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Idempotents related to
the weighted Moore—Penrose inverse

Dijana Mosi¢ and Dragan S. Djordjevié

Abstract

We investigate necessary and sufficient conditions for aa; ;= bbi 5 to

hold in rings with involution. Here, a;f denotes the weighted Moore-Penrose
inverse of a, related to invertible and Hermitian elements e, f € R. Thus, some
recent results from [7] are extended to the weighted Moore-Penrose inverse.

1 Introduction

Let R be an associative ring with the unit 1. An involution a — «¢* in a ring R is
an anti-isomorphism of degree 2, that is,

(@) =a, (a+b)*=a"+0b", (ab)* =b"a".

An element a € R is selfadjoint (or Hermitian) if a* = a. An element a € R is
regular if there exists some inner inverse (or 1-inverse) a~ € R satisfying aa”a = a.
The set of all inner inverses (or 1-inverses) is denoted by a{1}. Hence, a is regular
if a{1} # 0. A reflexive inverse a™ of a is a 1-inverse of a such that ataa® = a™.

Definition 1.1. Let R be a ring with involution, and let e, f be invertible Her-
mitian elements in R. The element a € R has the weighted Moore-Penrose inverse
(weighted MP-inverse) with weights e, f if there exists b € R such that

aba =a, bab=10>, (eab)* =eab, (fba)* = fba.

The unique weighted MP-inverse with weights e, f, will be denoted by ai, f if it
exists [4]. The set of all weighted MP-invertible elements of R with weights e, f,
will be denoted by Rif If e= f =1, then the weighted MP-inverse reduces to the
ordinary MP-inverse of a, denoted by af.

Ifac Rl,f, then aal’f and al)fa are idempotents related to a and ai}f.
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Notice that if R is a C*-algebra, if e, f are selfadjoint, invertible and positive
elements in a C*-algebra R, and if a € R is regular, then the following formula
holds:

a;f = FU2(1 20 f 12t /2,

Hence, the existence of an inner inverse of a implies the existence of the MP-inverse
and the weighted MP-inverse of a.

However, if R is a general ring with involution, then we do not have the existence
of a square root of a positive element. Hence, in this case we always have to assume
that the weighted MP-inverse of a exists.

Define the mapping (x,e, f) : © — 2% = e~lo*, f, for all x € R. Notice that
(x,e,f) : R — R is not an involution, because in general (xy)**/ # y*&fg*ef,
Now, we formulate the following result which can be proved directly by the definition
of the weighted MP-inverse.

Theorem 1.1. Let R be a ring with involution and let e, f be invertible Hermitian
elements in R. For any a € Ri,f? the following is satisfied:

(a) (al ). =a;

(b) (@)}, = (al )

’ e’

h) ai = (a*’f’ea)},fa”‘’f’e = a*’f’e(aa**f’e)iye;
0) (@)}, = a(a<a)} , = (aa" )] a.
For a € R consider two annihilators
a® ={x € R:ax =0}, ‘a={zx€R:zxa=0}
Notice that,
(@*)°=a’ & °(a*) = “a, aR =a"R & Ra = Ra™.

Lemma 1.1. Let a € A, and let e, f be invertible positive elements in A. Then

of ;= (@ €a+1—al o) @l = " <(aa" € +1 - aal )7, (1)

a“ e A" = aijA_l and A~ a* e = A_lai,f’ @
(a™5)° = (af )° and °(a™1) = °(al ). ©
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Proof. By Theorem 1.1, we can verify

a*he = (a*’f’ea +1-— al’fa)al = al,f(aa*’f’e +1—aal ),

f e.f

(a*fea+1 - a;f )yt = a;f(al’f)*’e’f +1-— ai,fa

and
(tza”"f’e +1-— aa;f)*1 = (al,f)*’e’faijf +1-— aaLf.

Thus, the part (1) holds and it implies the equalities (2) and (3). O
Now, we state an useful result from [7].

Lemma 1.2. [7, Lemma 2.1] Let a,b € R be regular elements.

(1) There exist a~ € a{l}, b= € b{1} for which (1 —bb~)aa™ =0 if and only if
(I=0b")aa™ =0 for alla™ € a{l}, b= € b{1}.

(2) There ezist a~ € a{l}, b= € b{1} for which (1 —bb~)(1 —a~a) =0 if and
only if (1 —bb")(1 —a"a)=0 for alla™ € a{l}, b= € b{1}.

In [7], necessary and sufficient conditions for aa’ = bb' in ring with involution
are investigated. In this paper we generalized this results to the weighted Moore-
Penrose in rings with involution.

2 Results

A semigroup is a regular, if every elements of that semigroup has an inner general-
ized inverse. The notion extends to rings also.
In a regular semigroup, the natural partial order is defined by ([2], [5], [6])

a<_bif aa” =ba” and a a = a” b for some inner inverse a~ of a.

See also [3] for intuitionistic fuzzy matrices. Notice that <_ is a partial order
in regular rings.
A semigroup with involution x — z* is proper, if the following implication holds:

a*a=a*b="0ba=0b"b = a=0.

Notice that if the semigroup has the zero element 0, then a semigroup is a proper
with respect to the involution = +— z*, if and only if a*a =0 = a = 0. The last
implication is called *-cancellability. For example, every element of a C*-algebra is
x-cancellable, so every C*-algebra is proper (with respect to multiplication).

Drazin [1] presented a partial order on a proper #-semigroup in the following
way

a <, bif aa* = ba* and a*a = a™b.

If a € R is MP invertible, then ”<,” implies ”<_”. Indeed, aa* = ba* =
aal = aa*(a")*a’ = ba*(a’)*a’ = ba' and similarly a*a = a*b = afa = a'b.
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In this paper we introduce the ” <, . ¢“ as follows:

a <iegbif aa*®! = ba* and a**fa = a*7b.

Here e, f are Hermitian invertible elements in a ring R with involution x — z*.
We like to see that <, . ; is a partial ordering in R.

Ifae R;f, then "<, . ¢” implies "<_". Indeed, from aa®®f = ba*e! we get
aal ; = aa>f(a] ;)*Fal ; = ba>I (ol )T al ;= bal ;. Similarly, a*a =
a* b gives ai F0 = a, fb.

In the rest of the paper we assume that e, f € R are Hermitian end invertible.

The ring R is (*, e, f)-proper if the following implication holds:

afa=a"fb=p"Tq =0T = a=0.
If R is a C*-algebra and e, f are positive Hermitian elements in R, then R is
(%, e, f)-proper. Indeed, a**fa = a**fb = b*Fa = b**/b gives (a—b)**/ (a—b) =
0 which gives that [f'/2(a — b)]* f*/?(a — b) = 0. Since every element in C*-algebra
is *-cancellable, then f/2(a —b) = 0, that is a = b.

Theorem 2.1. Let R be: (x,e, f)-proper, (x,e,e)-proper and (x, f, f)-proper. Then
Zse,f 15 a partial ordering in R.

Proof. Since a <. s a, then "<, . “ is reflexive.
From a <. s band b <..f a, we get a**/a = a**/b and b**Ta = b**/b.
Observe that
a*,e,fa _ (a*,e,fa)*,e,e — (a*,e,fb)*,e,e _ b*,e,fa (4)
So, we deduce a*¢fa = a**fb=b"fq = b*fb which gives a = b.
If a <icfbandb<,.rc, weobtain (4) and, applying (4) for b and ¢ instead
of a and b, we have b*¢/b = ¢**/b. Further,

c*’e’f(aa*’e’f)c = (c*’e’fb)a*’e’fc = b*’e’f(ba*’e’f)c = (b*’e’fa)a*’e’fc = a**Taa*/ ¢,
(a*’e’fa)a*’e’fa = b*’e’f(aa*’e’f)a = (b*’e’fb)a*7e’fa = c*’e’f(ba*’e’f)a =c"Taa"*7q
and

a*,e,faa*,e,fa _ (a*,e,faa*,e,fa)*,e,e _ (C*,e,faa*,e,fa)*,e,e _ a*,e,faa*,e,fc.

Since (a**fa)*¢ = a**fa and (a**fc)* ¢ = ¢**/a, by the previous tree equal-
ities, we conclude

(a*,e,fa)*,e,ea*,e,fa — (a*,e,fa)*,e,ea*,e,fc _ (a*,e,fc)*,e,ea*,e,fa _ (a*,e,fc)*,e,ea*,e,fc

which implies a**fa = a*%¢, because ring R is *,e,e-proper. Similarly, by
*, f, f-proper of R, we can verify that aa*®/ = (ca*®/)*%/ which yields aa**/ =
(aa* ) Ff = ((ca®eH) Iy b = ca™f. Thus, a**fa = a~*fc and aa**T =

ca® et give that a <, ¢ c. -
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T
e

In the following theorem, we present some equivalent conditions for aa J =

bb! ,aal , to hold.

Theorem 2.2. Let R be a ring with involution, and let e, f be invertible Hermitian
elements in R. If a,b € Rzﬁf, then the following conditions are equivalent:

(1) aal ; = b} caal ,;
(2) aalyf = aa;fbb;f’
(3) a= bblyfa

(4) a ! ef = ae fbb

(5) aa*Fe = bb;faa*’f’e;
(6) aa*) = aa*/ebb] ;

(7) a*Fe = a*’f’ebbl’f,

(8) aa™ =bb~aa~ for all choices a~ € a{l}, b~ € b{1};
(9) aa= =bb~aa~ for some a~ € a{l}, b~ € b{1};

(10) a="bb"a for all b= € b{1};

(11) a =0bba for some b~ € b{1};

(12) aa™F¢ =bb~aa* ¢ for all b~ € b{1};

(13) aa*/¢ = bb~aa*¥* for some b= € b{1};

(14) aal , <bbl

(15) aal f Sxee bbl’f;
(16) a <bb~a for all b= € b{1};
(17) a < bb~a for some b~ € b{1};
(18) aR C bb] ,aR;
(19) aR C bR;

T T
(20) Ral ; C Ral ;bb

T T
(21) Ra, ; € Rb,
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Proof. (1) & (2): Applying the involution, the equality aal’ ;= bbl’ faal’ 7 is equiva-
lent to (eileaa;f)* = (eilebbi,fefleaa;f)* which is eaa;fe’l = eaai,feflebbi,fefl,
ie. aal , =aal bb! ..

(1)65 (3): el(/JIcul‘cefplying (1) by a from the right side we get (3), and multiplying
(3) by al’f from the right side we obtain (1).

(2) < (4): This part can be verified in the same way as (1) < (3).

(3) & (5): If we multiply (3) by a*/¢ from the right side we obtain (5), and if
we multiply (5) by (a;f)*’e’f from the right side, by Theorem 1.1(d), we have (3).

(2) < (6): By Theorem 1.1, multiplying (2) by aa*/¢ from the left side, we
(()b)tain (6). Conversely, multiplying (6) by (al)f)*’e*fai,f from the left side, we get
2).

(6) < (7): Multiplying (6) by ai)f from the left side, we obtain (7) and multi-
plying (7) by a from the left side, we get (6).

(1) & (8): The assumption aaLf = bbl,faaz,f is equivalent to (1 — bbLf)aaZ’f =
0. Applying Lemma 1.2, we obtain this equivalence.

(8) & (9): By Lemma 1.2.

(8) & (10), (9) & (11): Obviously.

(10) < (12): Multiplying (10) by a*%¢ from the right side, we obtain (12). On
the other hand, multiplying (12) from the right side by (a;f)*’e’f, we get (10).

(11) < (13): See the previous part.

(1) & (14): We can easy verify that (aa;f);e = aa;f. Now, for (aai,f)+ =
(aal,f)z,e, we have aal,f < bbl’f if and only if aa;f(aa;f);e = bbi,f(aai’f)lﬂ

and (aa;f)lyeaal’f = (aaivf)l’ebb(t’f, which is equivalent to aaLf = bbivfaaivf and

aa;f = aal)fbbl’f.

(1) & (15): Since (aal p)e = eil(efleaai P)he= aaLf, we show this equiv-

2

¥

alence in the same way as (1) < (14).

(10) = (16): For a* = a/ #» we already proved this part.

(16) = (17): Obviously.

(17) = (11): Suppose that a < bb~a for some b~ € b{1}. Then, for some a™,
we have aat = bb~aa™, so a = bba.

(3) = (18) = (19): Obviously.

(19) = (3): The hypothesis aR C bR gives a = bz, for some x € R. Therefore,
a=bb! ,(bx) = bb] ;a.

(4) = (20) = (21) = (4): Similarly as (3) = (18) = (19) = (3). O

Theorem 2.3. Let R be a ring with involution, and let e, f be invertible Hermitian
elements in R. If a,b € Ri,f, then the following conditions are equivalent:

(1) aaivf = bb;f;
(2) aa;f = aal,fbb;f and u = aai}f +1-— bbi}f eRL;

(3) aa;f = aa;fbb;f and v = aa*f° +1 — bb;f eRY;
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(4) aa;f = aal’fbb;f and Vb~ € b{1} w = aa*f* +1—-bb- € R7Y;
(5) aal_’f = aal’fbb;f and I~ € b{1} w=aa*F*+1-bb- € R7Y;

(6) aaT bbgf—bbgfaagf,u—aa gT1- bb fER andl:bb;f—i—l—aaivfe
R’

(7) aal (bbl , = bb! ,aal ,, v =aa*c+1-bb] , € R! and k = bb™Ic +1 —
aaiﬁfER L.

Proof. (1) = (2): It is easy to check.
(2) < (3): Using Theorem 2.2, (aa;f +1- bblyf)(aa*’f’e +1-— aal’f) = aa*F¢ +
1— bbLf. By Lemma 1.1, aa*f¢ +1 — aalf cR 'andthenue R~!' o ve R

(3) = (1): Observe that, by Theorem 2.2, vaa;f = aa*f° = ’Ubb;f. Since

v € R™L, we have aal F= bbl Iz

(3) = (4): By Theorem 2.2, we have aa*/¢ = bb;faa*’f’e = bbi’faa*’f’ebb;f
Now, by [8, Proposition 3], v = aa*7f’e+1—bb;f = bbi7faa*’f7ebb;f+1—bbi,f eR!
if and only if bb! ;aa*/bb~ +1—bb~ € R™, Vb~ € b{1}, ie. 1— (=bb] ;aa™S<+
1)bb~ € R~ for all b~ € b{1}, which is equivalent to 1 — bb_(—bb;faa*’f’e +1)=
we R, Vo € b{1}).

(4) = (3) A (5): Obviously.

(5) = (4): From w = aa*/¢+1 —bb” =1 —bb~ (—aa*’¢+1) € R, we deduce
that 1—(—aa*/*+1)bb~ = bb~aa*/*bb~+1—bb~ € R™1. Then, by [8, Proposition
3], bb~aa*Febb= 4+ 1 —bb= = 1 — (—aa™ ¢ +1)bb= € R™!, for all b= € {1}, which
gives 1 — bb=(—aa*¥¢ + 1) = bb=aa* * +1 - bb= = aa™F* +1—-bb= € R~L.

(1) = (6): Obviously.

(6) = (1): Since, by aae fbbejc = bbe faae o bbe fu = bb! faae ;= bbe faa J{
(&

and v € R™!, then bb ef = bbJr faa:[ Iz Slmllarly, laa! ef = bbe faae ;= lbbJr FOg ¢

and [ € R~! give aal ef = = bb! faa e Thus, aae)f = bbe)

(1) = (7): By Lerima 1.1.

(7) = (3): The equality aaeyfbbivf = bbivfaa;f implies aal’fk = aa;fbb*’ﬁE =
bb! saal k. Because k € R™1, then aa! , = bb] ,aa! , and the condition (3) holds.
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