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Abstract

We investigate mixed-type reverse order laws for the Moore—Penrose
inverse in rings with involution. We extend some well-known results
to more general settings, and also prove some new results.
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1 Introduction

Many authors have studied the equivalent conditions for the reverse order
law (ab)’ = bfa’ to hold in setting of matrices, operators, C*-algebras or
rings [2, 9, 3, 5, 8, 10, 12, 16, 17]. This formula cannot trivially be extended
to the other generalized inverses of the product ab. Since the reverse order
law (ab)’ = bTa’ does not always holds, it is not easy to simplify various ex-
pressions that involve the Moore-Penrose inverse of a product. In addition
to (ab)t = bfal, (ab)! may be expressed as (ab)! = bf(alabdl)ial, (ab)l =
b*(a*abb*)Ta*, (ab)t = blal — bT[(1 — bbT)(1 — ala)]Tal, etc. These equalities
are called mixed-type reverse order laws for the Moore-Penrose inverse of a
product and some of them are in fact equivalent (see [4, 12, 14]). In this pa-
per we study necessary and sufficient conditions for mixed-type reverse order
laws of the form: (ab)t = (afab)al, (ab)T = bf(abb"), (ab)T = bf(atabb!)tal,
(ab)t = (a*ab)ta*, (ab)T = b*(abb*)" and (ab)! = b*(a*abb*)ta* in rings with
involution.

Let R be an associative ring with the unit 1. An involution a — a* in a
ring R is an anti-isomorphism of degree 2, that is,

(@) =a, (a+b)*=a"+0b", (ab)" =b"a".
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An element a € R is selfadjoint if a* = a.
The Moore—Penrose inverse (or MP-inverse) of a € R is the element
b € R, such that the following equations hold [13]:

(1) aba = a, (2) bab=>5b, (3) (ab)* =ab, (4) (ba)* = ba.

There is at most one b such that above conditions hold (see [13]), and such
b is denoted by af. The set of all Moore-Penrose invertible elements of R
will be denoted by RY. If a is invertible, then a' coincides with the ordinary
inverse of a.

If § € {1,2,3,4} and b satisfies the equations (i) for all ¢ € ¢, then b is
an 0—inverse of a. The set of all J—inverse of a is denote by a{d}. Notice
that a{1,2,3,4} = {a'}. If a{1} # 0, then a is regular.

Now, we state the following useful result.

Theorem 1.1. [6, 11] For any a € RY, the following is satisfied:

The following result is well-known for complex matrices [1] and linear
bounded Hilbert space operators [18], and it is equally true in rings with
involution.

Lemma 1.1. If a,b € R such that a is reqular, then
(a) beaf{l,3} & a*ab=a*;
(b) bea{l,4} & baa* =a*.

Proof. (a) Let b € a{1, 3}, then we get a*ab = a*(ab)* = (aba)* = a*.
Conversely, the equality a*ab = a* implies

(ab)* =b*a™ = b*a*ab = (ab)*ab is selfadjoint



and
aba = (ab)*a = (a*ab)* = (a*)* = a.

Hence, b € a{1, 3}.
Similarly, we can verify the second statement. O

The reverse-order law (ab)’ = bf (atabb)Tat was first studied by Galperin
and Waksman [7]. A Hilbert space version of their result was given by Isum-
ino [9]. Many results concerning the reverse order law (ab)" = bf(afabb?)tal
for complex matrices appeared in Tian’s papers [14] and [15], where the
author used mostly properties of the rank of a complex matrices. In [12], a
set of equivalent conditions for this reverse order rule for the Moore-Penrose
inverse in the setting of C*—algebra is studied.

Xiong and Qin [18] investigated the following mixed-type reverse order
laws for the Moore-Penrose inverse of a product of Hilbert space operators:
(ab)t = (alab)at, (ab)t = b (abbh)T, (ab)! = bf(aTabb?)tal. They used the
technique of block operator matrices. We extend results from [18] to more
general settings.

This paper is organized as follows. In Section 2, we extend the results
from [18] to settings of rings with involution without the hypothesis cor-
responding to R(A*AB) C R(B). In Section 3, we consider the following
mixed-type reverse order laws for the Moore-Penrose inverse in rings with
involution: (ab)’ = (a*ab)ta*, (ab)t = v*(abb*)! and (ab)' = v*(a*abb*)ta*.
In this paper we apply a purely algebraic technique.

2 Reverse order laws (a'ab)la’ = (ab), b'(abb’)’ =
(ab)" and b'(aTabb’)ial = (ab)T

In this section, we consider necessary and sufficient conditions for reverse

order laws (a'ab)Ta® = (ab)T, bT(abb’) = (ab)" and bT(aTabb’)a’ = (ab)! to

be satisfied in rings with involution. The results in [18] for linear bounded

Hilbert space operators are generalized, since we do not use any e hypothesis
corresponding to the condition R(A*AB) C R(B) from [18].

Theorem 2.1. If a,b,a’ab € R, then the following statements are equiva-
lent:

(1) a*abR C alabR;
(2) (a'ab)a® € (ab){1,3};
(3) (afab)tal = (ab)f;



(4) (alab){1,3} - a{1,3} C (ab){1,3}.
Proof. (2) = (1): Since (a'ab)ta’ € (ab){1,3}, then ab = ab(a'ab)fatab and
ab(afab)fa® = (ab(a’ab)fa’)* = (aa'ab(a’ab)Tat)*
(a"*atab(a’ab)Ta*,
which gives
a*ab = a*(ab(a'ab)Ta")ab = a*(a')*alab(a’ab) a*ab
= alaa’ab(aTab)Ta*ab = aTab(aTab)Ta*ab.

Therefore, a*abR = alab(atab)fa*abR C afabR.
(1) = (4): The assumption a*abR C afabR implies that a*ab = a'abu,
for some = € R. Now, for any (afab)?) € (afab){1,3} and a(1®) € a{1,3},

a*ab = afabz = alab(atab) ) (alabz) = alab(atab) ) a*ab. (1)
Applying the involution to (1), we obtain
b*a*a = b*a*aatab(atab) ™) = b*a*ab(alab)H3). (2)
Multiplying the equality (2) by a®) from the right side, we get
b*a* = b*a*ab(alab)H¥ () (3)

by a*aa"?) = a*(aa"?)* = (aa¥a)* = a*. From the equality (3) and
Lemma 1.1, we deduce that (aTab)3a(3) € (ab){1, 3}, for any (atab)(13) €
(afab){1,3} and a'®) € a{1,3}. So, (afab){1,3} - a{1,3} C (ab){1,3}.
(4) = (2): Obviously, because (afab)! € (afab){1,3} and a' € a{1,3}.
(2) < (3): It is easy to check this equivalence.
O

Using Lemma 1.1(b), we can prove the following theorem in the same
way as Theorem 2.1.

Theorem 2.2. If a,b, abb’ € RY, then the following statements are equiva-
lent:

(1) bb*a*R C bbla*R;
(2) bf(abb")T € (ab){1,4};
(3) b (abb?)t = (ab);



(4) b{1,4} - (abb"){1,4} C (ab){1,4}.

In the following result, we consider some equivalent conditions for mixed-
type reverse order law (ab)t = bf(aabd")Tat to hold.

Theorem 2.3. If a,b,a’abb’ € R, then the following statements are equiv-
alent:

(1) a*abR C afabR and bb*a*R C bbTa*R;
(2) bf(atabdh)at € (ab){1,3,4};

(3) bf(atabb"Tal = (ab)T;
(4)

4) b{1,3}-(atabb"){1,3}-a{1,3} C (ab){1,3} and b{1,4} - (aTabb?){1,4}-
a{1,4} C (ab){1,4}.

Proof. (2) = (1): The condition bf(aTabbl)Tal € (ab){3} gives
abbt(aTabb)al = (abb'(aTabb")Ta)* = (aa’abb! (aTabbl)ial)*
(a")*aTabb'(aTabb")Ta*.
Using this equality and the hypothesis b (afabb?)Ta® € (ab){1}, we have
a*ab = a*(abb'(aTabb?)Tat)ab = a*(a")*aTabb’ (a'abbl) a*ab
ataatabb (aTabb?) T a*ab = aTabb' (aTabb")a* ab,

which yields a*abR C atabR.

Similarly, we can prove that b'(afabb)Ta’ € (ab){1,4} implies bb*a*R C
bbla*R.

(1) = (4): From a*abR C alabR, by bR = bbIR, we get a*abbiR C
afabb?R. Thus, a*abb! = alabblz, for some 2 € R. Then, for any (afabbt)(13) ¢
(afabb"){1,3}, a3 € a{1,3} and (1% € b{1,3}, we obtain

a*abbt = aabb (afabb®) B3 (afabbiz) = afabbf (afabb) D a*abb!.  (4)
If we apply the involution to (4), we see that
bbta*a = bbfa*aa’abbl (atabb®) ) = bbTa*abbt (alabbl) 3. (5)

Multiplying the equality (5) from the left side by b* and from the right side
by a3 it follows

b*a* = b*a*abb’ (alabb") (1313,



Notice that this equality and
b3 = (b3 = (bbTob3)* = bp(3pbl = bt (6)

imply

b a* = b*a*abb™? (afabdt) 13 o (13, (7)
By (7) and Lemma 1.1, we observe that b(13) (afabbf)(13)a(13) € (ab){1, 3},
for any (afabb?)3) € (atabb?){1,3}, a3 € a{1,3} and (13 € b{1,3}.
Hence, b{1,3} - (aTabb"){1,3} - a{1,3} C (ab){1,3}.

In the similar way, we can show that bb*a*R C bbla*R gives b*a* =
b4 (atabbh) MY e abb*a*, for any (afabb?)I4 e (atabdh){1,4}, a1Y €
a{1,4} and b4 € b{1,4}, i.e. b{1,4} - (aTabb){1,4} - a{1,4} C (ab){1,4}.

(4) = (2) & (3): Obviously.

O

3 Reverse order laws (a*ab)’a* = (ab)', b*(abb*)l =
(ab)" and b*(a*abb*)a* = (ab)!
In this section, we give the equivalent conditions related to reverse order laws

(a*ab)Ta* = (ab)t, b*(abb*)T = (ab)! and b*(a*abb*)Ta* = (ab)' in settings of

rings with involution.

Theorem 3.1. If a,b,a*ab € RY, then the following statements are equiva-

lent:

(1) atabR C a*abR;

(2) (a* ab)Ta € (ab){1, 3};

(3) (a*ab)ia* = (ab)';

(4) (a*ab){1,3} - (ah)*{1,3} C (ab){1,3}.
Proof. (2) = (1): Using the assumption (a*ab)fa* € (ab){1,3}, we have

ab(a*ab)Ta* = (ab(a*ab)ia*)* = (aa’ab(a*ab)la®)*
((aM)*a*ab(a*ab)Ta*)* = aa*ab(a*ab)Ta’
and
alab = al(ab(a*ab)Ta*)ab = a'aa*abla*ab)Talab
= a*ab(a*ab)ta’ab.



Thus, the condition (1) is satisfied.

(1) = (4): First, by the inclusion afabR C a*abR, we conclude that
afab = a*aby, for some y € R. Further, for any (a*ab)%3) € (a*ab){1,3}
and @ € (al)*{1,3}, we get

atab = a*aby = a*ab(a*ab) M) (a*aby) = a*ab(a*ab)MPalab. (8)
When we apply the involution to (8), we observe that
b*ata = b*alaa*ab(a*ab) ™) = b*a*ab(a*ab)?). 9)
Since a’ € (a')*{1,3}, by the equality (6) and Theorem 1.1,
a'ad’ = a*[(a’)*d] = a* (a")*[(a")*] = aTaa* = a*. (10)

If we multiply the equality (9) from the right side by ' and use (10), we
obtain
b a* = b*a*ab(a*ab) MV d/,

which implies, by Lemma 1.1, (a*ab)"3d’ € (ab){1,3}, for any (a*ab)?) €
(a*ab){1,3} and o’ € (a")*{1, 3}, that is, the condition (4) holds.

(4) = (2): By Theorem 1.1, a* = [((a")T]* = [((a")*]" € (a')*{1,3} and
this implication follows.

(2) < (3): Obviously.

O

In the same manner as in the proof of Theorem 3.1, we can verify the
following results.

Theorem 3.2. If a,b,abb* € R, then the following statements are equiva-
lent:

(1) bbfa*R C bb*a*R;

(2) b*(abb*)" € (ab){1,4};

(3) b*(abb*)t = (ab)';

(4) (b1)*{1,4} - (abb*){1,4} C (ab){1,4}.

Necessary and sufficient conditions related to the reverse order law (ab)’ =
b*(a*abb*)Ta* are studied in the next result.

Theorem 3.3. Ifa,b,a*abb* € R, then the following statements are equiv-
alent:



1) afabR C a*abR and bbta*R C bb*a*R;
*(a*abb*)Ta* € (ab){1,3,4};
*(a*abb*)Ta* = (ab)';

(b1)*{1,3} - (a*abb*){1,3} - (a")*{1,3} C (ab){1,3} and (b')*{1,4} -
(a*abb*){1,4} - (a")*{1,4} C (ab){1,4}.

Proof. (2) = (1): From b*(a*abb*)Ta* € (ab){3},
abb*(a*abb®)ta* = (abb*(a*abb®)Ta*)* = ((a')*a*abb*(a*abb*)Ta*)*
= aa*abb*(a*abb*)Tal.
Now, by b*(a*abb*)ta* € (ab){1},
alab = af(abb*(a*abb*)Ta*)ab = a'aa*abb*(a*abb*) alab
= a*abb*(a*abb*) alab

(1)
(2)
3)
(4)

b
b

implying afabR C a*abR.

Analogously, we can prove the implication b*(a*abb*)ta* € (ab){1,4} =
bbla*R C bb*a*R.

(1) = (4): If aTabR C a*abR, by bR = bb*R, we see alabb*R C a*abb*R
and atabb* = a*abb*y, for some y € R. For any (a*ab)1?) € (a*ab){1,3},
a' € (a')*{1,3} and ¥ € (b")*{1,3}, then

afabb* = a*abb* (a*abb*) ) (a*abb*y) = a*abb* (a*abb*) P atabb*. (11
Applying the involution to (11), it follows
bb*a’a = bb*afaa*abb*(a*abb*) ™) = bb*a*abb*(a*abb*) ). (12)
From the condition &' € (b)*{1,3} and the equality (10), we obtain
bb' = b(bTbb') = bb*.

Now, multiplying (12) from the left side by b' and from the right side by o/,
we get, by (10) and the last equality,

b*a* = b*a*abb' (a*abb*) 1D d/.
Thus, by Lemma 1.1, ¥/ (a*abb*)13)d’ € (ab){1,3}, for any (a*ab)(13) ¢
(a*ab){1,3}, o’ € (a")*{1,3} and ¥’ € (b")*{1,3}, which is equivalent to
(01)*{1,3} - (a*abb*){1,3} - (a")*{1,3} C (ab){1,3}.
Similarly, we show that bbfa*R C bb*a*R gives (b7)*{1,4}-(a*abb*){1, 4}

(a1)"{1,4} C (ab){1,4}.
(4) = (2) & (3): These parts can be check easy. O



If we state in the proved results the elements a*, (af)*, af, b*, (b7)* or
bt instead a or b, we obtain various mixed-type reverse order laws for the
Moore—Penrose inverses in rings with involution.

By the results presenting in Section 2 and Section 3, we can get the
following consequence.

Corollary 3.1. If a,b,ab,a’ab, abb', atabb’, a*ab, abb*, a*abb* € RY. Then
the following statements are equivalent:

(1) (ab)t = b (atabbl)Tal;

(2) (ab)t = (afab)tal = bT(abbh)t;

(3) (ab)t = b*(a*abb*)ta

(4) (ab)t = (a*ab)ta* = b*(abb*)T;

(5) a*abR C alabR and bb*a*R C bbla*R;

(6) bf(atabdhat € (ab){1,3,4};

(7) b{1,3}-(atabb"){1,3}-a{1,3} C (ab){1,3} and b{1,4} - (afabb?){1,4}-

a{1,4} C (ab){1,4};
(8) (atab)tal € (ab){1,3} and b (abd") € (ab){1,4};
9) (atab){1,3}-a{1,3} C (ab){1,3} and b{1,4}-(abb){1,4} C (ab){1,4};

)
)
(10) afabR C a*abR and bbTa*R C bb*a*R;
(11) b*(a*abb*)Ta* € (ab){1,3,4};

)

(12) (b")*{1,3} - (a*abb*){1,3} - (a")*{1,3} C (ab){1,3} and (b")*{1,4} -

a*abb*){1,4} - (a")*{1,4} C (ab){1,4};

(14) (a*ab){1,3} - (a")*{1,3} C (ab){1,3} and (b")*{1,4} - (abb*){1,4} C
b){1,4}.

Proof. The equivalences of conditions (1)-(4) follow as in [12, Theorem 2.6]
for elements of C*-algebras. The rest follows from these equivalences and
theorems in Section 2 and Section 3. U

(
(
(13) (a*ab)Ta* € (ab){1,3} and b*(abb*)' € (ab){1,4};
(
(a
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