B{1, 3} ·A{1, 3} ⊂ (AB){1, 3};
(3) B†A† ∈ (AB){1, 3};
(4) B†A† ∈ (AB){1, 2, 3}.

Proof. The operator B has the following matrix form with respect to the

orthogonal sum of subspaces: B =
[

B1 0

0 0

]
:

[R(B∗)
N (B)

]
→

[ R(B)

N (B∗)

]
, where

B1 is invertible. From the proof of Lemma 2.1 it follows that any B(1,3) ∈
B{1, 3} has the form

[
B−1

1 0

U V

]
. The operator A has the following form:

A =
[

A1 A2

0 0

]
:
[ R(B)

N (B∗)

]
→

[ R(A)

N (A∗)

]
. Now, A∗ =

[
A∗1 0

A∗2 0

]
and AA∗ =

[
D 0

0 0

]
,

where D = A1A
∗
1 + A2A

∗
2 is positive and invertible in L(R(A)). We obtain

A† = A∗(AA∗)# =
[

A∗1D−1 0

A∗2D−1 0

]
. Let A(1,3) ∈ A{1, 3}. By Lemma 2.1 it

follows that there exists some X ∈ L(L,K), such that A(1,3) = A† + (I −
A†A)X. Let X have the form X =

[
X11 X12

X21 X22

]
:
[ R(A)

N (A∗)

]
→

[ R(B)

N (B∗)

]
. We

get the following

A(1,3) =
[

Z11 Z12

Z21 Z22

]

and

ABB(1,3)A(1,3) =
[

A1Z11 A1Z12

0 0

]
,

where
Z11 = A∗1D

−1 + (I −A∗1D
−1A1)X11 −A∗1D

−1A2X21,

Z12 = (I −A∗1D
−1A1)X12 −A∗1D

−1A2X22,

Z21 = A∗2D
−1 −A∗2D

−1A1X11 + (I −A∗2D
−1A2)X21,

Z22 = −A∗2D
−1A1X12 + (I −A∗2D

−1A2)X22.

Notice also that A∗AB =
[

A∗1A1B1 0

A∗2A1B1 0

]
.

(1) =⇒ (2): The inclusion R(A∗AB) ⊂ R(B) is equivalent to BB†A∗AB

= A∗AB. Now, BB†A∗AB =
[

A∗1A1B1 0

0 0

]
. Hence, BB†A∗AB = A∗AB is
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equivalent to A∗2A1B1 = 0. Since B1 is invertible, we obtain A∗2A1 = 0,

or, equivalently, A∗1A2 = 0. It follows that R(A2) ⊂ N (A∗1). We have the

following orthogonal decomposition: R(A) = R(A1)⊕N (A∗1). Now,

R(A) =
{[

A1x+A2y
0

]
: x ∈ R(B), y ∈ N (B∗)

}
= R(A1) +R(A2)

= R(A1)⊕R(A2),

knowing that R(A2) ⊂ N (A∗1). Since R(A) is closed, we get that both

R(A1) and R(A2) are closed. Consider the following decompositions of A1

and A2: A1 =
[

A11 0

0 0

]
:

[R(A∗1)

N (A1)

]
→

[ R(A1)

N (A∗1)

]
, where A11 is invertible,

and A2 =
[

0 0

A22 0

]
:

[R(A∗2)

N (A2)

]
→

[ R(A1)

N (A∗1)

]
. We have the following: 0 <

D = A1A
∗
1 + A2A

∗
2 =

[
A11A∗11 0

0 A22A∗22

]
, implying that both A11A

∗
11 and

A22A
∗
22 are invertible. Hence, D−1 =

[
(A11A∗11)

−1 0

0 (A22A∗22)
−1

]
. Notice that

A∗1D
−1A1 =

[
I 0

0 0

]
, A1(I − A∗1D

−1A2) = 0 and A∗1D
−1A2 = 0. Now, it

follows that

A1[(I −A∗1D
−1A1)X12 −A∗1D

−1A2X22] = 0

and

A1[A∗1D
−1 + (I −A∗1D

−1A1)X11 −A∗1D
−1A2X21] =

[
I 0
0 0

]

is selfadjoint. An elementary computation shows that ABB(1,3)A(1,3)AB =

AB.

(2) =⇒ (3): Obvious.

(3) =⇒ (1): From the proof of the implication (1) =⇒ (2), it follows

that the condition R(A∗AB) ⊂ R(B) is equivalent to A∗2A1 = 0. Now,

ABB†A† =
[

A1A∗1D−1 0

0 0

]
is selfadjoint, implying that [A1A

∗
1, D

−1] = 0 =

[A1A
∗
1, D] (here [U, V ] = UV−V U). Also,

[
A1B1 0

0 0

]
= AB = ABB†A†AB =[

A1A∗1D−1B1 0

0 0

]
, implying that A1B1 = A1A

∗
1D

−1A1B1 = D−1A1A
∗
1A1B1.

Hence, we get DA1B1 = A1A
∗
1A1B1 and consequently A2A

∗
2A1B1 = 0. Since
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B1 is invertible, we obtain A2A
∗
2A1 = 0 and R(A1) ⊂ N (A2A

∗
2) = N (A∗2).

It follows that A∗2A1 = 0.

(4) =⇒ (3): Obvious.

(1) =⇒ (4): IfR(A∗AB) ⊂ R(B), we have to prove that B†A†ABB†A† =

B†A†. Notice that AB =
[

A1B1 0

0 0

]
and B†A† =

[
B−1

1 A∗1D−1 0

0 0

]
. Using

previously proved facts: D commutes with A1A
∗
1 (the implication (3) =⇒

(1)) and matrix forms of A1 and D (the implication (1) =⇒ (2)), we compute

as follows:

B−1
1 A∗1D

−1A1B1B
−1
1 A∗1D

−1 = B−1
1 A∗1A1A

∗
1D

−2

= B−1
1 A∗1

[
A11A

∗
11 0

0 0

] [
(A11A

∗
11)

−2 0
0 (A22A

∗
22)

−2

]

= B−1
1 A∗1

[
(A11A

∗
11)

−1 0
0 0

]
= B−1

1 A∗1D
−1.

Now, it obviously follows that B†A†ABB†A† = B†A† is satisfied. ¤

In the same manner we can prove the following result:

Theorem 2.3. Let A ∈ L(H,K) and B ∈ L(K, L) be such that A,B,AB

have closed ranges. Then the following statements are equivalent:

(1) R(BB∗A∗) ⊂ R(A∗);

(2) B{1, 4} ·A{1, 4} ⊂ (AB){1, 4};
(3) B†A† ∈ (AB){1, 4};
(4) B†A† ∈ (AB){1, 2, 4}.

For complex matrices see the following literature: the equivalence (1) ⇐⇒
(4) in both Theorem 2.2 and Theorem 2.3 is proved in [T2]; conditions (2)

in both Theorem 2.2 and Theorem 2.3 are investigated in [WG].

Now, as a corollary, we obtain the following result.

Corollary 2.4. Let A ∈ L(H, K) and B ∈ L(K, L) be such that A,B,AB

have closed ranges. Then the following statements are equivalent:

(1) R(A∗AB) ⊂ R(B) and R(BB∗A∗) ⊂ R(A∗);
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(2) B{1, 3} ·A{1, 3} ⊂ AB{1, 3} and B{1, 4} ·A{1, 4} ⊂ AB{1, 4};
(3) B†A† ∈ AB{1, 3, 4};
(4) B†A† = (AB)†.

It is important to mention that the equivalence (1) ⇐⇒ (4) is a classical

result, proved for complex matrices in [G], and for bounded operators on

Hilbert spaces in [B1], [B2] and [I].

Remark 2.5. The equivalence (3) ⇐⇒ (4) in Theorem 2.2, Theorem 2.3

and Corollary 2.4, suggests that the ”{2} - property” is implied by the rest.

For matrices, this follows from a rank argument. If X is a {1}-inverse of A,

then X is also a {2}-inverse if and only if rank X = rank A. Since we can not

talk about ”rank“ here, we resolve this situation using the special partition

of operators.

Results which are related to the reverse order rule for generalized inverses

follow. Multiple matrix products are considered in [Hw] and [T1]. General

condition to the reverse order rule for inner inverses are given in [W2] and for

outer inverses in [D]. The reverse order rule for the weighted Moore-Penrose

inverse is investigated in [SW].

Finally, we find that results of this paper are closely connected with the

results of H. J. Werner [W1]. Although in [W1] the finite dimensional tech-

nique is used, the results which will be presented here, are valid in arbitrary

Hilbert spaces also.

In [W1] the geometric approach is involved, taking the range and the

null space of the generalized inverses. Among other things, the following

result is proved in [W1, Theorem 5.5] (interpreted in an infinite dimensional

settings).

Theorem 2.6. Let B ∈ L(H,K) and A ∈ L(K, L), such that A, B and

C = AB have closed ranges. Let T be a closed subspace of H such that

T
•
+ N (B) = H (the sum is not necessarily orthogonal) and R(C∗) ⊂ T .
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Then the following statements are equivalent:

(1) There exist some operators A− and B− satisfying: AA−A = A,

A−A = PR(A∗),N (A), BB−B = B, B−B = PT,N (B), BB− =

PR(B),N (B∗), such that the following is satisfied: D = B−A−, CDC

= C and DC = PR(C∗),N (C).

(2) R(BB∗A) ⊂ R(A∗);

(3) For each operators A− and B− satisfying: AA−A = A, A−A =

PR(A∗),N (A), BB−B = B, B−B = PT,N (B), BB− = PR(B),N (B∗),

the following holds: D = B−A−, CDC = C and DC = PR(C∗),N (C).

We see that for C = AB the condition R(C∗) ⊂ R(B∗) holds. Hence, for

T = R(B∗) we get the result closely related to our Theorem 2.3. Now, the

corollary is stated according to our notations.

Corollary 2.7. Let B ∈ L(H, K) and A ∈ L(K, L), such that A, B and

C = AB have closed ranges. Then the following statements are equivalent:

(1) There exist some A− ∈ A{1, 4} and some B− ∈ B{1, 3, 4} such that

B−A− ∈ C{1, 4}.
(2) R(BB∗A∗) ⊂ R(A∗);

(3) A{1, 4} ·B{1, 3, 4} ⊂ C{1, 4}.

We see that Corollary 2.7 contains a weaker result than our Theorem 2.3.
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sending me his paper [W1], and for remarks that his work in [W1] is closely

related to the present results. I am also grateful to the referee for helpful
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