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Abstract

In this article we extend the method of Yong-Lin Chen (Iterative meth-

ods for computing the generalized inverses A
(2)
T,S of a matrix A, Appl.

Math. Comput. 75 (2-3) (1996)) to inifinite dimensional settings. Pre-
cisely, we construct an iterative method for computing outer generalized
inverses of operators on Banach spaces, and also for computing the gen-
eralized Drazin inverse of Banach algebra elements.

1 Introduction

In [4] the following iterative method

Xk+1 = Xk + βY (I −AXk), k = 0, 1, 2, . . . , β ∈ C \ {0}, (1.1)

is used to compute the generalized inverse A
(2)
T,S of a given matrix A. Some

additional condition for Y and X0 are assumed.
Recently, outer generalized inverses with prescribed range and null-space

are extended to Banach space operators (see [5]). Our purpose is to extend the
method (1.1) to outer generalized inverses of Banach space operators. Some
technical difficulties forces us to prove separately the result for the generalized
Drazin inverse of Banach algebra elements.
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For K ⊂ C we use acc K to denote the set of all accumulation points of K.
If z ∈ C and r > 0, then K(z, r) = {w ∈ C : |z − w| < r}.

Let A denote a complex Banach algebra with the unit 1. Recall that the
generalized Drazin inverse of a ∈ A is denoted by ad, and it is the unique
element of A satisfying (see [7]):

adaad = ad, aad = ada, a(1− aad) is quasinilpotent.

Moreover, ad exists if and only if 0 is not the accumulation point of the spectrum
of a, denoted by σ(a). If a(1 − aad) is nilpotent, then the generalized Drazin
inverse reduces to the ordinary Drazin inverse.

Let X,Y be Banach spaces, L(X,Y ) be the set of all bounded operators
from X to Y , and let T and S be closed subspaces of X and Y respectively. For
A ∈ L(X, Y ) we use R(A) and N (A), respectively, to denote the range and the
null-space of A. Suppose that there exists an operator B ∈ L(Y, X), such that
BAB = B, R(B) = T and N (B) = S. Then B is usually denoted by A

(2)
T,S . It is

easy to see that for given A, T and S as above, there exists the A
(2)
T,S if and only

if: the restriction A|T : T → A(T ) is invertible, A(T ) is closed, A(T ) ⊕ S = Y

and T is complemented in X. In this case A
(2)
T,S is unique.

As a special case, the (ordinary and generalized) Drazin inverse of A ∈ L(X)
can be represented as an A

(2)
T,S inverse, for a special choice of subspaces T and S.

Precisely, if 0 /∈ acc σ(A) and P is the spectral idempotent of A corresponding
to {0}, then R(Ad) = N (P ) and N (Ad) = N (P ). Hence, Ad = A

(2)
N (P ),R(P ).

We assume that the reader is familiar with the basic knowledge of generalized
inverses (see at least one of [1, 2, 3, 6]), as well as with the properties of the
generalized Drazin inverse (see [7]).

2 Outer generalized inverses of Banach space
operators

If T and S are subspaces such that A
(2)
T,S exists, take T1 = N (I − A

(2)
T,SA) and

then T ⊕ T1 = X holds. It is easy to verify that A has the following matrix
decomposition:

A =
[
A1 0
0 A2

]
:
[

T
T1

]
→

[
A(T )

S

]
,

where A1 = A|T : T → A(T ) is invertible. Then

A
(2)
T,S =

[
A−1

1 0
0 0

]
:
[
A(T )

S

]
→

[
T
T1

]
.

We state the result for operators on Banach spaces.

Theorem 2.1. Let A ∈ L(X, Y ) and T, S be given such that there exists A
(2)
T,S =

A′ ∈ L(Y, X). Let Y ∈ L(Y, X) have the properties R(Y ) ⊂ T and N (Y ) ⊃ S.
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Define the sequence (Xk)k in L(Y, X) in the following way:

Xk+1 = Xk + βY (I −AXk), k = 0, 1, 2, . . . , β ∈ C \ {0},

where X0 ∈ L(Y, X) satisfies R(X0) ⊂ T . Consider the following statements:
(a) Xk → A′;
(b) (P − βY A)k → 0, where P is the projection of X onto T parallel to T1;
(c) (IT − βY A|T )n → 0.

Then (b) ⇐⇒ (c) =⇒ (a). If X0 − A′ is onto (i.e. it is not the right
topological divisor of 0), then (a) ⇐⇒ (b).

If (b) or (c) is satisfied, then the following hold:
(1) σ(P − βY A) = σ(IT − βY A|T ) ∪ {0} ⊂ K(0, 1);
(2) I − P + βY A is invertible;
(3) A′ = β(I − P + βY A)−1Y.

Proof. From R(Y ) ⊂ T and N (Y ) ⊃ S it follows that Y has the following
matrix form:

Y =
[
Y1 0
0 0

]
:
[
A(T )

S

]
→

[
T
T1

]
.

Let

P = A′A =
[
I 0
0 0

]
:
[

T
T1

]
→

[
T
T1

]
,

Q = AA′ =
[
I 0
0 0

]
:
[
A(T )

S

]
→

[
A(T )

S

]
.

Notice that PY = Y = Y Q. Since R(X0) ⊂ T we get PX0 = X0. By induction
on k it is easy to verify PXk = Xk for all k = 0, 1, 2, . . . . Also, PA′ = A′. Now
we have

Xk+1 −A′ = Xk −A′ + βY (I −AXk)
= P (Xk −A′) + βY (Q−QAXk)
= P (Xk −A′) + βY (AA′AA′ −AA′AXk)
= P (Xk −A′) + βY (AA′)A(A′ −Xk)
= (P − βY A)(Xk −A′)

= (P − βY A)k+1(X0 −A′).

Obviously, if (P − βY A)k → 0, then Xk → A′, so (b) =⇒ (a) is proved.
Notice that

P − βY A =
[
IT − βY1A1 0

0 0

]
,

hence

(P − βY A)n =
[
(IT − βY1A1)n 0

0 0

]
.

Since
(P − βY A)n|T = (IT − βY1A1)n = (IT − βY A|T )n,

3



we conclude that (P − βY A)n → 0 if and only if (IT − βY1A1)n → 0, which
proves (b) ⇐⇒ (c).

If X0 is taken such that X0 − A′ is not the right topological divisor of 0,
then (a) ⇐⇒ (b) obviously holds.

Since
σ(P − βY A) = σ(IT − βY1A1) ∪ {0} ⊂ K(0, 1),

we get σ(βY1A1) ⊂ K(1, 1), so βY1A1 is invertible. Moreover, β 6= 0 and A1 is
invertible. Consequently, Y1 is invertible. Now,

I − P + βY A =
[
βY1A1 0

0 IT1

]

is invertible and

(I − P + βY A)−1 =
[

1
β A−1

1 Y −1
1 0

0 IT1

]
.

It is easy to verify

β(I − P + βY A)−1Y =
[
A−1

1 0
0 0

]
= A′.

3 The generalized Drazin inverse of
Banach algebra elements

In this section we prove the analogous result for the generalized Drazin inverse
in Banach algebras. Let a ∈ A such that ad exist. Denote by p the spectral
idempotent of a corresponding to {0}. Then p = 1− aad, a(1− p) is invertible
in the algebra (1− p)A(1− p) and ad = [a(1− p)]−1

(1−p)A(1−p).
We need the following auxiliary result.

Lemma 3.1. If a, p ∈ A, such that p2 = p and ap = pa . Then a is invertible in
A if and only if ap is invertible in pAp and a(1−p) is invertible in (1−p)A(1−p).
In this case

a−1 = [ap]−1
pAp + [a(1− p)]−1

(1−p)A(1−p).

Now, we prove the convergence of the iterative method (1.1) for computing
the generalized Drazin inverse in Banach algebras.

Theorem 3.1. Let a ∈ A, 0 /∈ accσ(a), x0, y ∈ A, and let p be the spectral
idempotent of a corresponding to {0}. Let (1−p)x0 = x0, (1−p)y = y(1−p) = y,
β ∈ C \ {0}. Define the sequence (xk)k in A in the following way:

xk+1 = xk + βy(1− axk), k = 0, 1, 2, . . .
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If (1−p−βya)k → 0, then xk → ad (and the opposite implication holds if x0−ad

is not the right topological divisor of 0). In this case σ(1− p− βya) ⊂ K(0, 1),
p + βya is invertible and

ad = β(p + βya)−1y.

Proof. Recall that 1 − p = aad. Form aadx0 = x0 and aady = y, by induction
on k we prove aadxk = xk for all k = 0, 1, 2, . . . . Now we compute

xk+1 − ad = xk − ad + βy(aad)(1− axk)

= aad(xk − ad) + βy(aadaad − aadaxk)

= aad(xk − ad) + βy(aad)a(ad − xk)

= (aad − βya)(xk − ad)

= (aad − βya)k+1(x0 − ad).

Obviously, if (aad − βya)k+1 → 0, then xk → ad. In this case σ(aad − βya) ⊂
K(0, 1). By the spectral mapping theorem we get σ(1− aad + βya) ⊂ K(1, 1),
hence 1− aad + βya = p + βya is invertible.

Notice that aad commutes with 1− aad + βya. Using Lemma 3.1 and y(1−
aad) = 0, we compute

(1− aad + βya)−1 = (1− aad + βya)−1aad + (1− aad + βya)−1(1− aad)

= [(1− aad + βya)(aad)]−1
aadAaad + [(1− aad + βya)(1− aad)]−1

(1−aad)A(1−aad)

= [βya]−1
aadAaad + 1− aad.

Now [
(aad)β[(βya)−1

aadAaad + 1− aad]y(aad)
][

(aad)a(aad)
]

= (aad)(βya)−1
aadAaad(βya)(aad) = aad.

We have just proved that (aad)β(1−aad +βya)−1y(aad) is the inverse of a(aad)
in the algebra aadAaad. Since aad commutes with 1 − aad + βya, and aady =
yaad = y, we obtain that (1− aad + βya)−1y ∈ aadAaad. It follows that

ad = β(p + βya)−1y.

holds.
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