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Abstract A bounded linear operator T is said to be “left-right consistent” if

the products ST and TS always have the same spectrum: this notion lies behind
a spectral property of positive operators. Extended to Banach algebras, the same
notion helps to delineate the closure of the invertible group.

In a C∗-algebra the spectrum of the product of a positive and a self adjoint
element is always real. This simple observation is the tip of a curious iceberg, built
on a sort of “left-right consistency” relative to invertibility.

Suppose A is a semigroup, assumed by default to have an identity 1, with invert-
ible group A−1 = A−1

left∩A
−1
right; more generally much of what we have to say extends

to an abstract category. Elements a ∈ A induce left and right multiplications on A,

La : x 7→ ax ; Ra : x 7→ xa .

It is the relationship between these operators which gives rise to the left-right
consistency behind the positive operator phenomenon:

Definition 1. If K ⊆ A is arbitrary write

1.1 $(K) = {a ∈ A : L−1
a (K) = R−1

a (K)}

for the set of K-(left-right) consistent elements of A.
Evidently $(K) is always a sub-semigroup:

1.2 $(K) ·$(K) ⊆ $(K) .

In this note we determine $(K) for the invertible group K = A−1 and for the
semigroups A−1

left and A−1
right of left and of right invertibles:
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Theorem 2. For an arbitrary semigroup A there is equality

2.1 $(A−1) = A−1
∪
(
A \ (A−1

left∪A
−1
right)

)
= $({1}) .

If K ⊆ A−1 is a normal subgroup then also

2.2 $(K) = $(A−1) .

Proof. We claim, if K ⊆ A−1 is a normal subgroup,

2.3 a ∈ A−1 =⇒ L−1
a (K) = a−1K = Ka−1 = R−1

a (K) ;

2.4 a ∈ A \ (A−1
left∪A

−1
right) =⇒ L−1

a (A−1) = ∅ = R−1
a (A−1) ;

2.5 a ∈ A−1
left \A

−1
right =⇒ L−1

a (1) = A−1
left 6= ∅ = R−1

a (A−1) ;

2.6 a ∈ A−1
right \A

−1
left =⇒ L−1

a (A−1) = ∅ 6= A−1
right = R−1

a (1) .

To see all this observe

2.7
L−1
a (1) ⊆ A−1

left =⇒ R−1
a (A−1

left) 6= ∅ =⇒ a ∈ A−1
left

=⇒ L−1
a (A−1

left) = A−1
left ⊆ R−1

a (A−1
left)

and

2.8
R−1
a (1) ⊆ A−1

right =⇒ L−1
a (A−1

right) 6= ∅ =⇒ a ∈ A−1
right

=⇒ R−1
a (A−1

right) = A−1
right ⊆ L−1

a (A−1
right)

•

For example it is trivial that whenever the senigroup A is commutative

2.9 $(A−1) = A ;

this also holds [12] in finite dimensional rings A, where A−1
left∪A

−1
right = A−1.

This is very simple ([6] Corollary 1.2) in a C∗-algebra:
Corollary 3. If A is a C∗-algebra then necessary and sufficient for a ∈ $(A−1)

is that

3.1 either {a∗a, aa∗} ⊆ A−1 or {a∗a, aa∗}∩A−1 = ∅ .

In particular normal elements are left-right consistent.
Proof. a ∈ A−1

left ⇐⇒ a∗a ∈ A−1 •
Djordjevic ([5] Theorem 2.1) has obtained Theorem 2 for the ring A = BL(X,X)

of bounded operators on a Banach space X, and also ([5] Theorem 2.4) for the
Calkin algebra A = BL(X,X)/KL(X,X). Gong and Han ([6] Theorem 1.1) had
the same result for Hilbert space; they seem to have been motivated by the obser-
vation of Hladnik and Omladic ([11] Proposition 1) - which ironically does not use
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Corollary 3. Of course in a linear algebra A, where the Jacobson lemma guarantees
that if 0 6= λ ∈ C then

3.2 either {λ− ba, λ− ab} ⊆ A−1 or {λ− ba, λ− ab}∩A−1 = ∅ ,

the condition a ∈ $(A−1) can be reproduced in terms of the spectrum σ:

3.3 x ∈ A =⇒ σ(ax) = σ(xa) .

Corollary 3 therefore says that certain relatives of a ∈ A, derived from its “polar
decomposition”, share its spectrum: whenever we can write a = u|a| with |a| =
(a∗a)

1
2 and u = uu∗u then

3.4 σ(u|a|) = σ(|a|u) = σ(|a|1/2u|a|1/2) .

The normal subgroup condition (2.2) applies in particular if the semigroup A has
a topology for which multiplication is separately continuous, and inversion is con-
tinuous, when K = A−1

0 is the connected component of 1 ∈ A−1.
There is an interaction between left-right consistency and generalized inverses.

We recall [7],[8] the “regular” elements of a semigroup, or more generally a category:

3.5 A = {a ∈ A : a ∈ aAa} ,

elements a = aba with generalized inverses b ∈ A, together with the “decomposably
regular” elements

3.6 A = {a ∈ A : a ∈ aA−1a} ,

elements with invertible generalized inverses b ∈ A−1 .
Theorem 4. If A is a semigroup with identity, then there is inclusion

4.1 A ⊆ $(A−1) .

Proof. In a general semigroup or category we have

4.2 A ∩(A−1
left∪A

−1
right) = A−1 .

By (4.2) and (2.1)

4.3 A ∩$(A−1) = A−1
∪
(
A \ (A−1

left∪A
−1
right)

)
= A−1

∪( A \A−1) = A •

If for example A = BL(X,X) is the bounded operators on a Banach space then
[10]

4.4 {a ∈ A : a−1(0) ∼= X/cl a(X)} ⊆ $(A−1) :

operators “of index zero” are left-right consistent.
In a ring A we can look for a stabilized version of this, in particular relative to

a special kind of two sided ideal:
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Definition 5. We shall call the two sided ideal J ⊆ A completely regular if
there is inclusion

5.1 J ⊆ A ,

completely decomposably regular if there is inclusion

5.2 J ⊆ A ,

regular if there is inclusion

5.3 1 + J ⊆ A ,

and decomposably regular if there is inclusion

5.4 1 + J ⊆ A .

If A is a Banach algebra we shall say that J is weakly Riesz if there is inclusion

5.5 1 + J ⊆ cl A−1 .

The archetype is the finite rank operators in the ring of all bounded operators
on a normed space. With the help of a lemma of Atkinson ([8] Theorems 7.3.2,
7.3.3) it follows that

5.6 J completely regular =⇒ A + J ⊆ A ;

the analogue for completely decomposably regular ideals is not so clear [9]. In the
other direction it follows from (5.5) that also

5.7 J ⊆ cl A−1 ,

since (5.5) puts λ + J ⊆ cl A−1 for arbitrary scalars λ. The point about weakly
Riesz ideals is that in a Banach algebra A there is ([7] Theorem 1.1; [8] Theorem
7.3.4) equality

5.8 A ∩cl A−1 = A .

Since ([8] Theorems 3.10.5, 3.10.6) the boundary of the invertibles lies among the
topological zero divisors we also have

5.9 (A−1
left∪A

−1
right)∩cl A−1 = A−1 .

From (5.9) and (2.1) it is clear that, in a Banach algebra A,

5.10 cl A−1 ⊆ $(A−1) .

We can improve on this:
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Theorem 6. If J ⊆ A is a completely regular weakly Riesz two-sided ideal in
a Banach algebra A then there is inclusion

6.1 cl A−1 ⊆ A ∪
(
A \ A

)
⊆
⋂
d∈J

($(A−1) + d) .

Proof. The first inclusion follows at once from (5.8). Towards the second observe
([9] Theorem 7) that if J ⊆ A is a two-sided ideal then

6.2 J regular and weakly Riesz =⇒ J decomposably regular ;

6.3 J completely regular and weakly Riesz
=⇒ J completely decomposably regular

;

6.4 J weakly Riesz and completely decomposably regular =⇒ A + J ⊆ A .

This mostly also follows from (5.8): immediately in the case of (6.2), while for (6.3)
recall (5.7):

1 + J ⊆ cl A−1 =⇒ J ⊆ cl A−1 + J ⊆ cl(A−1 + J) ⊆ cl cl A−1 = cl A−1 .

Finally for (6.4) (cf [4] Theorem 4) note that from (5.5) it also follows A−1 + J ⊆
cl A−1, so that

A + J ⊆ A ∩cl(A−1 + J) ⊆ A ∩cl cl A−1 = A .

Now for (6.1), if a ∈ A then a+J ⊆ A ⊆ $(A−1) using (4.1), while if a ∈ A\ A
then a+ J ⊆ A \ A ⊆ A \ (A−1

left∪A
−1
right) ⊆ $(A−1) •

In the particular case of the finite rank operators J ⊆ A among the bounded
operators on a separable Hilbert space both these inclusions become equality; the
first was noticed by Bouldin ([1] Theorem 3; [3] (3.5)), while the second is given
by Gong and Han ([6] Theorem 3.2). Another characterization, due to Wu, ([13]
Theorem 1.1; [6] Theorem 3.1) says that the same set consists of all finite products
of normal operators.

We can also consider left-right consistency separately relative to left and to right
invertibility. We need to recall the “mixed invertible” elements of A,

6.5 A−1
mixed = {a ∈ A : 1 ∈ AaA} :

Theorem 7. For arbitrary A there is equality

7.1 $(A−1
left) = A−1

∪
(
A \A−1

mixed

)
= $(A−1

right) .

Proof. It is clear that if a ∈ A−1 is invertible then

7.2 L−1
a (A−1

left) = A−1
left = R−1

a (A−1
left)
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while if a ∈ A \A−1
mixed then

7.3 L−1
a (A−1

left) = ∅ = R−1
a (A−1

left) .

If a ∈ A−1
left \A−1 then

7.4 a′a = 1 =⇒ a′ ∈ R−1
a (A−1

left) \ L
−1
a (A−1

left) ;

finally if a ∈ A−1
mixed \A

−1
left then R−1

a (A−1
left) is empty while L−1

a (A−1
left) is not. This

gives the first equality in (7.1), and therefore also the second •
Notice that if J ⊆ A is a proper two-sided ideal then A−1

mixed is disjoint from
the “J inessential elements”

7.5 Hull(J) = {a ∈ A : a+ J ∈ Radical(A/J) :

certainly if 1 ∈ AaA and also a ∈ Radical(A), so that also 1 − AaA ⊆ A−1, then
1 = 0 giving A = {0}: now apply this to the quotient A/J . Thus in particular when
A = B(X) then [5] A−1

mixed excludes all strictly singular and strictly co-singular
operators.
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