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1 Introduction

The weighted—EP matrices are characterized by commutativity with their
weighted Moore—Penrose inverse. They were introduced and investigated by
Tian and Wang in [26]. The notion of weighted-EP matrices was extended
to elements of C*-algebras in [23].

Generalized inverses have lots of applications in numerical linear algebra,
as well as in approximation methods in general Hilbert spaces. Hence, we
characterize weighted—EP elements of C*-algebras through various factor-
izations.

Let A be a unital C*—algebra with the unit 1. An element a € A is
regular if there exists some b € A satisfying aba = a. The set of all regular
elements of A will be denoted by A~. An element a € A satisfying a* = a
is called symmetric (or Hermitian). An element x € A is positive if x = y*y
for some y € A. Notice that positive elements are self-adjoint.

An element a! € A is the Moore-Penrose inverse (or MP-inverse) of
a € A, if the following hold [25]:

aata =a, dlad’ =d', (aa")* =ad’, (a'a)* =dla.

There is at most one af such that above conditions hold (see [13, 15]).
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Theorem 1.1. [13] In a unital C* -algebra A, a € A is MP-invertible if and
only if a is reqular.

Let e, f be invertible positive elements in A. The element a € A has the
weighted MP-inverse with weights e, f, if there exists b € A such that

aba =a, bab=1>, (eab)* =eab, (fba)" = fba.

The unique weighted MP-inverse with weights e, f, will be denoted by al f
if it exists [7].

Theorem 1.2. [7] Let A be a unital C*—algebra, and let e, f be positive
invertible elements of A. If a € A is reqular, then the unique weighted
MP-inverse ai 7 erists.

Define the mapping (,e, f) : x — 2"/ = e~ la*f, for all z € A. Notice
that (,e,f) : A — A is not an involution, because in general (wy)*®/ #
y*efx*ef  The following result is frequently used in the rest of the paper.

Theorem 1.3. [23] Let A be a unital C*-algebra, and let e, f be positive
invertible elements of A. For any a € A™, the following is satisfied:

(a) (af )}, =a;

(b) (@)}, = (al ;)T

)

(c) a*fe = ai’faa*f’6 = a*f’eaa;f;

(d) a*fve(al f)*ezf fry al,fa;

)

(h) a;f _ (a*f,ea)}fa*f,e — a*f,e(aa*f,e)lye;
(i) (e}, = ala*ea)l ; = (aa* )] ca.
For a € A consider two annihilators
a® ={x € A:azx =0}, ‘a={x e A:za=0}
Observe that,

(a*)°=a° < °(a*) = “aq, aA=a"As Aa= Ad".



Lemma 1.1. [11] The following hold for a € A.
(i) a€c A™! <= aA=Aand a®° = {0}.
(ii) ac A7 <= A= (a"A) da°.
(i) e* A=A < a€ A and a° = {0}.
The following lemmas related to weighted MP-inverse are very useful.

Lemma 1.2. [23] Let a € A~ and let e, f be invertible positive elements in
A. Then

(i) af jA = a jad = f7la" A = a4

(i) (al ,)*A = (aal ,)*A = ead = (a*/<)* A;
e,f f

€,

(vi) [(a )*]° = (af 1)

Lemma 1.3. [23] Let a € A~, and let e, [ be invertible positive elements
in A. Then

(1) CLZ f = (a*f’ea +1- al fa)fla*f’e — a*f,e(aa*f,e +1— aai f),l

)

(2) afeA = al , A7 and A7a*Te = A7l

(3) (a*/)° = (a} ;)° and °(a*) = °(al ;).

We recall the definition of EP elements.

Definition 1.1. An element a € A~ is EP if aat = a'a.

Lemma 1.4. [17] An element a € A is EP, if a € A~ and a A = a* A (or,
equivalently, if a € A~ and a° = (a*)°).



Many authors have investigated various characterizations of EP ele-
ments in a ring and C*-algebra (see, for example, [15, 17, 18, 20, 21, 24]),
many more still for Banach or Hilbert space operators and matrices (see
[1, 2,4, 5, 6,8,9, 10, 14, 16, 19, 22]). In [12], Drivaliaris, Karanasios and
Pappas and in [11] Djordjevié, J.J. Koliha and I. Straskraba have character-
ized EP Hilbert space operators and EP C*-algebra elements respectively
trough several different factorizations. Boasso [3] have recently character-
ized EP Banach space operators and EP Banach algebra elements using
factorizations, extending results of [11, 12].

Now, we state the definition of weighted—EP elements and some charac-
terizations of weighted—EP elements.

Definition 1.2. [23] An element a € A is said to be weighted-EP with
respect to two invertible positive elements e, f € A (or weighted-EP w.r.t.
(e,f)) if both ea and af~! are EP, that is a € A~, eaA = (ea)*A and
af A= (af 1H)*A

Theorem 1.4. [23] Let A be a unital C*—algebra, and let e, f be invertible
positive elements in A. For a € A~ the following statements are equivalent:

(i) a is weighted—EP w.r.t. (e,f);
(ii) aa;f = a;fa;
(i) af ; =a(al )* = (al 5)*a;

(iv) a€al ;AN A,

(v) a€ a;fA N Aa;f;

(vi) aA = a*1*A and Aa = Aa*le;

(vi) a® = (a*f€)° and °a = °(a*1*).

We turn our attention for characterizing weighted—EP elements in terms
of factorizations, motivated by papers [3, 11, 12], which are related to similar
characterizations of EP elements.



2 Factorization a = ba*/*

In this section we characterize weighted—EP elements of C*—algebras through
factorizations of the form a = ba*f*.

Theorem 2.1. Let A be a unital C*—algebra, and let e, f be invertible
positive elements in A. For a € A~ the following statements are equivalent:

(i) a is weighted—EP w.r.t. (e,f);
(ii) a = ba*f¢ = a*fc for some b, c € A;

(iii) a*/€a = bia* = acy and aa*f* = a* by = cya for some by, by, c1,co €

A;

(iv) a*fa = bgalf, aa*le = al sba and alf = c3a = acy for some
b3, by, c3,cq € A.

Proof. (i) < (ii): By Theorem 1.4, a is weighted-EP w.r.t. (e,f) if and only
if a € a;f.A N Aaiyf, which is equivalent to a € a*f*A N Aa*f*, by Lemma
1.2. Thus, the equivalence (i) < (ii) holds.

(i) < (iii): Notice that, by Theorem 1.3, aA = aa*/*A, Aa = Aa*/*a,
a*f*A = a*FeaA and Aa*f* = Aaa*/¢. Now (iii) is equivalent to aA =
a*/¢ A and Aa = Aa*¢. By Theorem 1.4, these equalities hold if and only
if a is weighted-EP w.r.t. (e,f).

(i) & (iv): Similarly as the previous part. O

3 Factorization a*/¢ = sa

In this section, the weighted-EP elements of the form a*/¢ = sa or al §=sa
will be characterized. ’

We start with characterizations of weighted—EP elements via factoriza-
tions of the form a*f¢ = sa.

Theorem 3.1. Let A be a unital C*—algebra, and let e, f be invertible
positive elements in A. For a € A~ the following statements are equivalent:

(i) a is weighted—EP w.r.t. (e,f);

(ii) 3s,t € A:5°= °t={0} and a*/* = sa = at;



(iii) 3 s1, 82,t1,t2 € A : a*le = s1a = aty and a = sea™e = a*fety;
(iv) 3u,v € A:ud = A= Av and a*/* = au = va;

(v) 3z,y € A a*a = vaa*) € = aa*fey;

(vi) 3z1,y1 € A: 2y = °y; = {0} and a*'feq = x1aa*f* = aa*Hey; ;
(vii) J z9,y2 € A: Axg = A= y2 A and a*feq = xgaa* ¢ = aa*HCyy;
)

(viil) 3 x3,24,93,94 € A : a*Fa = x300*¢ = aa**y3 and aa*’C =
xqa*ta = a*f’eay4;

(ix) 3 21,20 € A: a*/fa = az1a*° and aa*f* = a*/°25a;
(x) 3 g1,h1 € AL a*feq = ahlhie’fa*f’f and aa*¢ = a*e’fgff’fgla;

(xi) 3 g2.he € At g3 = °hy = {0}, a*/¢a = ahohy™ /' and aa*/e =
a*e,fg;fvfgza;

(xii) 3 g3,h3 € A: Ags = A = h3 A, a*/¢a = ah3h§e’fa*f’f and aa*¢ =
a*e,fg§f7fgsa'

Proof. (i) = (ii): If a is weighted-EP w.r.t. (e,f), by Theorem 1.4, a €
a;fA_l N .A_la;f, ie. a€af*A 1N A a* ¢, by Lemma 1.3. So, there
exist s, € A~! such that a*/*° = sa = at and the statement (ii) holds.

Similarly, we can prove that (i) implies (iii) and (iv).

(ii) = (i): The condition (ii) implies a® C (a*/¢)° and °a C °(a*/*).
Let x € (a*/)°, then sax = a*/*2 = 0, by s° = {0}, gives az = 0. Hence,
a® = (a*/°)° and, analogy, °a = °(a*/¢). By Theorem 1.4, a is weighted-EP
w.r.t. (e,f).

In the similar way, we can check (iii) = (i).

(iv) = (i): From the assumption (iv), we deduce that a*/*A = auA =
aA and Aa*’¢ = Ava = Aa which gives that the condition (i) is satisfied,
by Theorem 1.4.

(i) = (v): Let z = (aLf)*e’faijL 1 —aai’f(: (aa*fe+1 —aalyf)_l) and

y = al’f(a;f)*‘f’f +1- al’fa(: (a*fea +1 — a;fa)_l). Then z,y € A7,
a*he = y_laz f and al F= a*/¢z, by Lemma 1.3. Now, we can verify that

T

aa*Mtx = zaa e = aa, ¢ and a*f¢ay = ya*ta = al
b}

€,

£0- Further,

a*lea = yil(al 1) = yilaal = y Yaa* ) =y lraa*) e



and

aa*fe = (aai f)as_l = az fazv_l = (ya*fa)z™! = a*Caya,

'z and z = yz~!. Therefore, the

ie. a*ffa = taa*¢ = aa*fez71 for t =y~
condition (v) holds.

It is clear that the condition (v) implies (vi)-(viii).

(vi) = (i): Using (vi), we obtain (a*/€a)° = (aa*/¢)° and °(a*/€a) =
°(aa*/€). Observe that, by Theorem 1.3, (a*/¢a)® = a°, (aa*/¢)° = (a*/*)°,
°(a*fea) = °(a*/*), °(aa*f*) = °a. Hence, a® = (a*/¢)° and °a = °(a*F*)
and, by Theorem 1.4, a is weighted-EP w.r.t. (e,f).

Analogy, we check that (viii) V (ix) = (i).

(vil) = (i): Applying the hypothesis (vii) and the equalities a. A =
aa*’* A, Aa = Aa*lca, a* ¢ A = a*€ad, Aa*T® = Aaa*le, we get a A =
a*h*A and Aa = Aa*f¢. Thus, by Theorem 1.4, a is weighted-EP w.r.t.
(e.).

(i) = (ix): Tt is well-known that (i) gives that a = a*/°x; = xa*/*
and a*/¢ = axs = z4a, for some 1, z9, 3, 24 € A. Now, we conclude that
a*f¢a = a(x3r2)a*f* and aa*/* = a*f¢(x124)a. So, (ix) holds.

(i) = (x): The condition (i) implies that there exist g1,h; € A~! such
that a*/¢ = ah; = g1a which gives a = h;e’fa*f’f = a*e’fgff’f. Therefore,
(x) is satisfied.

Obviously, (x) = (xi) A (xii).

(xi) = (i): Since °(a*€a) = °(ahghi™ a*) = °(ahy(ahy)*®f), then
°(a*1¢) =° (ahg) and, by °hy = {0}, °(a*/¢) = °a. Similarly, from
(aa*f)° = ((g2a)**7 g2a)° and g5 = {0}, we have (a*/)° = a°. Hence,
a is weighted-EP w.r.t. (e,f), by Theorem 1.4.

(xii) = (i): The assumption (xii) gives a*/*¢a A = ahghge’fa*f’f/l =
ahsz(ah3)*®f A. Then a*/*A = ahs A = aA, by hs A = A. In the same way,
Aaa*le = Aa*67fg§f’fgga and Ags = A imply Aa*f¢ = Aa. Therefore, a is
weighted-EP w.r.t. (e,f), by Theorem 1.4. O

We continue with characterizations of weighted—EP elements via factor-
izations of the form az § = sa.

Theorem 3.2. Let A be a unital C*—algebra, and let e, f be invertible
positive elements in A. For a € A~ the following statements are equivalent:

(i) a is weighted—EP w.r.t. (e,f);

(ii)) Is,t e A:s°= °t={0} andaif:sa:at;
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(iii) 3 s1, 82,t1,t2 € A : al’f =s1a=at; and a = SQa;f = al’ftg;

(iv) Ju,ve A:ud=A= Av andalf:auzva;
(v) 3oy AL aljfa = a:aa;f = aa;fy;
(vi) 3z1,y1 € A: 2y = °y; = {0} and aivfa = xlaa;f = aai,fyl;

(vii) 3 z9,y2 € A: Axg = A= y2 A and al’fa = argaa;f = aal’fyg;
(viii) 3 z3,24,y3,91 € A : a;fa = xgaalyf = aa;fyg and aa;f = x4a;fa =
al says;

(ix) I z1,220 € A a;fa = azla;f and aal’f = alvfzga.

Proof. Similarly as the proof of Theorem 3.1, using Lemma 1.2 and Lemma
1.3. O

4 Factorization a = e lucvf

In this section, we give characterizations of weighted—EP elements through
factorizations of the form a = e tucvf.

Theorem 4.1. Let e, [ be invertible positive elements in A. If a € A™,
then the following statements are equivalent:

(i) a is weighted—EP w.r.t. (e,f);

(i) 3 e,d,u,v € A:a = e lucvf = e L ford*ure  f, vA = A = Au,
cA=dA and Ac = Ad;

(iii) 3 ¢,d,u,v € A :a = e lucvf = e fordiurel f, u® = {0} = °w,
c®=d° and °c= °d;

(iv) 3 e,d,u,v € A : a = e luenf, a;f = e ludvf, vA = A = Au,
cA=dA and Ac = Ad;

(v) 3 e,dyu,v € A a = e tuenf, aif = e ludvf, u® = {0} = °v,
c® =d° and °c = °d;



(vi) 3 e, d,u,v € A:a*ffa = ucv, aa*H* = udv, vA = A = Au, cA = dA
and Ac = Ad;

(vii) 3 ¢, d,u,v € A a*fa = ucv, aa*f¢ = udv, u° = {0} = °v, & = d°
and °c = °d.

Proof. (ii) = (i): If a = e tucvf = e~ fo*d*u*e~ L f, for some ¢, d,u,v € A
satisfying vA = A = Au, cA = dA and Ac = Ad, then a* = fe ludvfe™!.
Further

aAd = e tuwfA=etucwA=etucAd=etudA
e tudvA = e ludvfA = fla*ed = a*/cA

and

Aa = Ae luevf = Auevf = Acvf = Advf
= Audvf = Ae udvf = Af 'a*e = Aa*e.

By Theorem 1.4, we deduce that a is weighted-EP w.r.t. (e,f).

(i) = (ii): Since a is weighted-EP w.r.t. (e,f), we have a A = a*/*A
and Aa = Aa*f¢. Let u=v =1, ¢ = eaf ! and d = ea*/f~1. Now, we
obtain

e leAd=af"A=ad=a"V*A=a"cf1A=e"1dA,

and

Acf = Aea = Aa = Aa*/¢ = Aea* = Adf,

implying cA = dA and Ac = Ad. The rest is obviously.

(iii) = (i): Assume that there exist ¢, d, u,v € A satisfying a = e lucvf =
e tfvrdtute 1 f, u® = {0} = °v, ¢® = d° and °c = °d. To prove that
a® = (a*/€)°, let € a°, i.e. e lucvfr = 0. Now, ucvfr = 0 and, by
u® = {0}, cvfr = 0. So, vfxr € ¢® = d° that is, dvfr = 0 which gives
a*hex = e~ ludvfaz = 0. Hence, a® C (a*/¢)°. The reverse inclusion follows
similarly. The conditions {0} = °v and °c = °d imply °a = °(a*/*),
analogy. Thus, a is weighted—EP w.r.t. (e,f), by Theorem 1.4.

(i) = (iii): Because a is weighted-EP w.r.t. (e,f), then a® = (a*/*)°
and °a = °(a*/*). We can show that (af~1)° = (a*/¢f~1)° and °(ea) =
°(ea*f€). Foru=v =1, c=eaf " and d = ea*/*f~1, we obtain

® = (6_10)0 _ (af—l)o _ (a*f,ef—l)o _ (e—ld)o — J°

and
°c =" (cf) =° (ea) = °(ea”’*) =° (df) = °d.



(iv) = (i): We can verify that (iv) gives a A = ai A and Aa = Aaz /
in the same way as in the part (ii) = (i). By the equality (1), we conclude
that aA = a*/*A and Aa = Aa*/¢ and, by Theorem 1.4, (i) holds.

(i) = (iv): The statements (i) implies aA = a*/¢A = a;fA and Aa =
Aa*le = Aal +- The condition (iv) follows on choosingu =v =1, ¢ = eaf~!
and d = eagff_l.

(v) = (i): Asin the part (iii) = (i), we get a® = (a;f)o and °a = O(al,f)
which yields (i), by (1) and Theorem 1.4.

(i) = (v): By the choose u =v =1, c=-eaf ! and d = eai fffl.

(vi) = (i): From the hypothesis (vi), we can check that a*/¢aA =
aa*/* A and Aa*/fa = Aaa*f*. This equalities give a*/*A = aA and
Aa = Aa*1e ie. (i) is satisfied.

(i) = (vi) A (vii): It follows for u = v = 1, ¢ = a*/*a and d = aa*/*.

(vii) = (i): Using (vii), we have (a*/€a)° = (aa*/¢)° and °(a*/*€a) =
°(aa* ) which yields a® = (a*/¢)° and °(a*/¢) = °a. So, (i) holds. O

5 Factorization a = bc

For an invertible positive element f € A, we consider a factorization of
a € A of the form

(4) a=be, f*A=A=cA.

Lemma 5.1. Let e, f, h be invertible positive elements in A. If a € A has

a factorization (4), then a is regular and al h = c}hbl e

Proof. Since f~'0*A = A = cA, by Lemma 1.1, bf !, ¢* € A~ and (bf~1)° =
{0} = (¢*)°. Thus, the elements b and ¢ are regular. Also, by the hypothesis
f~'* A = A = cA, there exist z,y € A such that f~'b*y = 1 = cz. Then,
(5)

bl b= B ) L= (0] ) Ty = F ] by y = f by =1

and
(6) cc}h = cc}hl = cc}’hcx =cr=1.
Now, we can easy check that (bc)l’h = c}’hbl’f. O

10



Lemma 5.2. Let e, f, h be invertible positive elements in A. If a € A has
a factorization (4), then

(i) bA = aAd;
(i) c*fA=a"A;

(iii) ¢°

i)
)
(iv) (b7)° = (a")°;
(v) [(eb)*]° = [(ea)"]>;
(vi) (ch™h)° = (ah™")*;
) b T ( )*ef c A and (bl,f(b;f)*e,f)—l :b*f,eb’.

(vii

(viii) (c}vh)*f’th p €A™ and ((c},)

(ix) b*eb € A™! and b , = (b"eb)"Lbe;

*f,hc}h)—l _ Cc*h,f’.

(x) ch~te* € A71 and cf’h =h~te*(chter) 7L,
Proof. (i) The condition cA = A implies bA = bcA = aA.
(ii) From the equality f~'b*A = A, we get
FA=cfA=cff A= (be)*A=a*A
(iii) Notice that, c® C a°. If € a°, then bf~!fcx = 0. By Lemma 1.1,
we observe that (bf~1)° = {0} which gives fcz = 0. Now, we deduce that

cx =0 and a° C c°. Hence, c® = a°.
(iv) Because (c¢*)° = {0}, by Lemma 1.1, then

re€(@) eadr=0cbr=0cbzr=0<z¢c (b")°.

In the similar way, we can show conditions (v)-(vi).
By (5) and (6), it follows (vii)-(viii).
(ix) Since

be=a = aaijhaa;ha = aaijhe_l(a;h)*a*ea = bcaghe_l(ai’h)*a*ebc,
then
cai’he_l(a;h)*c*b*eb = bl’f(bca;he_l(al’h)*a*ebc)c}’h = b;fbcc}h =1
implies b*eb € A~!. We can easily check that bl ;= (b*eb)~tb*e.

Considering a* we verify (x) similarly as in the proof of part (ix). O
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In the following result, we characterize weighted—EP elements through
their factorizations of the form a = bc.

Theorem 5.1. Lete, f, h be invertible positive elements in A. Ifa € A has
a factorization (4), then a € A~ and the following conditions are equivalent

a is weighted—EP w.r.t. (e,h);

(i
(i) bbf ;= ch e

(iii) ¢ ={[(eb)*]° and (b*)° = (ch™")°;
(iv) °¢* = °(eb) and °b= °(h~'¢*);
(v) A= ebA and bA = h~'¢" A;

(vi) Ac = Ab*e and Ab* = Ach™!;

(vi) Jue A ic= ubJr and b = c}jhu;

(viii
(ix) Ale=A"*e and A71b* = A~ 1ch™!;
(x) A7l =eb A7 and bA™ = hlcr A7

(xi) 3z,y € A:2° =y° = {0}, c = zb*e and b* = ych™};

(xii) 3 @, 21,y,y1 € A: c=zb'e, b*e = z1¢, b* = ych™! and ch™' = y1b*;

*

yA= A, ¢* = ebx and b= h~'c*y;

)
)
)
)
)
)
)
) 3z,y € A i c=ab*e and b* = ych™!;
) A
)
)
)
(xiil) 32,y € A:zA =
)

(xiv) a € h=1c* AN Ab*e (ora € C},h'A N Abl,f)"

(xv) af , € bAN Ac;
(xvi) b(b*eb)~1b*e = h~lc*(ch~lc*)~le

(xvii) b= c}hcb, c= cbbLf, bl,f = bl,fc},hc and C}L‘,h = bbl,fc},h;
(xviii) A~le= A" , and bA™! =}, A71;

(xix) Jue A:w = *u={0}, c=ubl , and b= ch,u;

(xx) Jue A: Au=uld=A, c= Ubl,f and b = C},hw
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(xxi) FJve A:v° = v ={0}, bz’f = vc and C},h = bv;
(xxii) 3ved: Av=vA=A, b;f = vc and c}h = bv;

(xxiil) 3 u,uy,v,v1 €EA:c= UbLf’ bl,f =wvc, b= c}jhul and CTf,h = buy.

Proof. (i) < (ii): By Theorem 1.4, a is weighted-EP w.r.t. (e,h) if and only
if aa;h = al,ha which is equivalent to bb;f = c},hc, by Lemma 5.1, (5) and
(6).

(i) & (iii): The element a is weighted-EP w.r.t. (e,h) if and only if
ea and af~! are EP, that is, (ea)® = [(ea)*]° and (ah™1)° = [(ah™1)*]°.
Notice that, by Lemma 1.2 and Lemma 5.2, these equalities are equivalent
to ¢® = [(eb)*]° and (ch~1)° = (b*)°.

(iv) < (iil): This part can be check using involution.

(i) & (v): It is well-known that a is weighted-EP w.r.t. (e,h) if and
only if ead = (ea)*A and ah™'A = (ah™1)* A4, ie. ead = a*A and aA =
h~la*A. Observe that, from Lemma 5.2, ebA = ea A and h~1¢* A = h~1a* A.
Now, we conclude that ead = a*A and aA = (ah~!)*A is equivalent to
ebA = c* A and bA = h~1c* A.

(vi) & (v): Applying the involution we verify this equivalence.

- (ii) = (vii): Suppose that bb;f = c}hc. Let u = ¢b and let v = b;fc}’h.
en

c= ccTﬂhc = cbb;f = ubgf, b= bbi’fb = c}hcb = c},hu,
and
uv = ub;fc}h = cc}’h =1= b;fb = b;fc},hu = vu.
Hence, u € A~! and the condition (vii) holds.
(vii) = (viii): If there exists u € A~! such that ¢ = ublf and b =
c}’hu, then ¢ = 2/b*/¢ and b = c¢fy/, for 2/ = ubl7f(bz7f)*e’f and y =
(c}h)*f’hc} wu. For o = 2/f~1 and y = (y/)*f, we see that ¢ = zb*e, b* =

ych™! and, by Lemma 5.2, z,y € A~
The following implications can be proved easily:

13



(i) & (xiv): Notice that, by Theorem 1.4, a is weighted-EP w.r.t. (e,h)
if and only if a € aLh.Aﬂ.Aa;h, which is equivalent to a € h~'a* AN Aa*e =
h=lc* AN Ab*e.

(i) = (xv): By Theorem 1.4, a is weighted-EP w.r.t. (e,h) & a €
a;f.A*1 N A*1a17f. Consequently, ai’f c€aAnNAa=0bAN Ac.

(xv) = (i): Since ai,h € bAN Ac, then a;f € aAN Aa. Therefore, for

some x,y € aA, al  =azx= ya, which gives
€7f

T

Q.

I aal’fa;f =(a— aa;fa)x =0

and
a;f - aLfaZ,fa =y(a — aalja) =0.

By Theorem 1.4, a;f = aai’fa;f = alyfa;fa implies that a is weighted-EP
w.r.t. (e,h).

(xvi) < (ii): Obviously, by statements (ix) and (x) of Lemma 5.2.

(ii) = (xvii): By elementary computations.

(xvii) = (i): The assumption (xvii) can be written as (1 — c}hc)b =0,
c(l— bb;f) =0, b;f(l - c;rc’hc) =0and (1 — bbl,f)c},h = 0 implying

aAd=bAC (1—cl )’ =h"'cA=h""a"A,

(a%e)® = (b%e)® = (1 — b )AC ¢ =a”,
a®=c®=(1—ch,0)AC (b] ,)° = (b7e)° = (ae)°,

and
hlatA=h"'c A=ch AC (1-bb )°=bA=aA

Thus, ah™ 1A = ad = h™la* A and (ea)® = a° = (a*e)° which gives that
ah™! and ea are EP elements, that is, a is weighted-EP w.r.t. (e,h).

Note that for u = ¢b and v = bl7fc}7h, we can show:

(vil) & (xviil);

(vil) = (xix) V (xxi) V (xxiii) = (iii);

(vil) = (xx) V (xxii) = (vi). O
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