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Outer generalized inverses of

centralizers over semiprime rings

Dragan S. Djordjević

Abstract

Let T be a centralizer over a semiprime ring. We find the necessary
and sufficient conditions for T to have an outer generalized inverse with
prescribed range and kernel (in the ring of all centralizers). As a corollary
we obtain some results from (M. A. Chaudhry and M. S. Samman, Gener-
alized inverses of centralizers of semiprime rings, Aequationes Math. 71
(2006), 246–252).

1 Introduction

Recently (see [3]), new results appeared concerning generalized inverses of cen-
tralizers on semiprime rings. Precisely, if T is a centralizer, then there exists
the commutative generalized inverse of T if and only if T is orthogonal. The
commutativity condition is a general property of centralizers, and we shall re-
call the definition of orthogonal centralizers later. Our aim is to consider outer
generalized inverses of centralizers on semiprime rings, and then to obtain some
results from [3] as a corollary. We recall the interest for outer generalized in-
verses and related topics in [1, 5, 6, 7, 8, 11]. Generalized inverses are useful
in solving overdetermined linear systems and singular operator equations (see
[1, 2, 4, 11]).

Recall that the ring R is called semiprime, if aRa = {0} implies a = 0. Let
T : R → R be an additive mapping. Then T is called a centralizer on R, if and
only if T (xy) = xT (y) = T (x)y hold for every x, y ∈ R. Equivalently, T is a
centralizer on R, if and only if T is additive and T (x)y = xT (y) holds for every
x, y ∈ R. The set M(R) of all centralizers on R is a commutative ring. For
further properties of centralizers on semiprime rings see [3, 9, 10].

If T ∈ M(R), then R(T ) is the range, and N (T ) is the kernel of T . Notice
that both R(T ) and N (T ) are two-sided ideals of R.
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Let T ∈M(R) be given. If there exists some S ∈M(R) such that STS = S
holds, then S is an outer generalized inverse of T in the ring M(R). In this
case we denote U = R(S) and V = N (S). Hence, S = T

(2)
U,V , i.e. S is an outer

generalized inverse of T with the fixed (prescribed) range and kernel.

2 Results

We are interested in the existence and the uniqueness of outer generalized in-
verses with fixed range and kernel (in a way that is is well-known for complex
matrices, or linear bounded operators on Banach spaces). The following the-
orem represents the existence and the uniqueness of outer generalized inverses
with fixed range and kernel, considering the situation in M(R).

Theorem 2.1. Let R be a semiprime ring, and let M(R) and T ∈ M(R) be
as above. Suppose that U and V are two-sided ideals of R. Then there exists
S = T

(2)
U,V ∈M(R), if and only if the following hold:

(a) there exist two-sided ideals U1 and V1 of R, such that R = U ⊕ U1 =
V1 ⊕ V ;

(b) the reduction T |U : U → T (U) is invertible;
(c) T (U) = V1.
Moreover, if previous conditions are fulfilled, then such an S ∈ M(R) is

unique.

Proof. Suppose that S = T
(2)
U,V ∈M(R) exists for some two-sided ideals U ,V of

R. Then ST and TS belong toM(R). It is easy to see thatR(ST ) = R(S) = U .
We take U1 = N (ST ) = R(I − TS), and get R = U ⊕ U1. Since V = N (S), we
take V1 = R(TS), and obtain R = R(TS) ⊕ N (TS) = V1 ⊕ V. By definition,
we have T (U) = V1. We have to prove that T is one-to-one on U . Suppose that
Tx = 0 and x ∈ R(S) = U . Then x = Sy for some y ∈ R. Hence, TSy = 0 and
Sy = STSy = 0, implying that x = 0. Hence, T |U : U → V1 is invertible.

We have even more. The restriction S|V1 : V1 → U is also invertible. Hence,
S|V1 = (T |U )−1.

On the other hand, suppose that the conditions (a), (b) and (c) hold. Let
x ∈ R. Then x = u+v, where u ∈ V1 and v ∈ V. There exists the unique w ∈ U
such that T (w) = u. Define S(x) = w. We see that STSx = STw = Su = Sx
for every x ∈ R. Hence, STS = S.

We have to verify that S is a centralizer on R. First, we show that S is
additive on R. Let x = u+ v and y = a+ b, where u, a ∈ V1 and v, b ∈ V. Then
there exist the unique w, z ∈ U such that T (w) = u and T (z) = a. These facts
mean that S(u) = w and S(a) = z, T (w + z) = u + a (since T is additive) and
S(u + a) = w + z. Hence,

S(x+y) = S((u+a)+(v+b)) = S(u+a) = w+z = S(u)+S(a) = S(x)+S(y).

Hence, S is additive. We have to verify that S(x)y = xS(y) holds. Notice that
wT (z) = T (w)z implies wa = uz. On the other hand, we have

xS(y) = (u + v)z = uz + vz,
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and
S(x)y = wa + wb.

We know that wa = uz. To prove that S is a centralizer, it is enough to prove
vz = wb. Notice that vz, wb ∈ V ∩ U . We also have

T (vz) = vT (z) = va ∈ V ∩ V1 = {0},

implying vz = 0, since T is one-to-one on U . In the same manner we obtain
wb = 0. Hence, S is a centralizer on R.

The last part of the proof is the uniqueness of S. On the contrary, suppose
that there exists one more S1 ∈ M(R) such that S1TS1 = S1, R(S1) = U and
N (S1) = V. It is enough to prove S|V1 = S1|V1 . We know that these reductions
are one-to-one mappings from V1 to U . We also know that S(V1) = S1(V1) = U ,
so S|V1 , S1|V1 : V1 → U are invertible mappings. Since STS = S, it is easy to
conclude that T |U : U → V1 is ordinary inverse (as a mapping) of both S|V1 and
S1|V1 . Taking the ordinary inverse of T |U , we get that S|V1 = S1|V1 .

As a corollary, we obtain the main result from [3]. Recall that T ∈M(R) is
called orthogonal, if R = R(T ) ⊕ N (T ). In [3] a centralizer S is a generalized
inverse of T ∈M(R), if TST = T and STS = S, i.e. S is a commuting reflexive
generalized inverse of T in M(R). Now, we get the following result.

Corollary 2.1. Let R be semiprime and T ∈ M(R). Then there exists a
generalized inverse S ∈M(R) of T if and only if T is orthogonal.

Proof. ⇐= : Let T be orthogonal, i.e. R = R(T )⊕N (T ). We apply Theorem
2.1 with U = V1 = R(T ) and V = U1 = N (T ). According to the construction
of S, we easily obtain TST = T .

=⇒: Let TST = T and STS = S. Take U = R(S) = R(ST ) and V =
R(T ) = R(TS). Then we can also take U1 = N (ST ) = N (T ) and V1 =
R(TS) = R(T ). Since T

(2)
U,V is unique, we obtain that T

(2)
U,V = S. Finally,

R = R(T )⊕N (T ) and T is orthogonal.

Now, we consider the Drazin invertibility of T ∈ M(R). A centralizer
S ∈M(R) is a Drazin inverse of T , if the following hold:

STS = S, Tn+1S = Tn,

for some non-negative integer n. It is known that the Drazin inverse is unique
whenever it exists. The Drazin inverse of T is denoted by TD, and T is called
Drazin invertible. In this case P = TS − I is a centralizer and a projec-
tion. Hence, R = N (P ) ⊕ R(P ). Now, P commutes with T , the reduction
T1 = T |N (P ) : N (P ) → N (P ) is invertible, and the reduction T2 = T |R(T ) :
R(T ) →R(T ) is nilpotent. Hence, T1 is a centralizer, T−1

1 is a centralizer, and
TD|N (P ) = T−1

1 , TD|R(P ) = 0. Moreover, the following result holds.
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Corollary 2.2. Let R be a semiprime ring and T ∈M(R). Then T is Drazin
invertible in M(R), if and only if there exist ideals M and N of R, such that
R = M⊕ N , this decomposition reduces T , the restriction T |M is invertible
and the restriction T |N is nilpotent. In this case TD = T

(2)
M,N .
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[4] D. Cvetković-Ilić, A. Dajić and J. J. Koliha, Positive and real-
positive solutions to the equation axa = c in C*-algebras, Linear Mul-
tilin. Algebra 55 (2007), 371–381.
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