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Abstract

In this paper normal and hyponormal operators with closed ranges,
as well as EP operators, are characterized in arbitrary Hilbert spaces.
All characterizations involve generalized inverses. Thus, recent results
of S. Cheng and Y. Tian (Linear Algebra Appl. 375 (2003), 181–195)
are extended to infinite dimensional settings.
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1 Introduction

There are many conditions for a linear bounded operator on a Hilbert space
to be normal (see [12, 13, 14]). Recently, S. Chen and Y. Tian (see [8])
obtained several results characterizing normal and EP complex matrices.
In this paper we characterize normal and hyponormal operators with closed
ranges, as well as EP operators on arbitrary Hilbert spaces. Using properties
of operator matrices, we obtain an extension of results from [8] in infinite
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dimensional settings. These characterizations are obtained using the Moore-
Penrose or the group inverse of a linear bounded operator with a closed
range.

In this paper we use H and K to denote Hilbert spaces and L(H,K) to
denote the set of all linear bounded operators from H to K. The Moore-
Penrose inverse of A ∈ L(H, K) is denoted by A† (see [3], page 40). We
use R(A) and N (A), respectively, to denote the range and the null-space of
A ∈ L(H, K). For given A ∈ L(H, K) the operator A† ∈ L(K,H) exists if
and only if R(A) is closed. If A† exists, then A is called relatively regular,
or Moore-Penrose invertible.

An operator A ∈ L(H) is normal, if A∗A = AA∗. If A = A∗, then A is
Hermitian, or selfadjoint. The inner product (·, ·) in H defines the natural
order of Hermitian operators. Namely, if A and B are Hermitian, then
A ≤ B if and only if (Ax, x) ≤ (Bx, x) for all x ∈ H. If A = A∗ and A ≥ 0,
then A is non-negative. If A ≥ 0 and A is invertible, then A is positive and
we write A > 0. If A∗A ≥ AA∗, then A is hyponormal.

The notion of EP operators in well-known (see [2, 3, 6, 7, 8, 9, 16, 17,
18, 19, 20]). An operator A ∈ L(H) is EP if R(A) is closed and [A,A†] = 0.
Here [A,B] = AB−BA. The class of all normal operators with closed range
is a subclass of EP operators, while the class of all hyponomal operators
with closed range is not a subclass of EP operators. Also, the class of all
EP operators is not contained in the set of all hyponormal operators. An
elementary observations shows that a closed range operator A is EP if and
only if R(A) = R(A∗).

If A is an EP operator, then A† is also the Drazin inverse of A, or, more
precisely, the group inverse of A (see [3] pages 156 and 163). In this case
the Drazin index of A (denoted by indA) is not greater than 1. Moreover, A
has the following nice matrix decomposition with respect to the orthogonal
sum of subspaces:

A =

[
A1 0
0 0

]
:

[
R(A)
N (A)

]
→

[
R(A)
N (A)

]
, (1.1)

where A1 is invertible. In this case A† =

[
A−1

1 0
0 0

]
.

More results on generalized inverses can be found in [3, 4, 6, 15].
If A ∈ L(H), then the ascent and descent of A, respectively, are denoted

by ascA and dscA.
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We prove several new characterizations of normal, hyponormal and EP
operators.

The paper is organized as follows. Section 2 contains some auxiliary
results. In Section 3 characterizations of normal operators with closed ranges
are given. Section 4 is devoted to hyponormal operators. In Section 4, EP
operators on Hilbert spaces are investigated.

Thus, results from [8] are extended to infinite dimensional settings. No-
tice that in [8] the finite dimensional technique is involved, mostly properties
of a rank of complex matrices. In this paper a systematic use is made of
operator matrix representations, and of generalized inverses of closed range
operators.

2 Auxiliary results

All results are proved using properties of operator matrices and various
matrix representations of relatively regular operators. First, we state one
useful result.

Lemma 2.1 Let A ∈ L(H) have a closed range. Then the operator A has
the following three matrix representations with respect to the orthogonal sums
of subspaces:

(2.1.1) A =

[
A1 0
0 0

]
:

[
R(A∗)
N (A)

]
→

[
R(A)
N (A∗)

]
, where A1 is invertible.

(2.1.2) A =

[
A1 A2

0 0

]
:

[
R(A)
N (A∗)

]
→

[
R(A)
N (A∗)

]
, where B = A1A

∗
1 +

A2A
∗
2 maps R(A) into itself and B > 0.

(2.1.3) A =

[
A1 0
A2 0

]
:

[
R(A∗)
N (A)

]
→

[
R(A∗)
N (A)

]
, where B = A∗1A1 +

A∗2A2 maps R(A∗) into itself and B > 0.

Here Ai denotes different operators in any of these three cases.

The proof of Lemma 2.1 is straightforward.
We need the following result (see [21] for a finite dimensional case, and

[11] for an infinite dimensional case). Recall that A has a generalized Drazin
inverse Ad if and only if 0 is not an accumulation spectral point of A.

3



Lemma 2.2 Let X and Y be Banach spaces, A ∈ L(X), B ∈ L(Y ) and
C ∈ L(Y, X). Then A and B have generalized Drazin inverses if and only

if M =

[
A C
0 B

]
has the generalized Drazin inverse, which is given by

Md =

[
Ad S
0 Bd

]

for some S ∈ L(Y, X). Moreover, indM < ∞ if and only if indA < ∞ and
indB < ∞.

We need the following important result (see [5, 22]).

Lemma 2.3 Let A ∈ L(H).
(a) If ascA < ∞ and dscA < ∞, then ascA = dscA.
(b) If at least one of the quantities dimN (T ), dimN (T ∗) is finite, then

asc(T ) < ∞ implies dimN (T ) ≤ dimN (T ∗), and dsc(T ) < ∞ implies
dimN (T ∗) ≤ dimN (T ).

The following result is proved in [1] for a finite dimensional case. The
infinite dimensional case is proved in [10].

Lemma 2.4 Let M ∈ L(H) be selfadjoint and let M have the decomposition
(with respect to the orthogonal sum of subspaces of H):

M =

[
A B
B∗ C

]
,

such that A has a closed range. Then M ≥ 0 if and only if the following
hold:

(1) A ≥ 0;
(2) AA†B = B;
(3) C −B∗A†B ≥ 0.

Analogous conditions can be formulated in the case when C has a closed
range.

We also need the following elementary result.

Lemma 2.5 Let A ∈ L(H). If A and AA∗ + A∗A have closed ranges, then
(AA∗ + A∗A)(AA∗ + A∗A)†AA∗ = AA∗, i.e. R(AA∗) ⊂ R(AA∗ + A∗A).
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Proof. Let M =

[
AA∗ + A∗A AA∗

AA∗ AA∗

]
. As A is a closed range operator,

so is AA∗. Since AA∗ ≥ 0, AA∗(AA∗)†AA∗ = AA∗ and AA∗ + A∗A −
AA∗(AA∗)†AA∗ = A∗A ≥ 0, by Lemma 2.4 it follows that M ≥ 0. Ap-
plying part (2) of Lemma 2.4 to M , we obtain that (AA∗ + A∗A)(AA∗ +
A∗A)†AA∗ = AA∗ is satisfied. 2

The following example (actually, a counter-example) is interesting and
it is related to results obtained in Sections 3 and 5. This example illustrates
the difference between the finite dimensional case (considered in [8]) and the
infinite dimensional case (which is considered in this paper).

Example 2.1 Consider the real Hilbert space `2 and let A ∈ L(`2) be the left
shift, i.e. A(x1, x2, . . .) = (x2, x3, . . .). Then A∗(x1, x2, . . .) = (0, x1, x2, . . .)
and A† = A∗. In this case AA† = I and A†A(x1, x2, . . .) = (0, x2, x3, . . .).
Let B = A∗. Then B∗ = B† = A. In this case (BB∗)† = BB∗. Let
X = (A∗)2. Operators A and B are neither normal, nor EP, but they
satisfy the following equalities (which in the finite dimensional case would
ensure the normality or the EP property) :

(1) BB†B∗BBB† = BB∗;
(2) B∗B(BB∗)†B∗B = BB∗;
(3) AX = A∗, (A†)∗X = A†;
(4) AA† = A2(A†)2;
(5) AAA† + (AAA†)∗ = A + A∗.

It is important to mention that indA = ∞, ascA = ∞ and dscB = ∞
hold.

3 Normal operators

In this section we characterize normal operators with closed ranges on ar-
bitrary Hilbert spaces. Recall that a normal operator A has closed range if
and only if it has the group inverse A#.

Theorem 3.1 Let A ∈ L(H) have a closed range. Then the following state-
ments are equivalent:

(1) A is normal;
(2) A(AA∗A)† = (AA∗A)†A;
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(3) A(A∗ + A†) = (A∗ + A†)A;
(4) A†(A + A∗) = (A + A∗)A†;
(5) indA ≤ 1 and A#A∗ = A∗A#;
(6) dscA < ∞ and A∗A(AA∗)†A∗A = AA∗;
(7) ascA < ∞ and AA∗(A∗A)†AA∗ = A∗A;
(8) There exists some X ∈ L(H) such that AA∗X = A∗A and A∗AX =
AA∗;
(9) ascA < ∞ and there exists some X ∈ L(H) such that AX = A∗ and
(A†)∗X = A†.

Proof. Property (1) implies conditions (2)-(9); this is either elementary or
follow from (1.1).

(2)⇒(1): Let A have the decomposition (2.1.2). Then AA∗ =

[
B 0
0 0

]
,

where B = A1A
∗
1+A2A

∗
2 > 0. In this case let C = AA∗A =

[
BA1 BA2

0 0

]
.

Then R(C) = R(A) is closed and CC∗ =

[
B3 0
0 0

]
. We get (AA∗A)† =

C∗(CC∗)† =

[
A∗1B−2 0
A∗2B−2 0

]
. From A(AA∗A)† = (AA∗A)†A we get the

following identities: B−1 = A∗1B−2A1 and A∗2B−2A2 = 0. Hence, A2 = 0
and B = A1A

∗
1 > 0. It follows that A1 is right invertible.

Since A1 ∈ L(R(A)) and R(A) = R(A∗1) ⊕N (A1), consider the matrix

decomposition A1 =

[
U 0
V 0

]
:

[
R(A∗1)
N (A1)

]
→

[
R(A∗1)
N (A1)

]
. Obviously,

A1 satisfies the identity A1(A1A
∗
1A1)† = (A1A

∗
1A1)†A1. Now, A∗1A1 =[

E 0
0 0

]
, where E = U∗U + V ∗V : R(A∗1) → R(A∗1) is positive and in-

vertible. If D = A1A
∗
1A1, then D has closed range and D† = (D∗D)†D∗ =[

E−2U∗ E−2V ∗

0 0

]
. From A1D

† = D†A1 we get the equalities: UE−2U∗ =

E−1 and V E−2V ∗ = 0. Hence, V = 0, A1 =

[
U 0
0 0

]
and E = U∗U is

invertible. It follows that U is left invertible. Since A1 is right invertible,
we conclude that U is invertible and N (A1) = {0}. Finally, A1 is invertible.
Now, from the equality A1(A1A

∗
1A1)−1 = (A1A

∗
1A1)−1A1 it follows that A1

is normal. Consequently, A is normal.
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(3)⇒(1): Let A have the form (2.1.2). Then AA∗ =

[
B 0
0 0

]
, where

B = A1A
∗
1 + A2A

∗
2 is positive, and A† = A∗(AA∗)† =

[
A∗1B−1 0
A∗2B−1 0

]
. From

A(A∗ + A†) = (A∗ + A†)A we obtain B + I = A∗1(I + B−1)A1 and A∗2(I +
B−1)A2 = 0. Since I + B and I + B−1 are positive, it follows that A1 is left
invertible and A2 = 0. Hence, B = A1A

∗
1 is invertible, A1 is right invertible.

Consequently, A1 is invertible. We have A1A
∗
1 + I = A∗1A1 +A∗1(A1A

∗
1)
−1A1

and A1 is normal. Consequently, A is normal.
(4)⇒(1): Step one. First, suppose that A is left invertible. If A†(A +

A∗) = (A + A∗)A† holds, we shall prove that A is actually invertible. Since
A is left invertible, we get A†A = I. Suppose that A is not right invertible.
Then the decomposition H = R(A)⊕N (A∗) is non-trivial. Then A has the

non-trivial form (2.1.2). We have AA∗ =

[
B 0
0 0

]
, where B = A1A

∗
1 +

A2A
∗
2 > 0, and A† =

[
A∗1B−1 0
A∗2B−1 0

]
. Now, we have AA† =

[
I 0
0 0

]
and

A†A =

[
I 0
0 I

]
. Finally, from A†(A+A∗) = (A+A∗)A† we get the equality

[
A∗1B−1A∗1 0
A∗2B−1A∗1 I

]
=

[
A∗1A∗1B−1 0
A∗2A∗1B−1 0

]
, which is impossible. Consequently,

N (A∗) = {0} and A is invertible. Hence, A is normal.

Step two. In general, let A have the form (2.1.3). Then A∗A =

[
B 0
0 0

]
,

where B = A∗1A1+A∗2A2 > 0. Since A† =

[
B−1A∗1 B−1A∗2

0 0

]
, from A†(A+

A∗) = (A + A∗)A† we get B−1A∗1(A1 + A∗1) + B−1A∗2A2 = (A1 + A∗1)B−1A∗1
and A2B

−1A∗2 = 0. The fact B > 0 implies A2 = 0. Now, B = A∗1A1 is
invertible and A is left invertible. Hence, we obtain (A∗1A1)−1A∗1(A1+A∗1) =
(A1 + A∗1)(A∗1A1)−1A∗1, i.e. A†1(A1 + A∗1) = (A1 + A∗1)A

†
1. From Step one it

follows that A1 is invertible and normal. Hence, A is normal.
(5)⇒(1): Since (A#)# = A and C# double commutes with C whenever

it exists, this implication is trivial.
(6)⇒(1): Let A have the form (2.1.2). Then B = A1A

∗
1 + A2A

∗
2 > 0,

AA∗ =

[
B 0
0 0

]
and A∗A =

[
A∗1A1 A∗1A2

A∗2A1 A∗2A2

]
. From A∗A(AA∗)†A∗A =
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AA∗ we get the following: A∗1A1B
−1A∗1A1 = B and A∗2A1B

−1A∗1A2 = 0.
From the first equality we obtain that A1 is left invertible. Since dsc(A) <
∞, it follows that A1 is invertible (Lemma 2.3). From the second equality
it follows that (B−1/2A∗1A2)∗(B−1/2A∗1A2) = 0 and B−1/2A∗1A2 = 0. From
the invertibility of B and A1 we get A2 = 0. Now B−1 = (A1A

∗
1)
−1 =

(A∗1)−1A−1
1 . The equality A∗1A1B

−1A∗1A1 = B is equivalent to C2 = I, where
C = A−1

1 A∗1A1(A∗1)−1 = (A−1
1 A∗1)(A

−1
1 A∗1)∗. The operator C is positive.

Since the square root of a positive operator I is unique, it follows that
C = I. Consequently, A1 is normal. We obtain that A is normal also.

Example 2.6 (2) shows that the condition dsc(A) < ∞ cannot be omitted.
(7)⇒(1): This part is dual to the previous one.
(8)⇒(1): Step one. Suppose that A is invertible. From AA∗X = A∗A

and A∗AX = AA∗ we conclude that AA∗(A∗A)−1AA∗ = A∗A, or, equiva-
lently, S2 = I, where S = (A∗A)−1/2AA∗(A∗A)−1/2 = S∗ > 0. Since the
square root of a positive operator I is unique, we conclude S = I. Conse-
quently, A is normal.

Step two. In general, suppose that A has a closed range. From AA∗X =
A∗A and A∗AX = AA∗ we conclude that R(A) = R(A∗) and A is an
EP operator. Hence, A has the form (1.1), where A1 is invertible. Let

X =

[
X1 X2

X3 X4

]
with respect to the same decomposition of the space.

From AA∗X = A∗A and A∗AX = AA∗ we conclude that A1A
∗
1X1 = A∗1A1

and A∗1A1X1 = A1A
∗
1 hold. Using Step one, we get that A1 is normal.

Hence, A is normal.
(9)⇒(1): The condition AX = A∗ is equivalent to R(A∗) ⊂ R(A) (con-

sequently, N (A∗) ⊂ N (A)). Hence, A has the form A =

[
A1 0
0 0

]
:

[
R(A)
N (A∗)

]
→

[
R(A)
N (A∗)

]
and A∗ =

[
A∗1 0
0 0

]
:

[
R(A)
N (A∗)

]
→

[
R(A)
N (A∗)

]
,

where A1 is onto. The condition ascA < ∞ is equivalent to ascA1 < ∞.

Hence, A1 is invertible. Let X =

[
X1 X2

X3 X4

]
:

[
R(A∗)
N (A)

]
→

[
R(A)
N (A∗)

]
.

From AX = A∗ and (A†)∗X = A† we get A1X1 = A∗1 and (A−1
1 )∗X1 = A−1

1 .
We see that X1 = A−1

1 A∗1 = A∗1A
−1
1 holds, so A1 is normal. Consequently,

and A is normal.
Example 2.6 (3) shows that the condition ascA < ∞ cannot be omitted.

2
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For finite rank operators the following result can be proved.

Theorem 3.2 Let A ∈ L(H) be a finite rank operator. Then the following
statements are equivalent:

(1) A is normal;
(2) AA†A∗AAA† = AA∗;
(3) A†AA∗AA†A = AA∗;

Proof. (2)⇒(1): Let A have the form (2.1.2). Again, AA∗ =

[
B 0
0 0

]
,

where B = A1A
∗
1+A2A

∗
2 > 0. Also, A† =

[
A∗1B−1 0
A2B

−1 0

]
. From AA†A∗AAA† =

AA∗ we get the equality A∗1A1 = A1A
∗
1 + A2A

∗
2 > 0. Hence, A1 is hyponor-

mal on a finite dimensional space R(A). It follows that A1 is normal and
A2 = 0. Consequently, A is normal.

The Example 2.6 (1) shows that the condition dimR(A) < ∞ can not
be avoided easily.

Eventually, the additional condition ind(A) < ∞, which is frequently
used later (with: A has a closed range, but A is not a finite rank operator),
would not imply that A is normal (at least, this is not obvious). Precisely, if
indA < ∞, then indA1 < ∞ (Lemma 2.2). From A∗1A1 = A1A

∗
1 + A2A

∗
2 > 0

it follows that A1 is left invertible and hyponormal. From indA1 < ∞ we
get that A1 is invertible. However, there exist hyponormal and invertible
operators on infinite dimensional Hilbert spaces, which are not normal.

(3)⇒(1): This implication can be proved in the same way as the previous
one. 2

4 Hyponormal operators

In this section we characterize hyponormal operators with closed ranges.

Theorem 4.1 Let A and AA∗+A∗A have closed ranges. Then the following
statements are equivalent:

(1) A is hyponormal;
(2) 2AA∗(AA∗ + A∗A)†AA∗ ≤ AA∗.
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Proof. (1)⇒(2): Let A be hyponormal, i.e. A∗A ≥ AA∗. Consider the
matrix

M =

[
AA∗ + A∗A AA∗

AA∗ 1
2AA∗

]
.

Since 1
2AA∗ ≥ 0,

1
2
AA∗

(
1
2
AA∗

)†
AA∗ = AA∗

and

AA∗ + A∗A−AA∗
(

1
2
AA∗

)†
AA∗ = A∗A−AA∗ ≥ 0,

by Lemma 2.4 we get that M ≥ 0. Applying part (3) of Lemma 2.4 to M
we get

1
2
AA∗ −AA∗(AA∗ + A∗A)†AA∗ ≥ 0

and (2) is satisfied.
(2)⇒(1): Suppose that (2) holds. Using Lemma 2.5, we have the follow-

ing:

(AA∗ + A∗A) ≥ 0, (AA∗ + A∗A)(AA∗ + A∗A)†AA∗ = AA∗,
1
2
AA∗ −AA∗(AA∗ + A∗A)†AA∗ ≥ 0.

According to Lemma 2.4 we conclude that that the operator

M =

[
AA∗ + A∗A AA∗

AA∗ 1
2AA∗

]

is non-negative. Applying again Lemma 2.4 to M , using the opposite blocks,
we conclude that A∗A ≥ AA∗, i.e. A is hyponornal. 2

Analogously, the following result can be proved.

Theorem 4.2 Let A and AA∗+A∗A have closed ranges. Then the following
statements are equivalent:

(1) A∗ is hyponormal;
(2) 2A∗A(AA∗ + A∗A)†A∗A ≤ A∗A.
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Notice that in [8] it is proved that if H is finite dimensional, then A is
normal if and only if 2AA∗(AA∗ + A∗A)†AA∗ = AA∗ holds. An easy proof
follows. If A is normal, then obviously 2A∗A(AA∗ + A∗A)†A∗A = A∗A
holds. On the other hand, if 2A∗A(AA∗ + A∗A)†A∗A = A∗A holds, then
the step (2)⇒(1) from the proof of Theorem 4.1 can be used to see that A
is hyponormal. Since H is finite dimensional, it follows that A is normal.

5 EP operators

In this section EP operators on Hilbert spaces are characterized.

Theorem 5.1 Let A ∈ L(H) have a closed range. Then the following state-
ments are equivalent:

(1) A is EP;
(2) AA† = A2(A†)2 and ascA < ∞;
(3) A†A = (A†)2A2 and dscA < ∞.
(4) indA ≤ 1 and AA†A∗A = A∗AAA†;
(5) indA ≤ 1 and A†AAA∗ = AA∗A†A.
(6) indA ≤ 1 and AA†(AA∗ −A∗A) = (AA∗ −A∗A)AA†;
(7) indA ≤ 1 and A†A(AA∗ −A∗A) = (AA∗ −A∗A)AA†.
(8) A∗A#A + AA#A∗ = 2A∗;
(9) A†A#A + AA#A† = 2A†.
(10) AAA† + A†AA = 2A.
(11) AAA† + (AAA†)∗ = A + A∗ and ascA < ∞;
(12) A†AA + (A†AA)∗ = A + A∗ and dscA < ∞.

Proof. Property (1) implies conditions (2)-(12); this is either elementary or
follows from (1.1).

(2)⇒(1): Let A have the matrix form (2.1.2). Then (AA∗)† =

[
B−1 0

0 0

]
,

A† = A∗(AA∗)† =

[
A∗1B−1 0
A∗2B−1 0

]
and AA† =

[
I 0
0 0

]
. From AA† =

A2(A†)2 the following equality follows:
[

I 0
0 0

]
=

[
A1A

∗
1B

−1 0
0 0

]
.
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Hence, A1A
∗
1B

−1 = I and A1A
∗
1 = B = A1A

∗
1 +A2A

∗
2, implying that A2 = 0

and A1 is right invertible. Now, A =

[
A1 0
0 0

]
. The condition ascA < ∞

is equivalent to ascA1 < ∞. From Lemma 2.3 it follows that A1 is invertible.

Finally, A† =

[
A−1

1 0
0 0

]
and A is EP.

Example 2.6 (4) shows that the condition ascA < ∞ cannot be omitted.
(3)⇒(1): Follows from the previous implication, knowing the fact (A†)† =

A.
In statements (4)-(7) it is only interesting to consider the case indA = 1.

Otherwise, if indA = 0, then A is invertible, so it is EP. Hence, in (4)-(7)
we assume that indA = 1 holds.

(4)⇒(1): Let A have the decomposition (2.1.2). We have

A∗A =

[
A∗1A1 A∗1A2

A∗2A1 A∗2A2

]
.

From AA†A∗A = A∗AAA† we obtain the equality
[

A∗1A1 A∗1A2

0 0

]
=

[
A∗1A1 0
A∗2A1 0

]
,

implying A∗1A2 = 0.
We have R(A) = {A1u+A2v : u ∈ R(A), v ∈ N (A∗)} = R(A1)+R(A2).

Obviously, if x ∈ R(A) and y ∈ N (A∗), then

[
x
y

]
∈ N (A) if and only if

A1x + A2y = 0. From A2 =

[
A2

1 A1A2

0 0

]
it follows that

[
x
y

]
∈ N (A2)

if and only if A1(A1x + A2y) = 0. Since indA = 1, we have

[
x
y

]
∈ N (A)

if and only if

[
x
y

]
∈ N (A2).

Now, let u ∈ R(A) and A1u = 0. Then there exist some x ∈ R(A) and
y ∈ N (A∗), such that u = A1x + A2y. Also, A1(A1x + A2y) = 0, implying
that u = A1x + A2y = 0. Hence, A1 is 1–1 (on R(A)).

From Lemma 2.2, the condition indA = 1 implies indA1 < ∞. Since A1

is 1–1, we get that A1 is invertible. From A∗1A2 = 0 we get A2 = 0 and A is
EP.
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(5)⇒(1): This part can be proved in a similar way as the previous one,
using the (2.1.3) matrix form of A.

(6)⇒(1): Let A have the decomposition (2.1.2). Then (AA∗)† =

[
B−1 0

0 0

]
,

A† = A∗(AA∗)† =

[
A1B

−1 0
A∗2B−1 0

]
and A∗A =

[
A∗1A1 A∗1A2

A∗2A1 A∗2A2

]
. From

AA†(AA∗−A∗A) = (AA∗−A∗A)AA† we obtain A∗1A2 = 0. Since indA = 1,
we get indA1 < ∞ and A1 is 1–1 (for the same reason as in the proof of
(4)⇒(1)). Hence A1 is invertible, A2 = 0 and A is EP.

(7)⇒(1): This part can be proved in the same way as the previous one,
taking the decomposition (2.1.3) for A.

(8)⇒(1): Multiplying the equality A∗A#A + AA#A∗ = 2A∗ by A from
the left side, we obtain AA∗(I − A#A) = 0. Since I − A#A is a projection
onto N (A), it follows that N (A) ⊂ N (AA∗) = N (A∗) holds.

Taking conjugates of A∗A#A + AA#A∗ = 2A∗, we obtain A∗(A∗)#A +
A(A∗)#A∗ = 2A. We replace A∗ by B and obtain BB#B∗ + B∗B#B =
2B∗. In the same way as before we get N (B) ⊂ N (B∗), or, equivalently
N (A∗) ⊂ N (A).

Consequently, we get N (A) = N (A∗) and R(A) = R(A∗). Hence, A is
EP.

(9)⇒(1): Multiplying A†A#A + AA#A† = 2A† by A from the left side,
we get AA# = AA†. Hence, AA# is the orthogonal projection. Multiplying
the equality A†A#A + AA#A† = 2A† by A from the right side, we get
A#A = A†A and A#A is orthogonal. Consequently, A† = A# and A is EP.

(10)⇒(1): Multiplying AAA† + A†AA = 2A by A from the right side,
we get (A†A)A2 = A2. Since A†A is a projection onto R(A∗), it follows that

R(A2) ⊂ R(A∗). Let A have the form (2.1.3). Then A2 =

[
A2

1 0
A2A1 0

]
.

Since R(A2) ⊂ R(A∗), we conclude that A2A1 = 0 and A2 =

[
A2

1 0
0 0

]
.

From (A∗A)† =

[
B−1 0

0 0

]
with B = A∗1A1 + A∗2A2 > 0, we get A† =

[
B−1A∗1 B−1A∗2

0 0

]
. Also, A†A =

[
I 0
0 0

]
. From AAA†+A†AA = 2A we

get A2 = 0 and A2
1B

−1A∗1 = A1. Now, B = A∗1A1 is invertible and B−1 =
B† = A†1(A

∗
1)
†, since the reverse order rule for the Moore-Penrose inverse

holds in this special case. Particularly, A1 is left invertible and A∗1 is right
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invertible. We have A2
1A

†
1(A

∗
1)
†A∗1 = A1 and consequently A1(A1A

†
1) = A1.

Since A1A
†
1 is a projection onto R(A1), we get dscA1 ≤ 1. By Lemma 2.3

we obtain that A1 is invertible. Hence, A is EP.
(11)⇒(1): Let A have the form (2.1.2). Then B = A1A

∗
1 + A2A

∗
2 > 0,

A† =

[
A∗1B−1 0
A∗2B−1 0

]
and AA† =

[
I 0
0 0

]
. Now, from AAA† + (AAA†)∗ =

A + A∗, it follows that A2 = 0. Hence, B = A1A
∗
1 is invertible and A1 is

right invertible. Now, the fact ascA < ∞ is equivalent to ascA1 < ∞. By
Lemma 2.3 it follows that A1 is invertible. We conclude that A is EP.

Example 2.6 (5) shows that the condition ascA < ∞ cannot be omitted.
(12)⇒(1): This part can be proved in the same way as the previous one.

2
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