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Abstract

We investigate elements in rings with involution which are EP or
partial isometries. Some well-known results are generalized.
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1 Introduction

In this paper we consider both Moore-Penrose invertible and group invertible
elements in rings with involution. Our aim is to study partial isometries and
EP elements in terms of equations involving their adjoints, Moore-Penorse
and group inverse. Some recent results from [1] and [11] follow as corollaries.
Notice that the Moore-Penrose inverse and the group inverse are useful in
solving overdetermined systems of linear equations.

Let R be an associative ring with the unit 1, and let a € R. We say that
a is group invertible if there is a” € R such that

aa”a = a, a”aa” = a#, aa” = a”a.

The element a is called the group inverse and it is uniquely determined by
previous equations [2]. Denote by R¥ the set of all group invertible elements
of R. If a is invertible, then a# coincides with the ordinary inverse a~! of
a.
An involution a — a* in a ring R is an anti-isomorphism of degree 2,
that is,
(@) =a, (a+b)*=a"+0b", (ab)" =b"a".
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In the rest of the paper we assume that R is a ring with involution. An
element a € R satisfying aa® = a*a is called normal. An element a € R
satisfying a = a* is called Hermitian (or symmetric).

An element a' is called the Moore—Penrose inverse (or MP-inverse) of
a, if [12]:

aata =a, dlad’ =af, (aa")* =ad', (a'a)* =dla.

Recall that, if ' exists, then it is uniquely determined [5, 7, 12], and a is
called Moore—Penrose invertible. The set of all Moore-Penrose invertible
elements of R is denoted by Rf. If @ is invertible, then a' coincides with
the ordinary inverse of a.

By the analogy with linear bounded operators on a Hilbert space, an
element a € R satisfying a* = al is called a partial isometry.

The following result is well-known and frequently used in the rest of the

paper.
Theorem 1.1. [4, 10] For any a € R, the following is satisfied:

Now we state the definition of EP elements [3], [8], [9], and also a basic
characterization of EP elements.

Definition 1.1. An element a of a ring R with involution is said to be EP
if a € R* NRT and o = al.

Lemma 1.1. An element a € R is EP if and only if a € R' and aa’ = ala.

We observe that a € R* NRT if and only if a* € R* N RT (see [8]) and
a is EP if and only if a* is EP. In [8], the equality (a*)# = (a¥)* is proved.
The following theorem is very useful tool to investigate EP elements in ring
with involution.



Theorem 1.2. [8] An elementa € R is EP if and only if a is group invertible
and a*a is symmetric.

In [1] it is demonstrated the usefulness of the representation of complex
matrices provided in [6] to explore various classes of matrices, such as partial
isometries and EP. In [11], characterizations of partial isometries and EP el-
ements in rings with involution are investigated, applying a purely algebraic
technique and extending some results in [1] to more general settings. In this
paper we present a number of new characterization of partial isometries and
EP elements in rings with involution. As a consequence, we obtain some
results from [1] and [11].

2 Characterizations of partial isometries and EP
elements

In this section, we use the setting of rings with involution to give new char-
acterizations of partial isometries and EP elements.

In the following theorem we assume that an element a of a ring R with
involution is both Moore—Penrose invertible and group invertible. We inves-
tigate some necessary and sufficient conditions for element a to be a partial
isometry. Theorem 2.1 generalizes (Theorem 1 in [1]) and (Theorem 2.1 and
Theorem 2.2 in [11]). If n = 1 in the following result, then we get mentioned
theorems in [11] as a corollaries.

We use N to denote the set of all positive integers.

Theorem 2.1. Suppose that a € R NR#, and let n € N. Then a is a
partial isometry, if and only if one of the following equivalent conditions

holds:



Proof. If a is a partial isometry, then a* = af. It is not difficult to check
that conditions (i)-(vi) hold.

Conversely, to conclude that a is a partial isometry, we show that either
the condition a* = a is satisfied, or one of the preceding already established
condition of this theorem holds.

(i) Using the hypothesis a™a* = a™a', we obtain

ot = CLT(I(L* _ aT(a#)n—l(ana*) _ aT(a#)n—lanaT _ (IT(I(IT _ CLT.

So, the element a is a partial isometry.
(ii) Applying the involution to a*a™ = afa”, using (a)* = (a*)', we have

(a*)"(a)* = (a")"(a")',

i.e. the element a* satisfies the condition (i). Thus, a* is a partial isometry
and, applying involution to (a*)* = (a*)f, we deduce that a is a partial
isometry.

(iii) From the equality a*(a™)"” = af(a™)", we get

a* = a*ad’ = (a*(a®)")a"a' = af (a¥) " a = aTaa’ = al.

(;#v) Applying the involution to (a¥)"a* = (a#)"al, and using (a¥)* =
(a*)¥ [8], we observe that

Hence, the condition (iii) is satisfied for a* instead of a, and a* is a partial
isometry. Consequently, a is a partial isometry.
(v) Multiplying the assumption aa*(a™)" = (a™)" by a' from the left
side, we obtain
a*(a™)" = af (a¥)™.

So, the condition (iii) holds, and «a is a partial isometry.
(vi) Applying the involution to (a™)"a*a = (a™)", we get

Thus, the condition (v) is satisfied for a*, and a* is a partial isometry. [

In the following result we present new equivalent conditions which ensure
that an element a of a ring with involution is both a partial isometry and
EP. These conditions involve elements a, a*, af, a#, and also powers of
these elements. If n = 1, then the following theorem gives as a consequence
(Theorem 2.3 in [11]).



Theorem 2.2. Suppose that a € RINR#, and let n € N. Then a is a partial
isometry and EP, if and only if one of the following equivalent conditions
holds:

(i) a is partial isometry and a*a™ = a"a*;

(ii

a“a* = ata";
(iii) a*a™ = a™a';

(iv) a"a* = a"a;

a*a" = a"a¥;

a*(a")" = a'(a™)";
(ah)a” = (a#)al;
(viii) (ah)"a* = af(a?)";

a* aT)n _ (a#)naT’.

a* a#)n —_ (aT)n+1’.

(

(
a*(aT)n _ (a#)n—i-l;

(xii) a*(

(

(xiii) a*(a?)" = (a™)"H;

(xiv) aa*(ah)™ = (a¥)";

(xv) aa*(a™)" = (a")";

(xvi) a*a™*! = a";

(xvii) a"Tla* = a"
a(aT) a* = (a#)”;

(xix) a*(a®)"a = (a¥)".

)
)
)
)
)
i)
i)
)
ix)
(x) a*(a¥)" = (a¥)"a’;
i)
)
)
)
)
)
)
(xviii)
)
Proof. If a is a partial isometry and EP, then a* = a' = a#. It is not
difficult to verify that conditions (i)-(xix) hold.

Conversely, we know that a € R# NR' if and only if a* € R#¥ NRT, and
a is EP if and only if a* is EP. We prove that a is a partial isometry and EP,



or we show that the element a or a* satisfies one of the preceding already
established conditions of this theorem.
(i) Since a is a partial isometry and a*a™ = a™a*, then

aa” = a™(a”)" = a"ala(a™)" = (a"a*)a(a™)" = a*a"a(a”)" = dla.

Since a'a is symmetric, we get that aa? is symmetric also, and a is EP, by
Theorem 1.2.
(ii) By the condition a"a* = aa”, we get

o = alaa* =al (@) Ha"a )aa' = ' (a”)"Lala aa
= a(a”)"aa’aa"a’ = o' (a™)"a"a' = alaa’ =,
i.e. a is a partial isometry, and a"a* = a*a’, which implies that a satisfies

the condition (i).
(iii) Applying the involution to a*a™ = a"a’, we obtain

(a*)"(a*)" = (a")*(a")" = (a*)(a*)",

by Theorem 1.1. So, the condition (ii) holds for a*.
(iv) Using the equality a"a* = a"a™, we get

(1) a"a* = (a"a")aa' = a"aaa’ = a"al,

which gives, by Theorem 2.1 (i), that a is a partial isometry. The equalities
(iv) and (1) imply a"a’ = a"a? and multiplying this expression by (a# )"~
from the left side, we obtain aa’ = aa#. Since aa' is symmetric, we conclude

that aa? is symmetric. From Theorem 1.2, we get that a is EP.
(v) Applying the involution to a*a™ = a"a™, we get

(@) (@) = ("a#)" = (a*a")" = (a")"(@)*.

Hence, a* satisfies the equality (iv), so a is EP and a partial isometry.
(vi) The assumption a*(a")" = af(a™)™ implies
ac” = o™t (0" = a"aala(a®)T = " (0l (a®)") = o La (aT)”
= a"(a*(aNad" = a"al (o) aa’ = a"aa’a(a¥)"a
" a?)al = aal.
Thus, the element aa™ is symmetric and a is EP, by Theorem 1.2. By

a” = a' and (vi), we have a*(a™)" = af(a™)", i.e. the condition (iii) of
Theorem 2.1 is satisfied. So, a is a partial isometry.



(vii) Applying the involution to (af)”a* = (a#)"a!, we obtain

Hence, a* satisfies the condition (vi).
(viii) The condition (a")"a* = af(a?)" implies
anaaTa( )n+1 n+1(aT(a#)n) — an+1(aT)na*
= a""((a""aMaa" = " al (0¥ aal = a"aata(a®) al
an+l(a#)n T— aaT

CLCL#

Therefore, aa# is symmetric, and by Theorem 1.2 a is EP. From af = a#
and (viii) we obtain (a")"a* = (a#)"al, i.e. the equality (vii) holds.
(ix) Applying the involution to a*(a!)” = (a¥)"a’, we have

[(a")T]"(a*)* = (a*)T[(a*))".

Thus, the element a* satisfies the condition (viii).
(x) From the assumption a*(a”)" = (a™)"al, we get

ata® = (a*(a#)n)a?n:(a#)na'ra%z

(a#)n+laa‘[aa2n—1 — (a#)n—i-laQn #

=a"a™.

So, the statement (v) holds.
(xi) Assume that a*(a")™ = (a™)"*!. Now, we see

a*(a)" = (a*(a")")aa! = (#)"aa’ = (a#)"al,

that is the equality (ix) is satisfied.
(xii) Using the condition a*(a™)™ = (af)"*!, we observe that

(a#)" = aata(a#)™! = (al)*(a*(@#)")" = (al)* (al)" ",
which yields

aa# — an(a#)n — an(aT)*(aT)nJrl
= a"((a")*(a")" aa' = a"(a¥)"aa' = aa'.
Hence, aa® is symmetric, so a is EP by Theorem 1.2. Then, by at = o

and (xii), we deduce that a*(a#)" = (a#)"a', which is the condition (x).
(xiii) Suppose that a*(a”)" = (a*)"*!. Then, by

ata’ = (a*(a#)n)CLQn — (a#)n+1a2n — ana#7



we see that the equality (v) holds.
(xiv) Multiplying aa*(a’)® = (a#)" on the left-hand side by af, we have

a*(a"" = af (a™)".

So, the condition (vi) is satisfied.

(xv) Multiplying aa*(a#)™ = (a')™ on the left-hand side by af, we obtain
the condition (xii).

(xvi) Multiplying a*a™*! = a™ on the right-hand side by a™, we get

a*a” = a"a*.

Thus, the statement (v) holds.
(xvii) Applying the involution to a"*la* = a", we show that

(a*)*(a*)n—H _ (a*)n
which gives that a* satisfies the equality (xvi).
(xviii) Multiplying a(a")"a* = (a™)" on the left-hand side by af, we have
(aNa* = a'(a™).

Hence, a satisfies the condition (viii).
(xix) Applying the involution to a*(af)"a = (a¥)", we obtain

Therefore, a* satisfies the condition (xviii).
O

In the rest of paper we study several equivalent conditions for an element
a in a ring with involution to satisfy (a*)" = (a')™. If n = 1, then we get
some conditions of Theorem 2.1, and for m = n = 1 we obtain (Theorem
2.1 and some equalities of Theorem 2.2 in [11]).

Theorem 2.3. Suppose that a € RINR¥#, and let m,n € N. Then (a*)" =
(a)™ if and only if one of the following equivalent conditions holds:

(i) a™(a*)" = a™(ah)";
(ii) (a*)"a™ = (a")"a™;

(iii) (a*)"(a®)™ = (af)"(a®)™;



(iv) (a#)™(a*)" = (a¥)™(al)".

Proof. If (a*)™ = (a")™, then it is obvious that conditions (i)-(iv) hold.
Conversely, we will show that either the condition (a*)” = (a")" holds,
or one of the preceding already established condition of this theorem is
satisfied.
(i) By the assumption a™(a*)" = a™(a")", we observe

(@) = ala(a*)" = al(a®)" (@™ (a*)")
a' ()™ La™ ()" = ala(a")” = (aM)".

(ii) Applying the involution to (a*)"a™ = (a")"a™, we see that a* satis-
fies the equality (i). So, [(a*)*]" = [(a*)']" and, applying involution to this
equlaity, we obtain (a*)" = (a!)".

(iii) Assume that (a*)"(a?”)™ = (a")"(a?)™. Then

(@) = (@")'aal = (@) (@*)")a" !
= () (a#) e Hal = (ol
(iv) Applying the involution to (a#)™(a*)"* = (a”)™(a’)", we show that
the condition (iii) holds for a*. O

Next, some necessary and sufficient conditions for an element a in a ring
with involution to satisfy (a*)" = (a!)” and to be EP are given. If n = 1,
then we obtain condition (iv) and (v) of Theorem 2.2. If m = n = 1, then
we obtain three statements of (Theorem 2.3 in [11]).

Theorem 2.4. Suppose that a € R'N\R¥, and let m,n € N. Then (a*)" =
()™ and a is EP, if and only if one of the following equivalent conditions
holds:

(i) (a*)" = (a¥)™;
(i) a™(a*)" = a™(a¥)";
(iii) (a*)"a™ = (a¥)"a™.
Proof. If (a*)" = (a")" and a is EP, then af = a# and (a*)" = (a™)". So,

conditions (i)-(iii) hold.
(i) The equality (a*)" = (a)™ implies



Since (a*)"a™ is symmetric, then a*a is symmetric too and, by Theorem
1.2, a is EP. Using a' = a* and (i), we get (a*)" = (al)".
(ii) From the assumption a™(a*)" = a™(a™)", we obtain

(a")" = ala(a”)" = at(@*)" " (@™ (@)") = al (a#)" "0 (@#)" = ala(a®)”

and then
a(a*)" = a"aa(a™)" = a"(a™)" = aa¥,

which implies that aa™ is symmetric, and a is EP by Theorem 1.2. Since
(a*)" = a'a(a™)™ and a! = a¥, obviously, (a*)" = (a!)".

(iii) Applying the involution to (iii), we observe that a* satisfies (ii)
implying [(a*)*]" = [(a*)!]" and a* is EP. Consequently, the element a is EP
and (a*)" = (ah)™. O

3 Conclusions

In this paper we studied equations involving an element in a ring with invo-
lution, its adjoint, Moore-Penorse and group inverse. We applied a purely
algebraic technique to prove a number of new equivalent characterizations
of partial isometries and EP elements. Some well-known results for complex
matrices and elements in rings with involution are obtained as consequences.
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