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Abstract

Necessary and sufficient conditions for (ab)* = b#(afabb¥)#al and (ab)* =
bt (aabb")#a* to hold in rings with involution are presented. Also, some equivalent
conditions concerning the reverse order laws (ab)# = bfa* and (ab)* = b#a' are studied.
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1 Introduction

Let R be an associative ring with the unit 1. For invertible elements a,b € R, the inverse
of the product ab satisfied the reverse order law (ab)~! = b~1a~!. Since this formula cannot
trivially be extended to various generalized inverse of the product ab, the reverse order laws
for generalized inverses have been investigated in the literature since the 1960s [1, 2, 3, 4, 6, 7].

An element p € R is idempotent if p?> = p. An element a € R is group invertible if there
is @™ € R such that

(1) aa”a =a, (2) a’aa® =a¥, (5) aa® = a¥a;

a* is a group inverse of a and it is uniquely determined by these equations. The group inverse
a® double commutes with a, that is, ax = za implies a¥z = za? [1]. Denote by R# the set
of all group invertible elements of R.

An involution a — a* in a ring R is an anti-isomorphism of degree 2, that is,

(@) =a, (a+b)*=a"+0b", (ab)" =0b"a".

An element a € R is self-adjoint (or Hermitian) if a* = a.
The Moore-Penrose inverse (or MP-inverse) of a € R is the element af € R, if the
following equations hold [8]:

(1) ad'a=a, (2)d'aa’ =a', (3) (aa")* =aal, (4) (a'a)* =aa.

There is at most one af such that above conditions hold. The set of all Moore-Penrose
invertible elements of R will be denoted by RI.
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Recall that the element a € R is Drazin invertible, if there exists some non-negative
integer k, and there exists some element b € R such that the following hold: bab = b, ab = ba
and a¥t1b = @. In this case b is the Drazin inverse of a, and the common notation is b = a”.
If the Drazin inverse of a exists, then it is unique. If a is Drazin invertible, then a™ = 1 —aa”
is the spectral idempotent of a.

In this paper we use a similar notation: if a is the Moore-Penrose invertible, then a] =
1 —a'a and aF = 1 — aa’. However, there is no connection between af, ay and a”.

If § € {1,2,3,4,5} and b satisfies the equations (i) for all ¢ € 4, then b is an d—inverse
of a. The set of all J—inverse of a is denoted by a{d}. Indeed, if a € R, then a{5} is the
commutator of a. Hence, if ¢ commutes with a, then ¢ is an {5}-inverse of a. Notice that
a{1,2,5} = {a”} and a{1,2,3,4} = {al}. If a is invertible, then a” and a' coincide with the
ordinary inverse a~! of a.

The reverse-order law (ab)l = bf(aTabb’)Tal was first studied by Galperin and Waksman
[5]. A Hilbert space version of their result was given by Isumino [7]. The results concerning
the reverse order law (ab)! = bf(a'abbl)Ta’ for complex matrices appeared in Tian’s paper
[9]. A natural consideration is to see what will be obtained if we replace the Moore-Penrose
inverse by the group inverses.

In this paper, we investigate equivalent conditions for the reverse order laws (ab)# =
b (atabb™)#al and (ab)# = bf(a¥abb")#a¥ to be satisfied in rings with involution. Some
necessary and sufficient conditions including afabb® € R# or a”abb! € R¥ for (ab)# =
bia# or (ab)# = b#a' are obtained. We also give characterizations of the rules (afab)# =
b7 (aTabb™)# and (abb")# = (a*abb!)#a®. The conditions related to the reverse order laws
(ab)* = b7 (a*abb™)*a*, (ab)? = b*(a™abb*)*a”, (ab)® = b7"a* and (ab)*” = b*a™ are
presented too.

2 Reverse order laws

In the beginning of this section, we give some characterizations of the reverse order law
(ab)* = b7 (alabb™)#a' in a ring with involution.

Theorem 2.1. If a € Rt and b, ab, atabb# € R#, then the following statements are equiva-
lent:

(i) (ab)* = b*(aTabb?)*al,

(ii) b7 (aTabb®™)#al € (ab){5},
(iii) abaa’ = ab and b* (atabb?®)#atabaal = abb? (atabd®)#al,
(iv) bb*ab = ab and b7 babb™ (aTabb?)#al = b (a'abb™)*alab,
(v) v - (afabb?){1,5} - a’ C (ab){5}.

Proof. (i) = (ii): This is obvious.
(ii) = (iii): Observe that b7 (afabb™)#al € (ab){1}, by

abb” (aTabb™)*alab = a(a'abb® (aTabb™)#alabb™ )b = aa’abb™b = ab. (1)



The condition b# (atabb™)#at € (ab){5} gives
abaa’ = ababb™ (aTabb™)*alaa’ = ababb” (a'abb?™)*al = ab
and
b7 (a'abb™)*al (abaa’) = b7 (aTabb™) ¥ alab = abb™ (a'abb?™)*al.
Hence, the statement (iii) holds.

(iit) = (v): For (afabb#)(1®) € (atabb#){1,5}, we obtain

alabb? (af abp® )15 abb™)# ot abb® (atabb® (afabb?)(12))
abb™)# (atabb® (afabb™) (%) ot abb?)

(a’abb™)#atabb? . (2)

(af
(af

Then, from abaa! = ab and b* (aTabb™)#alabaa’ = abb™ (aabb?)#al,

abb? (afabb®) D at = a(afabd? (atabb?)2))at
= aa'abb” (aTabb™)*al = abb® (a'abb™)#al
= b*(alabb™)*al (abaa’) = 0¥ (aTabb™) ¥ alab
= b*((alabb™)#alabb™ )b = b7 (alabb™) 2 atabb? b
= b*(atabb?®) D alab.

Hence, for any (afabb#)(1%) ¢ (afabb#){1,5}, b# (atabb#) 1P at € (ab){5} and the condition
(v) is satisfied.

(v) = (i): By b7 -(atabb?){1,5}-al C (ab){5} and (aTabb™)# € (a'abb?){1,5}, we deduce
that b# (atabb®)#al € (ab){5}. Since the equalities (1) hold and

v# ((af abb®)#alabb® (alabb?)#)al = b# (alabb¥)#al,

we conclude that % (atabb®)#al € (ab){1,2}. Thus, (i) holds.
(ii) = (iv) = (v): Similarly as (ii) = (iii) = (v). O

The next theorems considering the rules (ab)™ = b% (a*abb™)#a*, (ab)* = bl (a? abb!)#a™
and (ab)# = b*(a?abb*)#a*, can be proved in the same way as in Theorem 2.1.

Theorem 2.2. Ifa € R' and b, ab, a*abb?” € R¥, then the following statements are equiva-
lent:

(i) (ab)™ = b7 (a*abb™)"a*,

(ii) b*(a*abb?™)*a* € (ab){5},

)

)
(iii) abaa’ = ab and b* (a*abb™)*a*abaa’ = abb¥ (a*abb™)*a*,
(iv) bb*ab = ab and b7 babb™ (a*abb™)#a* = b7 (a*abb™)*a*ab,
)

(v) b* - (a*abb?){1,5} - a* C (ab){5}.



Proof. Using the equalities a = (a!)*a*a and a* = a*aa’, we repeat the argument of the proof
of Theorem 2.1. O

Theorem 2.3. Ifb € R and a,ab,a™abb’ € R¥, then the following statements are equiva-
lent:

(i) (ab)* = bl (a™abb?)#a?,
(ii) bf(a”abb")#a” € (ab){5},

)
)
(iii) b'bab = ab and bTbabb! (a abb")*a? = bl (a™abb')*a™ab,
(iv) abaa™ = ab and bl (a¥abb")#aa¥baa™ = abbt(a¥ abbl)#a¥,
)

(v) b - (a#abb?){1,5} - a¥ C (ab){5}.

Theorem 2.4. If b € R' and a,ab, a? abb* € R¥, then the following statements are equiva-
lent:
(i) (ab)? = b*(a? abb*)*a™,
(ii) b*(a™abb*)*a? € (ab){5},
(iii) b'bab = ab and bibabb* (a™abb*)#a? = b* (a¥ abb*)#a? ab,
(iv) abaa™ = ab and b*(a™abb*)*aabaa™ = abb* (a™ abb*)*a¥,
)

(v) b* - (a®abb*){1,5} - a¥ C (ab){5}.

We prove that the assumption of inclusion (ab){5} C b# - (atabb?){1,5} - a automatically

implies equality.

Theorem 2.5. If a € R and b,ab,a’abb? € R¥, then the inclusion (ab){5} C b¥ -
(atabb®){1,5} - a' is always an equality.

Proof. If (ab){5} C b# - (aTabb#){1,5} - af, by (ab)# € (ab){5}, there exists (afabb#)(1:5) ¢
(afabb#){1,5} such that (ab)# = b#(afabb#)12)al. Because the equalities (2) hold again,
we have

b (atabb™)#al = b7 (aTabb™)? alabb? (a'abb™)#al
= (0" (afabb®) D 0N ab (b7 (atabb™ )P al)
(ab)* ab(ab)? = (ab)¥,
impling, by Theorem 2.1, b#-(afabb?){1,5}-a" C (ab){5}. Hence, (ab){5} C b¥-(alabb®){1,5}
al. O
Similarly as in the proof of Theorem 2.5, we can verify that the inclusions (ab){5} C
b7 - (a*abb™){1,5} -a*, (ab){5} C b - (a*abbl){1,5} -a” and (ab){5} C b*- (a¥abb*){1,5}-a™
are always the corresponding equalities.
Now, we characterize the reverse order law (afabb™)# = bb#ala.



Theorem 2.6. If a € R and b, atabb¥# € R#, then the following statements are equivalent:
(i) (atabb™)# = bb*ala,
(ii) alabd® = bb#ala.
Proof. (i) = (ii): The hypothesis (a'abb™)# = bb*ala gives
alabb®a’a = aabb® bb” ala = bb7 alaal abb™ = bb™ ' abb™

and
alabb” = a'abb™ (bb™ a'a)atabb™ = aTabb™a'a

implying
w*ata = bb*ala(a’abb®)ob"ala = (bb*a'abb?™)ala
alabb”a’aa’a = alabb”ata = alabb™.

(ii) = (i): By the equality afabb? = bb#ala, observe that bb#ata € (afabb™){1,2} and
(aTabb?)(bb* a'a) = bb* alaa’abb™, that is bb*ala € (atabb?){5}. O

The following result can be checked in the same manner as Theorem 2.6.
Theorem 2.7. Ifb € R and a,a?abb’ € R¥, then the following statements are equivalent:
(i) (a™abb")# = bbTa*a,
(ii) a*abb’ = bbfa¥a.

The condition (ii) of Theorem 2.6 can be rewritten as (1 —a])(1 —b0") = (1 —b")(1 —af
or afb™ = b"a]. The condition (ii) of Theorem 2.7 is equivalent to (1 — a™)(1 — b]}) =
(1=05)(1—a™) or a™b = a™br.

Necessary and sufficient conditions for (a*abb#)# = bb#ala and (a#abb*)# = bbfa#a are
given in the next theorems.

Theorem 2.8. Ifa € RT and b, a*abb?® € R¥, then the following statements are equivalent:
(i) (a*abb™)* = bb*ala,
(ii) a*abb” = bb*ala.

Proof. (i) = (ii): From the assumption (a*abb™)* = bb#ala, we obtain

b#ala = bb*ala(a*abb™)bbala = bb¥ (a*abbbb¥ ala)
bb* bb* alaa* abb™ = bb¥ a*abb™ .

Further, by this equality, we have

a*abb? = (a*abb?™)?a*abb™a*abb?” = bb* alaa*abb® a*abb”
= (bb*a*abb™ )a*abb? = bb*alaa*abb?” = bb¥ a*abb™ = bb¥ ala.



(ii) = (i): The equality a*abb? = bb#a'a implies
a*abb™ = bb*ala = bb¥ (bb7ala) = b a*abb™
which yields

(a*abb™)* = (a*abb™)[(a*abb™)#]? = bb7 a*abb® [(a*abb? )7]?
= bb"ala(a*abb” [(a*abb™)¥)?) = bb¥ ala(a*abb™)*.

Therefore, we get

bb#ata = bb7 (bb7ala) = bb¥ (a*abb™) = bb¥ (a*abb™ )a*abb™ (a*abb®)#
b7 bb” al aa* abb™ (a*abb™)# = bb* (a*abb™ ) (a* abb™ )
= bbb alala*abb™)? = bb*ala(a*abb?)* = (a*abb?)7.

Exactly as in Theorem 2.8, we can show the next result.
Theorem 2.9. Ifb e R and a,a#abb* € R#, then the following statements are equivalent:
(i) (a*abb*)# = bblata,
(ii) a*abb* = bbla*a.
Now, we consider equivalent conditions for b# (a'abb™)#al = b#a'l to hold.

Theorem 2.10. If a € R and b,atabb™,bb7ala € R¥, then the following statements are
equivalent:

(i) v (afabb®)#al = b7 al,
(ii) b7 aabbal = b7 al,
(iii) bb*ala is an idempotent,
(iv) a(bb*alfa)#b = ab,
(v) abb*alab = ab,

(vi)
Proof. (i) = (ii): Since b* (aTabb?)#a' = b#al, we observe that

atabb# is an idempotent.

(b*aab(b®a’) = b7 ((aTabb™)*alabb? (a'abb™)?)a’
b (alabb™)#al = b al.

(ii) = (iii): Multiplying the equality b”a'abb?a’ = b#a! from the left side by b and from
the right side by a, we get bb#alabb#ata = bb#a'a. Hence, the condition (iii) is satisfied.



(iii) = (i): Assume that bb*afa is an idempotent. Notice that
ata(aTabb™)# = alaalabb®[(aTabb®)#]? = alabb?[(a’abb?)*]?
(a'abb?™)*.
Then, we get

val = b7 (bb7ala)a’ = b7 (b7 ala)?al = b7 (alabb®)al
= b7 (b7 alabb™ala)bb™ (aTabb™)*al
= b7 (bb"alabb™ala)(atabb™) ¥ at = b7 (ala(alabb®™)?)al
= b7 (aTabb™)*al.

(iv) = (v) = (vi) = (iv): This implications follow as (i) = (ii) = (iii) = (i).
(i) = (vi): Applying the assumption b (afabb?)#a’ = b7 al, we have

alab(b”at)abb™ = alabb” (aabb™)*alabb? = alabb™.

So, the statement (vi) holds.
(iv) = (iii): In the same manner as (i) = (vi).

The following theorems can be proved similarly as Theorem 2.10.

Theorem 2.11. If a € R' and b, a*abb¥,bb#a*a € R¥, then the following statements are

equivalent:
(i) v (a*abb™)#a* = b a*,
(ii) b*a*abb™a* = b a*,
(iii) bb*a*a is an idempotent,
(iv) a(bb*a*a)?b = ab,
(v) abb*a*ab = ab,
i)

a*abb¥# is an idempotent.

(v

Theorem 2.12. If b € R and a,a#abb’,bbTa?a € R#, then the following statements are
equivalent:

(i) bf(a*abb))#a? = bla¥,

(ii) bfa#abbta® = bla?,

)
)
(iii) bbfa™a is an idempotent,
(iv) a(bbfa#a)#b = ab,

)

(v) abbla®ab = ab,



(vi) a#abb' is an idempotent.

Theorem 2.13. If b € RY and a, a®abb*, bb*a#a € R¥, then the following statements are
equivalent:

(i) bv*(a”abb*)”a” = b*a’,
(ii) b*a”abb*a™ = b*a’,

(iii) bb*a™a is an idempotent,

)
)
)
(iv) a(bb*a*a)#b = ab,
(v) abb*a*ab = ab,
)

(vi) a*abb* is an idempotent.

Observe that the conditions of Theorem 2.6 (Theorem 2.8, Theorem 2.7, Theorem 2.9,
respectively) imply the conditions of Theorem 2.10 (Theorem 2.11, Theorem 2.12, Theorem
2.13, respectively). The reverse implication fails.

Since the conditions of Theorem 2.6 give the conditions of Theorem 2.10, combining the
conditions of Theorem 2.1 and Theorem 2.6, we get the sufficient conditions for the reverse
order law (ab)* = b*a' to hold. Similarly, we can obtain lists of sufficient conditions for the
reverse order laws (ab)# = b#a*, (ab)? = bla™, (ab)* = b*a™.

In the next theorem, the equivalent condition to (ab)* = b#al is presented.

Theorem 2.14. If a € R and b, ab, atabb# € R#, then the following statements are equiv-
alent:

(i) (ab
(i) (ab

Proof. (i) = (ii): The condition (ab)# = b#a! implies that b#afabb¥a’ = b#al which is equiv-
alent to b7 (afabb®)#al = b#al, by Theorem 2.10. Thus, (ab)# = b¥al = b¥ (aTabb?)*al.
(ii) = (i): It is trivial. O

)# = b*al,
# = v# (atabb®)#al and v¥ (atabd?)#al = v#al.

Remark. The next characterizations can be verified in the same way as in Theorem 2.14.
(a) If a € R and b, ab, a*abb?# € R#, then:

(ab)® = b a* < (ab)® = b7 (a*abb™)¥a* and b7 (a*abb™)*a* = b7 a*.
(b) If b € RT and a, ab, a*abb’ € R¥, then:

(ab) =bla® < (ab)? = bl (a™abb’)¥a™ and bf (™ abb’)¥a? = bla®.
(c) If b € Rt and a, ab, a#abb’ € R#, then:

(ab)® =b*a™ < (ab)® = b*(a”abb*)*a? and b*(a abb*)*a® = b*a”.



If we combine the conditions of Theorem 2.1 and Theorem 2.10 (Theorem 2.2 and Theorem
2.11, Theorem 2.3 and Theorem 2.12, Theorem 2.4 and Theorem 2.13, respectively), we
obtain a set of equivalent conditions for the reverse order law (ab)* = b#al ((ab)? = b¥a*,
(ab)* = bla™, (ab)* = b*a™, respectively) to be satisfied.

Some equivalent conditions for reverse order law (a'ab)” = b#(alabb™)# to hold are
consider in the following theorem.

Theorem 2.15. If a € R and b,a’ab,atabd? € R#, then the following statements are
equivalent:

(i) (afab)# = b#(atabb#)#,

(ii) b#(afabb®)# c (atab){5},

(iii) bb#atab = atab and balabb¥ (atabb®)# = (alabb?)#atab,
(iv) b{1,5} - (aTabb?™){1,5} C (a'ab){5},

(v) (atabb#)# = b(alab)#,

(vi) b(atab)# e (afabb#){5},
(vii) b- (afab){1,5} C (aabb¥){5}.

Proof. (i) = (ii): Obviously.
(ii) = (iii): Assume that b¥ (aTabb?)# € (aTab){5}. The equality

a’abb? (aabb™)# alab = (a'abb™ (a'abb™)#alabb™ )b = a'abb™b = a'ab (3)
gives b7 (atabb?)# € (afab){1}. Therefore, notice that
bb™ (aTab) = bb7 b7 (a'abb™ ) (aTab)? = b¥ (a'abb?™)# (a'ab)? = alab (4)
and

balabb™ (atabb™)? = bb* (aTabb?)*alab = bb7 ((a’abb™)*alabb?™ )b
= (bb7"alab)b™ (aTabb™)#b = alabb™ (alabb™)#b
= (alabb™)*alabb™b = (aTabb™)* alab.

(iii) = (i): Let bb¥a'ab = afab and ba'abd® (atabd™)# = (atabb?#)#atab. Then, by
v¥ ((atabb™)# atab) = (b7 baab)b? (atabb™)* = alabb™ (alabb?™)*,
we conclude that b7 (afabb”)?” € (a'ab){5}. Since the equalities (3) hold and
b ((alabb™)# atabb™ (atabb™)?) = b7 (alabb™)7,

we have that b (aTabb™)# € (aTab){1,2}. So, the condition (i) holds.



(i) = (iv): If b5 € b{1,5} and (afabb#)15) € (atabb#){1,5}, then the equalities
bA5p = (b(LDpb)b# = bb#, (2) and (4) are satisfied. The hypothesis b# (atabb#)# ¢
(atab){5} implies

b9 (afabp™) D atab = 3% ((afabd®) D) atabb™)b
= b ((atabb™)#alabb™)b
= 1) (alab)b# (atabb™ )b
= O o)o* atabb? (alabb®)#b
= b7bb™ (alabb® (a'abb™)?)b
= b*(alabb™)*alabb?b = alabb” (a'abb™)?*
= afa(bb™)(atabb?)?)
= alabb™® (alabb?) (1)

Hence, for any b9 € b{1,5} and (afabb# )15 € (afabb#){1,5}, we get b2 (alabb#)(1:5) €
(atab){5}, i.e. the statement (iv) is satisfied.

(iv) = (ii): It follows by b# € b{1,5} and (a’abb™)# € (a'abb?){1,5}.

(i) = (v): The assumption (a'ab)# = b# (atabb?)# yields bb*afab = a*ab, by (i) = (iii).
Thus,

(aTabb™)* = (aTab)b™[(aabb™)?]? = b7 (a'abb™[(a’abb?™)?#]?)
= b(b"(aTabb?)?) = b(alab)?.

(v) = (i): Similarly as (i) = (v).

(v) < (vi): Notice that b(afab)# € (atabb?){1,2}, which gives that b(a'ab)# € (atabb?){5}
is equivalent to (afabb™)# = b(aab)™.

(vi) < (vii): This can be checked in the same manner as (ii) < (iv). O

Remark. Similarly as Theorem 2.15, we can show the next results.
(a) If a € R and b, a*ab,a*abb” € R¥, then:

(a*ab)® = b7 (a*abb™)* < b7 (a*abb? ) € (a*ab){5}

bb™ a*ab = a*ab and ba*abb™ (a*abb®)* = (a*abb™)? a*ab
b{1,5} - (a*abb™){1,5} C (a*ab){5}

(a*abb™)* = b(a*ab)™

b(a*ab)? € (a*abb™){5}

& b-(a*ab){1,5} C (a*abb?){5}.

to o

(b) If b € Rt and a, abb’, a*abb’ € R#, then:
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(abb# = (a*abb)#a? < (aabbl)*a” € (abb'){5}

abblaa™ = abb’ and (a”abb")#a” abb’a = abb' (a™ abb?)?
(a”abb’){1,5} - a{1,5} C (abb'){5}

(a™abbh)# = (abb!)*a

(abb ) #a € (a™abb’){5}

(abb"){1,5} - a C (a” abb"){5}.

(c) If b € R and a, abb*, a” abb* € R¥, then:

(abb*)# = (aabb*)"a? < (a¥abb®)*a™ € (abb*){5}

abb*aa™ = abb* and (a™abb*)* o™ abb*a = abb*(a” abb*)*
(a™abb*){1,5} - a{1,5} C (abb*){5}

(a™abb*)# = (abb*)*a

(abb*)*a € (a” abb*){5}

(abb*){1,5} - a C (a™abb*){5}.

to T

i

te 0

Notice that we verify the next characterizations for the rule (abb™)# = (afabb?)#al in
the same manner as in the proof of Theorem 2.15.

Theorem 2.16. If a € R and b, abb#, atabb# € R#, then the following statements are
equivalent:

(i) (abb™)# = (aTabb?)*al
(ii) (aTabb®)#al € (abb™){5},
(iii) abb?aa’ = abb? and (a'abb™)#alabb”a = abb™ (aTabb?)*ala.

Remark. Now, we present the equivalent conditions for the reverse order laws (abb#)# =
(a*abb™)#a*, (a¥ab)? = bf (a#abb?)# and (a¥ab)? = b*(a¥abb*)#, respectively.
(a) If @ € RT and b, abb™, a*abb” € R¥, then:

(abb™)# = (a*abb?)#a* < (a*abb™)#a* € (abb?){5}
& abb?aa’ = abb™ and (a*abb™)* a*abb? a = abb™ (a*abb™)¥ a*a
(b) If b € Rt and a, a*ab, a?abb! € R#, then:
(a¥ab)® = bl (aabb")? < bl (a®abb))? € (a¥ab){5}
& blba™ab = a”ab and ba” abb' (a™ abb’)* = bb' (a¥ abb’)* o™ ab.
(c) If b € Rt and a, a*ab, a# abb* € R#, then:
(a”ab)? = b*(a?abb")* < b*(a’abb*)* € (a¥ab){5}
& biba?ab = a”ab and ba™ abb* (a™ abb*)* = bb* (a™ abb®)* a¥ ab.
In the next theorem, we investigate the relation between (afab){5} C b{1,5}-(atabb?){1,5}
and (afab){5} = b{1,5} - (aTabb™){1,5}.
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Theorem 2.17. If a € R and b,atab, atabb# € R#, then the following statements are
equivalent:

(i) (a'ab){5} C b{1,5} - (aTabb?){1,5} and bb*aTab = a'ab,

(ii) (a'ab){5} = b{1,5} - (afabb?¥){1,5}.
Proof. (i) = (ii): If (afab){5} C b{1,5} - (aTabb?){1,5} and bb#afab = alab, then there ex-
ist b(1%) € b{1,5} and (afabb#)15) € (afabb#){1,5} such that (atab)# = b5 (atabb#) (1),

Since the equalities (2) and bb# = bb(1-%) hold, then (afabb#)# = (alabb#) 15 atabb# (atabb#)(1:5)
and

v (atabb™)* = b7 (0b7)(alabb™) P ata(bb7) (atabb™) D)
= b*b(b1) (atabb™ )V atab (b0 (af abp®)(1:5))
= b"b(a’ab)*a’ab(a’ab)” = (b7 ba'ab)[(aTab)?]?
= alab[(a’ab)?]? = (alab)?.

By Theorem 2.15, we conclude that b{1,5}-(aTabb?){1,5} C (a'ab){5}. Hence, the statement
(ii) holds.
(ii) = (i): This is obvious, by Theorem 2.15. O

In the analogy way as in Theorem 2.17, we can consider the conditions

(a*ab){5} C b{1,5} - (a*abb™){1,5} and bb*a*ab = a*ab;

(abb?){5} C (aabb®){1,5} - a{1,5} and abbla*a = abb;

(abb*){5} C (a”abb*){1,5} - a{1,5} and abb*a*a = abb*.

Also, as in Theorem 2.17, we can obtain that the inclusions (afab){5} C b%-(a’abb?){1, 5},
(a*ab){5} C b* - (a*abb?){1,5}, (abb"){5} C (a*abb"){1,5} -a¥, (abb*){5} C (a”abb*){1,5} -
a# are always the equalities.

Theorem 2.18. If a € R and b,a’ab,a’abb” € R¥, then the inclusion (a'abb™){5} C
b- (atab){1,5} is always an equality.

Proof. Let (atabb#){5} C b- (a'ab){1,5}. Then there exists (afab)(1?) € (afab){1,5} such
that (afabb#®)# = (afab)(19)b. The equality

batab)® = blatab)PDalab(atab)t>)
(b(atab) M) alabb™ (b(atab) )
(a'abb™)# alabb™ (a'abb™)* = (alabb™)?

and Theorem 2.15 give that (a'abb?){5} = b- (aTab){1,5} holds. O

For the relations (a*abb®){5} C b - (a*ab){1,5}, (a®abb’){5} C (abb’){1,5} - a and
(aabb*){5} C (abb*){1,5} - a, we can get the same results as in Theorem 2.18,

In the next theorem, some sufficient conditions for the reverse order law (ab)” =
b7 (aTabb™)#al are presented.
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Theorem 2.19. Suppose that a € R and b, ab, atab, abb*, atabb# € R#. Then each of the
following conditions is sufficient for (ab)? = b (atabb™)#al to hold:

(i) (atab)® = b# (atabb®™)# and (abb?)# = (afabb®)#al

(ii) (ab)” = (aTab)®a' and (a'ab)™ = b7 (aTabb? ),
(iii) (ab)# = b# (abb™)# and (abb™)# = (atabb®)#al.
Proof. (i) Assume that (afab)?® = b#(atabb®)# and (abb®)#* = (a'abb?)#a'. Then,
b7 (atabb™)#al € (ab){5}, by
abb” (aTabb™)#al = (a'abb”)*alabb? = a'abb? (alabb™)#
b (alabb™)#alab.

It is easy to verify that b (aTabb?)#al € (ab){1,2} which gives (ab)* = b¥ (aTabb?)*al
(ii) The equalities (ab)# = (atab)#a' and (afab)? = v# (a'abb?)# imply

(ab)? = (aTab)#a’ = b7 (aTabb™)#al.
(iii) In the same manner as part (ii). O

The conditions (atab)# = b# (atabb?)# and (abb™)# = (atabb#)#a' in Theorem 2.19 can
be replaced by some equivalent conditions from Theorem 2.15 and Theorem 2.16.

Remark. Analogously to Theorem 2.19, we obtain the next results.

(a) If a € RY and b, ab, a*ab, abb™, a*abb? € R¥, then each of the following conditions is
sufficient for (ab)* = b# (a*abb™)#a* to hold:

) (a*ab)* = b*(a*abb™)* and (abb™)# = (a*abb™)"a
(ii) (ab)” = (a*ab)™a* and (a*ab)™ = b¥ (a*abb? )7,
) (ab)” = b7 (abb™)* and (abb™)* = (a*abb™)*a*.

(b) If b e R and a, ab, a#ab, abb!, a#abb! € R#, then each of the following conditions is
sufficient for (ab)# = bf(a#abb!)#a# to hold:

) (a™ab)® = bf(a?abb")# and (abb")# = (a™abb!)#a
(ii) (ab)# = (a¥ab)#a” and (a¥ab)# = bf(a¥ abb?)#,
) (ab)?” = bl (abb")# and (abb’)# = (a”abb’)*a?

(c) If b € RT and a, ab, a*ab, abb*, a?abb* € R#, then each of the following conditions is
sufficient for (ab)* = b*(a™abb*)*a™ to hold:

(i) (a™ab)# = b*(a™abb*)# and (abb*)# = (a¥ abb*)#a?
(ii) (ab)? = (a™ab)®a® and (a”ab)® = b*(a™ abb*)*,
(iii) (ab)* = b*(abb*)* and (abb*)* = (a*abb*)"a™
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Now, we study the relation between the reverse order laws (ab)# = (a'ab)#al and
(atab)” = (ab)*a.

Theorem 2.20. Ifb € R, a € Rl and if ab,a’ab € R¥, then the following statements are
equivalent:

(i) (ab)* = (atab)*a’ and a'aba’a = a'ab,
(ii) (afab)® = (ab)*a and abaa’ = ab.
Proof. (i) = (ii): Using (ab)# = (afab)#al and afaba’a = atab, we get
abaa’ = (ab)*(ab)*aa’ = (ab)*(aTab)*alaa’ = (ab)?(aTab)”a’ = ab
and

(ab)#a = (a'ab)?a'a = [(aTab)?|*(aTaba’a)
[(aTab)#)?atab = (aab)?.

Hence, the item (ii) is satisfied.
(ii) = (i): The equalities (a'ab)# = (ab)#a and abaa' = ab give

ataba'a = (a'ab)?®(a’ab)?a’a = (a'ab)?(ab)*aa'a
= (aTab)*(ab)?a = alab

and
(aTab)?al = (ab)#aa’ = [(ab)?]?(abaal) = [(ab)#]?ab = ab.

So, the statement (i) holds. O

Remark. As Theorem 2.20, we can show the following.
(a) If b € R, a € RT and if ab,a*ab € R¥, then the following statements are equivalent:

(ab)* = (a*ab)¥a' and a*aba’a = a*ab < (a*ab)? = (ab)*a and abaa' = ab.
(b) If a € R, b € R and if ab, abb’ € R#, then:
(ab)® = b'(abb")# and bblabb’ = abb’ < (abb")# = b(ab)” and blbab = ab.
(c)Ifa e R, be Rl and if ab, abb* € R¥, then:
(ab)? = bl (abb*)* and bblabb* = abb* < (abb*)* = b(ab)* and blbab = ab.
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