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1 Introduction

The weighted–EP matrices are characterized by commutativity with their
weighted Moore–Penrose inverse. They were introduced and investigated by
Tian and Wang in [26]. The notion of weighted–EP matrices was extended
to elements of C∗-algebras in [23].

Generalized inverses have lots of applications in numerical linear algebra,
as well as in approximation methods in general Hilbert spaces. Hence, we
characterize weighted–EP elements of C∗-algebras through various factor-
izations.

Let A be a unital C∗–algebra with the unit 1. An element a ∈ A is
regular if there exists some b ∈ A satisfying aba = a. The set of all regular
elements of A will be denoted by A−. An element a ∈ A satisfying a∗ = a
is called symmetric (or Hermitian). An element x ∈ A is positive if x = y∗y
for some y ∈ A. Notice that positive elements are self-adjoint.

An element a† ∈ A is the Moore–Penrose inverse (or MP-inverse) of
a ∈ A, if the following hold [25]:

aa†a = a, a†aa† = a†, (aa†)∗ = aa†, (a†a)∗ = a†a.

There is at most one a† such that above conditions hold (see [13, 15]).
∗The authors are supported by the Ministry of Education and Science, Serbia, grant

no. 174007.
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Theorem 1.1. [13] In a unital C∗–algebra A, a ∈ A is MP-invertible if and
only if a is regular.

Let e, f be invertible positive elements in A. The element a ∈ A has the
weighted MP-inverse with weights e, f , if there exists b ∈ A such that

aba = a, bab = b, (eab)∗ = eab, (fba)∗ = fba.

The unique weighted MP-inverse with weights e, f , will be denoted by a†e,f
if it exists [7].

Theorem 1.2. [7] Let A be a unital C∗–algebra, and let e, f be positive
invertible elements of A. If a ∈ A is regular, then the unique weighted
MP-inverse a†e,f exists.

Define the mapping (∗, e, f) : x 7→ x∗e,f = e−1x∗f , for all x ∈ A. Notice
that (∗, e, f) : A → A is not an involution, because in general (xy)∗e,f 6=
y∗e,fx∗e,f . The following result is frequently used in the rest of the paper.

Theorem 1.3. [23] Let A be a unital C∗–algebra, and let e, f be positive
invertible elements of A. For any a ∈ A−, the following is satisfied:

(a) (a†e,f )†f,e = a;

(b) (a∗f,e)†f,e = (a†e,f )∗e,f ;

(c) a∗f,e = a†e,faa∗f,e = a∗f,eaa†e,f ;

(d) a∗f,e(a†e,f )∗e,f = a†e,fa;

(e) (a†e,f )∗e,fa∗f,e = aa†e,f ;

(f) (a∗f,ea)†f,f = a†e,f (a†e,f )∗e,f ;

(g) (aa∗f,e)†e,e = (a†e,f )∗e,fa†e,f ;

(h) a†e,f = (a∗f,ea)†f,fa∗f,e = a∗f,e(aa∗f,e)†e,e;

(i) (a∗e,f )†f,e = a(a∗f,ea)†f,f = (aa∗f,e)†e,ea.

For a ∈ A consider two annihilators

a◦ = {x ∈ A : ax = 0}, ◦a = {x ∈ A : xa = 0}.
Observe that,

(a∗)◦ = a◦ ⇔ ◦(a∗) = ◦a, aA = a∗A ⇔ Aa = Aa∗.
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Lemma 1.1. [11] The following hold for a ∈ A.

(i) a ∈ A−1 ⇐⇒ aA = A and a◦ = {0}.
(ii) a ∈ A− ⇐⇒ A = (a∗A)⊕ a◦.

(iii) a∗A = A ⇐⇒ a ∈ A− and a◦ = {0}.
The following lemmas related to weighted MP-inverse are very useful.

Lemma 1.2. [23] Let a ∈ A− and let e, f be invertible positive elements in
A. Then

(i) a†e,fA = a†e,faA = f−1a∗A = a∗f,eA;

(ii) (a†e,f )∗A = (aa†e,f )∗A = eaA = (a∗f,e)∗A;

(iii) a◦ = (ea)◦;

(iv) (a∗)◦ = (f−1a∗)◦;

(v) (a†e,f )◦ = [(ea)∗]◦ = (a∗f,e)◦;

(vi) [(a†e,f )∗]◦ = (af−1)◦.

Lemma 1.3. [23] Let a ∈ A−, and let e, f be invertible positive elements
in A. Then

(1) a†e,f = (a∗f,ea + 1− a†e,fa)−1a∗f,e = a∗f,e(aa∗f,e + 1− aa†e,f )−1,

(2) a∗f,eA−1 = a†e,fA−1 and A−1a∗f,e = A−1a†e,f ,

(3) (a∗f,e)◦ = (a†e,f )◦ and ◦(a∗f,e) = ◦(a†e,f ).

We recall the definition of EP elements.

Definition 1.1. An element a ∈ A− is EP if aa† = a†a.

Lemma 1.4. [17] An element a ∈ A is EP, if a ∈ A− and aA = a∗A (or,
equivalently, if a ∈ A− and a◦ = (a∗)◦).
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Many authors have investigated various characterizations of EP ele-
ments in a ring and C∗-algebra (see, for example, [15, 17, 18, 20, 21, 24]),
many more still for Banach or Hilbert space operators and matrices (see
[1, 2, 4, 5, 6, 8, 9, 10, 14, 16, 19, 22]). In [12], Drivaliaris, Karanasios and
Pappas and in [11] Djordjević, J.J. Koliha and I. Straškraba have character-
ized EP Hilbert space operators and EP C∗-algebra elements respectively
trough several different factorizations. Boasso [3] have recently character-
ized EP Banach space operators and EP Banach algebra elements using
factorizations, extending results of [11, 12].

Now, we state the definition of weighted–EP elements and some charac-
terizations of weighted–EP elements.

Definition 1.2. [23] An element a ∈ A is said to be weighted–EP with
respect to two invertible positive elements e, f ∈ A (or weighted–EP w.r.t.
(e,f)) if both ea and af−1 are EP, that is a ∈ A−, eaA = (ea)∗A and
af−1A = (af−1)∗A.

Theorem 1.4. [23] Let A be a unital C∗–algebra, and let e, f be invertible
positive elements in A. For a ∈ A− the following statements are equivalent:

(i) a is weighted–EP w.r.t. (e,f);

(ii) aa†e,f = a†e,fa;

(iii) a†e,f = a(a†e,f )2 = (a†e,f )2a;

(iv) a ∈ a†e,fA−1 ∩ A−1a†e,f

(v) a ∈ a†e,fA ∩Aa†e,f ;

(vi) aA = a∗f,eA and Aa = Aa∗f,e;

(vi) a◦ = (a∗f,e)◦ and ◦a = ◦(a∗f,e).

We turn our attention for characterizing weighted–EP elements in terms
of factorizations, motivated by papers [3, 11, 12], which are related to similar
characterizations of EP elements.
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2 Factorization a = ba∗f,e

In this section we characterize weighted–EP elements of C∗–algebras through
factorizations of the form a = ba∗f,e.

Theorem 2.1. Let A be a unital C∗–algebra, and let e, f be invertible
positive elements in A. For a ∈ A− the following statements are equivalent:

(i) a is weighted–EP w.r.t. (e,f);

(ii) a = ba∗f,e = a∗f,ec for some b, c ∈ A;

(iii) a∗f,ea = b1a
∗f,e = ac1 and aa∗f,e = a∗f,eb2 = c2a for some b1, b2, c1, c2 ∈

A;

(iv) a∗f,ea = b3a
†
e,f , aa∗f,e = a†e,fb4 and a†e,f = c3a = ac4 for some

b3, b4, c3, c4 ∈ A.

Proof. (i) ⇔ (ii): By Theorem 1.4, a is weighted–EP w.r.t. (e,f) if and only
if a ∈ a†e,fA ∩ Aa†e,f , which is equivalent to a ∈ a∗f,eA ∩ Aa∗f,e, by Lemma
1.2. Thus, the equivalence (i) ⇔ (ii) holds.

(i) ⇔ (iii): Notice that, by Theorem 1.3, aA = aa∗f,eA, Aa = Aa∗f,ea,
a∗f,eA = a∗f,eaA and Aa∗f,e = Aaa∗f,e. Now (iii) is equivalent to aA =
a∗f,eA and Aa = Aa∗f,e. By Theorem 1.4, these equalities hold if and only
if a is weighted–EP w.r.t. (e,f).

(i) ⇔ (iv): Similarly as the previous part.

3 Factorization a∗f,e = sa

In this section, the weighted–EP elements of the form a∗f,e = sa or a†e,f = sa
will be characterized.

We start with characterizations of weighted–EP elements via factoriza-
tions of the form a∗f,e = sa.

Theorem 3.1. Let A be a unital C∗–algebra, and let e, f be invertible
positive elements in A. For a ∈ A− the following statements are equivalent:

(i) a is weighted–EP w.r.t. (e,f);

(ii) ∃ s, t ∈ A : s◦ = ◦t = {0} and a∗f,e = sa = at;
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(iii) ∃ s1, s2, t1, t2 ∈ A : a∗f,e = s1a = at1 and a = s2a
∗f,e = a∗f,et2;

(iv) ∃ u, v ∈ A : uA = A = Av and a∗f,e = au = va;

(v) ∃ x, y ∈ A−1 : a∗f,ea = xaa∗f,e = aa∗f,ey;

(vi) ∃ x1, y1 ∈ A : x◦1 = ◦y1 = {0} and a∗f,ea = x1aa∗f,e = aa∗f,ey1;

(vii) ∃ x2, y2 ∈ A : Ax2 = A = y2A and a∗f,ea = x2aa∗f,e = aa∗f,ey2;

(viii) ∃ x3, x4, y3, y4 ∈ A : a∗f,ea = x3aa∗f,e = aa∗f,ey3 and aa∗f,e =
x4a

∗f,ea = a∗f,eay4;

(ix) ∃ z1, z2 ∈ A : a∗f,ea = az1a
∗f,e and aa∗f,e = a∗f,ez2a;

(x) ∃ g1, h1 ∈ A−1 : a∗f,ea = ah1h
∗e,f
1 a∗f,f and aa∗f,e = a∗e,fg∗f,f

1 g1a;

(xi) ∃ g2, h2 ∈ A : g◦2 = ◦h2 = {0}, a∗f,ea = ah2h
∗e,f
2 a∗f,f and aa∗f,e =

a∗e,fg∗f,f
2 g2a;

(xii) ∃ g3, h3 ∈ A : Ag3 = A = h3A, a∗f,ea = ah3h
∗e,f
3 a∗f,f and aa∗f,e =

a∗e,fg∗f,f
3 g3a.

Proof. (i) ⇒ (ii): If a is weighted–EP w.r.t. (e,f), by Theorem 1.4, a ∈
a†e,fA−1 ∩ A−1a†e,f , i.e. a ∈ a∗f,eA−1 ∩ A−1a∗f,e, by Lemma 1.3. So, there
exist s, t ∈ A−1 such that a∗f,e = sa = at and the statement (ii) holds.

Similarly, we can prove that (i) implies (iii) and (iv).
(ii) ⇒ (i): The condition (ii) implies a◦ ⊆ (a∗f,e)◦ and ◦a ⊆ ◦(a∗f,e).

Let x ∈ (a∗f,e)◦, then sax = a∗f,ex = 0, by s◦ = {0}, gives ax = 0. Hence,
a◦ = (a∗f,e)◦ and, analogy, ◦a = ◦(a∗f,e). By Theorem 1.4, a is weighted–EP
w.r.t. (e,f).

In the similar way, we can check (iii) ⇒ (i).
(iv) ⇒ (i): From the assumption (iv), we deduce that a∗f,eA = auA =

aA and Aa∗f,e = Ava = Aa which gives that the condition (i) is satisfied,
by Theorem 1.4.

(i) ⇒ (v): Let x = (a†e,f )∗e,fa†e,f +1−aa†e,f (= (aa∗f,e +1−aa†e,f )−1) and

y = a†e,f (a†e,f )∗e,f + 1 − a†e,fa(= (a∗f,ea + 1 − a†e,fa)−1). Then x, y ∈ A−1,

a∗f,e = y−1a†e,f and a†e,f = a∗f,ex, by Lemma 1.3. Now, we can verify that

aa∗f,ex = xaa∗f,e = aa†e,f and a∗f,eay = ya∗f,ea = a†e,fa. Further,

a∗f,ea = y−1(a†e,fa) = y−1aa†e,f = y−1(aa∗f,ex) = y−1xaa∗f,e
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and

aa∗f,e = (aa†e,f )x−1 = a†e,fax−1 = (ya∗f,ea)x−1 = a∗f,eayx−1,

i.e. a∗f,ea = taa∗f,e = aa∗f,ez−1, for t = y−1x and z = yx−1. Therefore, the
condition (v) holds.

It is clear that the condition (v) implies (vi)-(viii).
(vi) ⇒ (i): Using (vi), we obtain (a∗f,ea)◦ = (aa∗f,e)◦ and ◦(a∗f,ea) =

◦(aa∗f,e). Observe that, by Theorem 1.3, (a∗f,ea)◦ = a◦, (aa∗f,e)◦ = (a∗f,e)◦,
◦(a∗f,ea) = ◦(a∗f,e), ◦(aa∗f,e) = ◦a. Hence, a◦ = (a∗f,e)◦ and ◦a = ◦(a∗f,e)
and, by Theorem 1.4, a is weighted–EP w.r.t. (e,f).

Analogy, we check that (viii) ∨ (ix) ⇒ (i).
(vii) ⇒ (i): Applying the hypothesis (vii) and the equalities aA =

aa∗f,eA, Aa = Aa∗f,ea, a∗f,eA = a∗f,eaA, Aa∗f,e = Aaa∗f,e, we get aA =
a∗f,eA and Aa = Aa∗f,e. Thus, by Theorem 1.4, a is weighted–EP w.r.t.
(e,f).

(i) ⇒ (ix): It is well-known that (i) gives that a = a∗f,ex1 = x2a
∗f,e

and a∗f,e = ax3 = x4a, for some x1, x2, x3, x4 ∈ A. Now, we conclude that
a∗f,ea = a(x3x2)a∗f,e and aa∗f,e = a∗f,e(x1x4)a. So, (ix) holds.

(i) ⇒ (x): The condition (i) implies that there exist g1, h1 ∈ A−1 such
that a∗f,e = ah1 = g1a which gives a = h∗e,f1 a∗f,f = a∗e,fg∗f,f

1 . Therefore,
(x) is satisfied.

Obviously, (x) ⇒ (xi) ∧ (xii).
(xi) ⇒ (i): Since ◦(a∗f,ea) = ◦(ah2h

∗e,f
2 a∗f,f ) = ◦(ah2(ah2)∗e,f ), then

◦(a∗f,e) =◦ (ah2) and, by ◦h2 = {0}, ◦(a∗f,e) = ◦a. Similarly, from
(aa∗f,e)◦ = ((g2a)∗e,fg2a)◦ and g◦2 = {0}, we have (a∗f,e)◦ = a◦. Hence,
a is weighted–EP w.r.t. (e,f), by Theorem 1.4.

(xii) ⇒ (i): The assumption (xii) gives a∗f,eaA = ah3h
∗e,f
3 a∗f,fA =

ah3(ah3)∗e,fA. Then a∗f,eA = ah3A = aA, by h3A = A. In the same way,
Aaa∗f,e = Aa∗e,fg∗f,f

3 g3a and Ag3 = A imply Aa∗f,e = Aa. Therefore, a is
weighted–EP w.r.t. (e,f), by Theorem 1.4.

We continue with characterizations of weighted–EP elements via factor-
izations of the form a†e,f = sa.

Theorem 3.2. Let A be a unital C∗–algebra, and let e, f be invertible
positive elements in A. For a ∈ A− the following statements are equivalent:

(i) a is weighted–EP w.r.t. (e,f);

(ii) ∃ s, t ∈ A : s◦ = ◦t = {0} and a†e,f = sa = at;
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(iii) ∃ s1, s2, t1, t2 ∈ A : a†e,f = s1a = at1 and a = s2a
†
e,f = a†e,f t2;

(iv) ∃ u, v ∈ A : uA = A = Av and a†e,f = au = va;

(v) ∃ x, y ∈ A−1 : a†e,fa = xaa†e,f = aa†e,fy;

(vi) ∃ x1, y1 ∈ A : x◦1 = ◦y1 = {0} and a†e,fa = x1aa†e,f = aa†e,fy1;

(vii) ∃ x2, y2 ∈ A : Ax2 = A = y2A and a†e,fa = x2aa†e,f = aa†e,fy2;

(viii) ∃ x3, x4, y3, y4 ∈ A : a†e,fa = x3aa†e,f = aa†e,fy3 and aa†e,f = x4a
†
e,fa =

a†e,fay4;

(ix) ∃ z1, z2 ∈ A : a†e,fa = az1a
†
e,f and aa†e,f = a†e,fz2a.

Proof. Similarly as the proof of Theorem 3.1, using Lemma 1.2 and Lemma
1.3.

4 Factorization a = e−1ucvf

In this section, we give characterizations of weighted–EP elements through
factorizations of the form a = e−1ucvf .

Theorem 4.1. Let e, f be invertible positive elements in A. If a ∈ A−,
then the following statements are equivalent:

(i) a is weighted–EP w.r.t. (e,f);

(ii) ∃ c, d, u, v ∈ A : a = e−1ucvf = e−1fv∗d∗u∗e−1f , vA = A = Au,
cA = dA and Ac = Ad;

(iii) ∃ c, d, u, v ∈ A : a = e−1ucvf = e−1fv∗d∗u∗e−1f , u◦ = {0} = ◦v,
c◦ = d◦ and ◦c = ◦d;

(iv) ∃ c, d, u, v ∈ A : a = e−1ucvf , a†e,f = e−1udvf , vA = A = Au,
cA = dA and Ac = Ad;

(v) ∃ c, d, u, v ∈ A : a = e−1ucvf , a†e,f = e−1udvf , u◦ = {0} = ◦v,
c◦ = d◦ and ◦c = ◦d;
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(vi) ∃ c, d, u, v ∈ A : a∗f,ea = ucv, aa∗f,e = udv, vA = A = Au, cA = dA
and Ac = Ad;

(vii) ∃ c, d, u, v ∈ A : a∗f,ea = ucv, aa∗f,e = udv, u◦ = {0} = ◦v, c◦ = d◦

and ◦c = ◦d.

Proof. (ii) ⇒ (i): If a = e−1ucvf = e−1fv∗d∗u∗e−1f , for some c, d, u, v ∈ A
satisfying vA = A = Au, cA = dA and Ac = Ad, then a∗ = fe−1udvfe−1.
Further

aA = e−1ucvfA = e−1ucvA = e−1ucA = e−1udA
= e−1udvA = e−1udvfA = f−1a∗eA = a∗f,eA

and

Aa = Ae−1ucvf = Aucvf = Acvf = Advf

= Audvf = Ae−1udvf = Af−1a∗e = Aa∗f,e.

By Theorem 1.4, we deduce that a is weighted–EP w.r.t. (e,f).
(i) ⇒ (ii): Since a is weighted–EP w.r.t. (e,f), we have aA = a∗f,eA

and Aa = Aa∗f,e. Let u = v = 1, c = eaf−1 and d = ea∗f,ef−1. Now, we
obtain

e−1cA = af−1A = aA = a∗f,eA = a∗f,ef−1A = e−1dA,

and
Acf = Aea = Aa = Aa∗f,e = Aea∗f,e = Adf,

implying cA = dA and Ac = Ad. The rest is obviously.
(iii)⇒ (i): Assume that there exist c, d, u, v ∈ A satisfying a = e−1ucvf =

e−1fv∗d∗u∗e−1f , u◦ = {0} = ◦v, c◦ = d◦ and ◦c = ◦d. To prove that
a◦ = (a∗f,e)◦, let x ∈ a◦, i.e. e−1ucvfx = 0. Now, ucvfx = 0 and, by
u◦ = {0}, cvfx = 0. So, vfx ∈ c◦ = d◦, that is, dvfx = 0 which gives
a∗f,ex = e−1udvfx = 0. Hence, a◦ ⊆ (a∗f,e)◦. The reverse inclusion follows
similarly. The conditions {0} = ◦v and ◦c = ◦d imply ◦a = ◦(a∗f,e),
analogy. Thus, a is weighted–EP w.r.t. (e,f), by Theorem 1.4.

(i) ⇒ (iii): Because a is weighted–EP w.r.t. (e,f), then a◦ = (a∗f,e)◦

and ◦a = ◦(a∗f,e). We can show that (af−1)◦ = (a∗f,ef−1)◦ and ◦(ea) =
◦(ea∗f,e). For u = v = 1, c = eaf−1 and d = ea∗f,ef−1, we obtain

c◦ = (e−1c)◦ = (af−1)◦ = (a∗f,ef−1)◦ = (e−1d)◦ = d◦

and
◦c =◦ (cf) =◦ (ea) = ◦(ea∗f,e) =◦ (df) = ◦d.
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(iv) ⇒ (i): We can verify that (iv) gives aA = a†e,fA and Aa = Aa†e,f
in the same way as in the part (ii) ⇒ (i). By the equality (1), we conclude
that aA = a∗f,eA and Aa = Aa∗f,e and, by Theorem 1.4, (i) holds.

(i) ⇒ (iv): The statements (i) implies aA = a∗f,eA = a†e,fA and Aa =

Aa∗f,e = Aa†e,f . The condition (iv) follows on choosing u = v = 1, c = eaf−1

and d = ea†e,ff−1.

(v) ⇒ (i): As in the part (iii) ⇒ (i), we get a◦ = (a†e,f )◦ and ◦a = ◦(a†e,f )
which yields (i), by (1) and Theorem 1.4.

(i) ⇒ (v): By the choose u = v = 1, c = eaf−1 and d = ea†e,ff−1.
(vi) ⇒ (i): From the hypothesis (vi), we can check that a∗f,eaA =

aa∗f,eA and Aa∗f,ea = Aaa∗f,e. This equalities give a∗f,eA = aA and
Aa = Aa∗f,e, i.e. (i) is satisfied.

(i) ⇒ (vi) ∧ (vii): It follows for u = v = 1, c = a∗f,ea and d = aa∗f,e.
(vii) ⇒ (i): Using (vii), we have (a∗f,ea)◦ = (aa∗f,e)◦ and ◦(a∗f,ea) =

◦(aa∗f,e) which yields a◦ = (a∗f,e)◦ and ◦(a∗f,e) = ◦a. So, (i) holds.

5 Factorization a = bc

For an invertible positive element f ∈ A, we consider a factorization of
a ∈ A of the form

(4) a = bc, f−1b∗A = A = cA.

Lemma 5.1. Let e, f , h be invertible positive elements in A. If a ∈ A has
a factorization (4), then a is regular and a†e,h = c†f,hb†e,f .

Proof. Since f−1b∗A = A = cA, by Lemma 1.1, bf−1, c∗ ∈ A− and (bf−1)◦ =
{0} = (c∗)◦. Thus, the elements b and c are regular. Also, by the hypothesis
f−1b∗A = A = cA, there exist x, y ∈ A such that f−1b∗y = 1 = cx. Then,
(5)
b†e,fb = f−1(fb†e,fb)∗1 = f−1b∗(b†e,f )∗ff−1b∗y = f−1(bb†e,fb)∗y = f−1b∗y = 1

and

(6) cc†f,h = cc†f,h1 = cc†f,hcx = cx = 1.

Now, we can easy check that (bc)†e,h = c†f,hb†e,f .
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Lemma 5.2. Let e, f , h be invertible positive elements in A. If a ∈ A has
a factorization (4), then

(i) bA = aA;

(ii) c∗A = a∗A;

(iii) c◦ = a◦;

(iv) (b∗)◦ = (a∗)◦;

(v) [(eb)∗]◦ = [(ea)∗]◦;

(vi) (ch−1)◦ = (ah−1)◦;

(vii) b†e,f (b†e,f )∗e,f ∈ A−1 and (b†e,f (b†e,f )∗e,f )−1 = b∗f,eb;

(viii) (c†f,h)∗f,hc†f,h ∈ A−1 and ((c†f,h)∗f,hc†f,h)−1 = cc∗h,f ;

(ix) b∗eb ∈ A−1 and b†e,f = (b∗eb)−1b∗e;

(x) ch−1c∗ ∈ A−1 and c†f,h = h−1c∗(ch−1c∗)−1.

Proof. (i) The condition cA = A implies bA = bcA = aA.
(ii) From the equality f−1b∗A = A, we get

c∗A = c∗fA = c∗ff−1b∗A = (bc)∗A = a∗A.

(iii) Notice that, c◦ ⊆ a◦. If x ∈ a◦, then bf−1fcx = 0. By Lemma 1.1,
we observe that (bf−1)◦ = {0} which gives fcx = 0. Now, we deduce that
cx = 0 and a◦ ⊆ c◦. Hence, c◦ = a◦.

(iv) Because (c∗)◦ = {0}, by Lemma 1.1, then

x ∈ (a∗)◦ ⇔ a∗x = 0 ⇔ c∗b∗x = 0 ⇔ b∗x = 0 ⇔ x ∈ (b∗)◦.

In the similar way, we can show conditions (v)-(vi).
By (5) and (6), it follows (vii)-(viii).
(ix) Since

bc = a = aa†e,haa†e,ha = aa†e,he−1(a†e,h)∗a∗ea = bca†e,he−1(a†e,h)∗a∗ebc,

then

ca†e,he−1(a†e,h)∗c∗b∗eb = b†e,f (bca†e,he−1(a†e,h)∗a∗ebc)c†f,h = b†e,fbcc†f,h = 1

implies b∗eb ∈ A−1. We can easily check that b†e,f = (b∗eb)−1b∗e.
Considering a∗ we verify (x) similarly as in the proof of part (ix).
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In the following result, we characterize weighted–EP elements through
their factorizations of the form a = bc.

Theorem 5.1. Let e, f , h be invertible positive elements in A. If a ∈ A has
a factorization (4), then a ∈ A− and the following conditions are equivalent

(i) a is weighted–EP w.r.t. (e,h);

(ii) bb†e,f = c†f,hc;

(iii) c◦ = [(eb)∗]◦ and (b∗)◦ = (ch−1)◦;

(iv) ◦c∗ = ◦(eb) and ◦b = ◦(h−1c∗);

(v) c∗A = ebA and bA = h−1c∗A;

(vi) Ac = Ab∗e and Ab∗ = Ach−1;

(vii) ∃ u ∈ A−1 : c = ub†e,f and b = c†f,hu;

(viii) ∃ x, y ∈ A−1 : c = xb∗e and b∗ = ych−1;

(ix) A−1c = A−1b∗e and A−1b∗ = A−1ch−1;

(x) c∗A−1 = ebA−1 and bA−1 = h−1c∗A−1;

(xi) ∃ x, y ∈ A : x◦ = y◦ = {0}, c = xb∗e and b∗ = ych−1;

(xii) ∃ x, x1, y, y1 ∈ A : c = xb∗e, b∗e = x1c, b∗ = ych−1 and ch−1 = y1b
∗;

(xiii) ∃ x, y ∈ A : xA = yA = A, c∗ = ebx and b = h−1c∗y;

(xiv) a ∈ h−1c∗A ∩Ab∗e (or a ∈ c†f,hA ∩Ab†e,f );

(xv) a†e,h ∈ bA ∩Ac;

(xvi) b(b∗eb)−1b∗e = h−1c∗(ch−1c∗)−1c

(xvii) b = c†f,hcb, c = cbb†e,f , b†e,f = b†e,fc†f,hc and c†f,h = bb†e,fc†f,h;

(xviii) A−1c = A−1b†e,f and bA−1 = c†f,hA−1;

(xix) ∃ u ∈ A : u◦ = ◦u = {0}, c = ub†e,f and b = c†f,hu;

(xx) ∃ u ∈ A : Au = uA = A, c = ub†e,f and b = c†f,hu;
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(xxi) ∃ v ∈ A : v◦ = ◦v = {0}, b†e,f = vc and c†f,h = bv;

(xxii) ∃ v ∈ A : Av = vA = A, b†e,f = vc and c†f,h = bv;

(xxiii) ∃ u, u1, v, v1 ∈ A : c = ub†e,f , b†e,f = vc, b = c†f,hu1 and c†f,h = bv1.

Proof. (i) ⇔ (ii): By Theorem 1.4, a is weighted–EP w.r.t. (e,h) if and only
if aa†e,h = a†e,ha which is equivalent to bb†e,f = c†f,hc, by Lemma 5.1, (5) and
(6).

(i) ⇔ (iii): The element a is weighted–EP w.r.t. (e,h) if and only if
ea and af−1 are EP, that is, (ea)◦ = [(ea)∗]◦ and (ah−1)◦ = [(ah−1)∗]◦.
Notice that, by Lemma 1.2 and Lemma 5.2, these equalities are equivalent
to c◦ = [(eb)∗]◦ and (ch−1)◦ = (b∗)◦.

(iv) ⇔ (iii): This part can be check using involution.
(i) ⇔ (v): It is well-known that a is weighted–EP w.r.t. (e,h) if and

only if eaA = (ea)∗A and ah−1A = (ah−1)∗A, i.e. eaA = a∗A and aA =
h−1a∗A. Observe that, from Lemma 5.2, ebA = eaA and h−1c∗A = h−1a∗A.
Now, we conclude that eaA = a∗A and aA = (ah−1)∗A is equivalent to
ebA = c∗A and bA = h−1c∗A.

(vi) ⇔ (v): Applying the involution we verify this equivalence.
(ii) ⇒ (vii): Suppose that bb†e,f = c†f,hc. Let u = cb and let v = b†e,fc†f,h.

Then

c = cc†f,hc = cbb†e,f = ub†e,f , b = bb†e,fb = c†f,hcb = c†f,hu,

and
uv = ub†e,fc†f,h = cc†f,h = 1 = b†e,fb = b†e,fc†f,hu = vu.

Hence, u ∈ A−1 and the condition (vii) holds.
(vii) ⇒ (viii): If there exists u ∈ A−1 such that c = ub†e,f and b =

c†f,hu, then c = x′b∗f,e and b = c∗h,fy′, for x′ = ub†e,f (b†e,f )∗e,f and y′ =

(c†f,h)∗f,hc†f,hu. For x = x′f−1 and y = (y′)∗f , we see that c = xb∗e, b∗ =
ych−1 and, by Lemma 5.2, x, y ∈ A−1.

The following implications can be proved easily:
(viii) ⇒ (vi);
(viii) ⇔ (ix) ⇔ (x);
(viii) ⇒ (xi) ⇒ (iii);
(viii) ⇒ (xii) ⇒ (iii);
(viii) ⇒ (xiii) ⇒ (v).
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(i) ⇔ (xiv): Notice that, by Theorem 1.4, a is weighted–EP w.r.t. (e,h)
if and only if a ∈ a†e,hA∩Aa†e,h, which is equivalent to a ∈ h−1a∗A∩Aa∗e =
h−1c∗A ∩Ab∗e.

(i) ⇒ (xv): By Theorem 1.4, a is weighted–EP w.r.t. (e,h) ⇔ a ∈
a†e,fA−1 ∩ A−1a†e,f . Consequently, a†e,f ∈ aA ∩Aa = bA ∩Ac.

(xv) ⇒ (i): Since a†e,h ∈ bA ∩ Ac, then a†e,f ∈ aA ∩ Aa. Therefore, for

some x, y ∈ aA, a†e,f = ax = ya, which gives

a†e,f − aa†e,fa†e,f = (a− aa†e,fa)x = 0

and
a†e,f − a†e,fa†e,fa = y(a− aa†e,fa) = 0.

By Theorem 1.4, a†e,f = aa†e,fa†e,f = a†e,fa†e,fa implies that a is weighted–EP
w.r.t. (e,h).

(xvi) ⇔ (ii): Obviously, by statements (ix) and (x) of Lemma 5.2.
(ii) ⇒ (xvii): By elementary computations.
(xvii) ⇒ (i): The assumption (xvii) can be written as (1 − c†f,hc)b = 0,

c(1− bb†e,f ) = 0, b†e,f (1− c†f,hc) = 0 and (1− bb†e,f )c†f,h = 0 implying

aA = bA ⊆ (1− c†f,hc)◦ = h−1c∗A = h−1a∗A,

(a∗e)◦ = (b∗e)◦ = (1− bb†e,f )A ⊆ c◦ = a◦,

a◦ = c◦ = (1− c†f,hc)A ⊆ (b†e,f )◦ = (b∗e)◦ = (a∗e)◦,

and
h−1a∗A = h−1c∗A = c†f,hA ⊆ (1− bb†e,f )◦ = bA = aA.

Thus, ah−1A = aA = h−1a∗A and (ea)◦ = a◦ = (a∗e)◦ which gives that
ah−1 and ea are EP elements, that is, a is weighted–EP w.r.t. (e,h).

Note that for u = cb and v = b†e,fc†f,h, we can show:
(vii) ⇔ (xviii);
(vii) ⇒ (xix) ∨ (xxi) ∨ (xxiii) ⇒ (iii);
(vii) ⇒ (xx) ∨ (xxii) ⇒ (vi).
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