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Abstract

If R is a ring with involution, and a† is the Moore-Penrose inverse
of a ∈ R, then the element a is called: EP, if aa† = a†a; partial
isometry, if a∗ = a†; star-dagger, if a∗a† = a†a∗. In this paper we
characterize partial isometries, EP and star-dagger elements in rings
with involution. Thus, we extend some well-known results to more
general settings.
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1 Introduction

Let R be an associative ring with the unit 1, and let a ∈ R. Then a is group
invertible if there is a# ∈ R such that

aa#a = a, a#aa# = a#, aa# = a#a.

Recall that a# is uniquely determined by previous equations [2]. We use
R# to denote the set of all group invertible elements of R. If a is invertible,
then a# coincides with the ordinary inverse of a.

An involution a 7→ a∗ in a ring R is an anti-isomorphism of degree 2,
that is,

(a∗)∗ = a, (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗.

An element a ∈ R satisfying aa∗ = a∗a is called normal. An element a ∈ R
satisfying a = a∗ is called Hermitian (or symmetric). In the rest of the
paper we assume that R is a ring with involution.

∗The authors are supported by the Ministry of Science, Republic of Serbia, grant no.
144003.
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We say that b = a† is the Moore–Penrose inverse (or MP-inverse) of a,
if the following hold [10]:

aba = a, bab = b, (ab)∗ = ab, (ba)∗ = ba.

There is at most one b such that above conditions hold (see [5, 7, 10]), and
such b is denoted by a†. The set of all Moore–Penrose invertible elements
of R will be denoted by R†. If a is invertible, then a† coincides with the
ordinary inverse of a.

An element a ∈ R† satisfying a∗ = a† is called a partial isometry. An
element a ∈ R† satisfying a∗a† = a†a∗ is called star–dagger [6].

Definition 1.1. [8] An element a ∈ R is *-cancellable if

a∗ax = 0 ⇒ ax = 0 and xaa∗ = 0 ⇒ xa = 0. (1)

Applying the involution to (1), we observe that a is *-cancellable if and
only if a∗ is *-cancellable. In C∗-algebras all elements are *-cancellable.

Theorem 1.1. [8] Let a ∈ R. Then a ∈ R† if and only if a is *-cancellable
and a∗a is group invertible.

Theorem 1.2. [4, 9] For any a ∈ R†, the following is satisfied:

(a) (a†)† = a;

(b) (a∗)† = (a†)∗;

(c) (a∗a)† = a†(a†)∗;

(d) (aa∗)† = (a†)∗a†;

(f) a∗ = a†aa∗ = a∗aa†;

(g) a† = (a∗a)†a∗ = a∗(aa∗)† = (a∗a)#a∗ = a∗(aa∗)#;

(h) (a∗)† = a(a∗a)† = (aa∗)†a.

In this paper we will use the following definition of EP elements [8].

Definition 1.2. An element a of a ring R with involution is said to be EP
if a ∈ R# ∩R† and a# = a†.

Lemma 1.1. An element a ∈ R is EP if and only if a ∈ R† and aa† = a†a.
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We observe that a ∈ R# ∩R† if and only if a∗ ∈ R# ∩R† (see [8]) and
a is EP if and only if a∗ is EP. In [8], the equality (a∗)# = (a#)∗ is proved.

Theorem 1.3. [8] An element a ∈ R is EP if and only if a is group invertible
and a#a is symmetric.

In praticular, if a ∈ R†, then (aa∗)† = (aa∗)#, and aa∗ is EP.
Previous results are also contained in [4].

Lemma 1.2. [9] If a ∈ R† is normal, then a is EP.

Theorem 1.4. [9] Suppose that a ∈ R†. Then a is normal if and only if
a ∈ R# and one of the following equivalent conditions holds:

(i) aa∗a# = a#aa∗;

(ii) aaa∗ = aa∗a.

In [1], O.M. Baksalary, G.P.H. Styan and G. Trenkler used the repre-
sentation of complex matrices provided in [6] to explore various classes of
matrices, such as partial isometries, EP and star-dagger elements. Inspired
by [1], in this paper we use a different approach, exploiting the structure of
rings with involution to investigate partial isometries, EP and star-dagger
elements. We give several characterizations, and the proofs are based on
ring theory only. The paper is organized as follows. In Section 2, character-
izations of MP-invertible or both MP-invertible and group invertible partial
isometries in rings with involution are given. In Section 3, star-dagger, group
invertible and EP elements in rings with involution are investigated.

2 Characterizations of partial isometries

In the following theorem we present some equivalent conditions for the
Moore-Penrose invertible element a of a ring with involution to be a partial
isometry.

Theorem 2.1. Suppose that a ∈ R†. The following statements are equiva-
lent:

(i) a is a partial isometry;

(ii) aa∗ = aa†;

(iii) a∗a = a†a.
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Proof. (i) ⇒ (ii): If a is a partial isometry, then a∗ = a†. So aa∗ = aa† and
the condition (ii) holds.

(ii) ⇒ (iii): Suppose that aa∗ = aa†. Then we get the following:

a∗a = a†(aa∗)a = a†aa†a = a†a.

Hence, the condition (iii) is satisfied.
(iii) ⇒ (i): Applying the equality a∗a = a†a, we obtain

a∗ = a∗aa† = a†aa† = a†.

Thus, the element a is a partial isometry.

Since for a ∈ R† the equalities a∗ = a∗aa† = a†aa∗ hold, we deduce that
a is a partial isometry if and only if a∗aa† = a†, or if and only if a†aa∗ = a†.

In the following theorem we assume that the element a is both Moore–
Penrose invertible and group invertible. Then, we study the conditions
involving a†, a# and a∗ to ensure that a is a partial isometry. Theorems 2.1
and 2.2 are inspired by Theorem 1 in [1].

Theorem 2.2. Suppose that a ∈ R† ∩ R#. Then a is a partial isometry if
and only if one of the following equivalent conditions holds:

(i) a∗a# = a†a#;

(ii) a#a∗ = a#a†;

(iii) aa∗a# = a#;

(iv) a#a∗a = a#.

Proof. If a is a partial isometry, then a∗ = a†. It is not difficult to verify
that conditions (i)-(iv) hold.

Conversely, to conclude that a is a partial isometry, we show that either
the condition a∗ = a† is satisfied, or one of the preceding already established
condition of this theorem holds.

(i) By the equality a∗a# = a†a#, we get

a∗ = a∗aa† = a∗aa#aa† = a∗a#aaa† = a†a#aaa† = a†aa† = a†.

(ii) The equality a#a∗ = a#a† gives

a∗ = a†aa∗ = a†aaa#a∗ = a†aaa#a† = a†aa† = a†.
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(iii) Multiplying aa∗a# = a# by a† from the left side, we obtain

a∗a# = a†a#.

Thus, the condition (i) is satisfied, so a is a partial isometry.
(iii) Multiplying a#a∗a = a# by a† from the right side, we get

a#a∗ = a#a†.

Hence, the equality (ii) holds, and a is a partial isometry.

In the following theorem we give necessary and sufficient conditions for
an element a of a ring with involution to be a partial isometry and EP. It
should be mentioned that the following result generalizes Theorem 2 in [1].

Theorem 2.3. Suppose that a ∈ R†. Then a is a partial isometry and EP
if and only if a ∈ R# and one of the following equivalent conditions holds:

(i) a is a partial isometry and normal;

(ii) a∗ = a#;

(iii) aa∗ = a†a;

(iv) a∗a = aa†;

(v) aa∗ = aa#;

(vi) a∗a = aa#;

(vii) a∗a† = a†a#;

(viii) a†a∗ = a#a†;

(ix) a†a∗ = a†a#;

(x) a∗a† = a#a†;

(xi) a∗a# = a#a†;

(xii) a∗a† = a#a#;

(xiii) a∗a# = a†a†;

(xiv) a∗a# = a#a#;

(xv) aa∗a† = a†;

5



(xvi) aa∗a† = a#;

(xvii) aa∗a# = a†;

(xviii) aa†a∗ = a†;

(xix) a∗a2 = a;

(xx) a2a∗ = a;

(xxi) aa†a∗ = a#;

(xxii) a∗a†a = a#.

Proof. If a ∈ R† is a partial isometry and EP, then a ∈ R# and a∗ = a† =
a#. It is not difficult to verify that conditions (i)-(xxii) hold.

Conversely, we assume that a ∈ R#. We known that a ∈ R# ∩ R† if
and only if a∗ ∈ R# ∩ R† and a is EP if and only if a∗ is EP. We will
prove that a is a partial isometry and EP, or we will show that the element
a or a∗ satisfies one of the preceding already established conditions of this
theorem. If a∗ satisfies one of the preceding already established conditions
of this theorem, then a∗ is a partial isometry and EP and so a is a partial
isometry and EP.

(i) If a is a partial isometry and normal, then a is a partial isometry and
EP, by Lemma 1.2.

(ii) From the condition a∗ = a#, we obtain

aa∗ = aa# = a#a = a∗a.

So, element a is normal. Then, by Lemma 1.2, a is EP and, by definition,
a# = a†. Hence, a∗ = a# = a†, i.e. a is a partial isometry.

(iii) Suppose that aa∗ = a†a. Then

a#aa∗ = a#a†a = (a#)2aa†a = (a#)2a = a#, (2)

which implies
aa∗a# = a(a#aa∗)a# = aa#a# = a#. (3)

From the equalities (2) and (3), we get aa∗a# = a#aa∗. Now, by Theorem
1.4, a is normal. Then a is EP by Lemma 1.2, and

aa† = a†a = aa∗,

by (iii). Thus, a is a partial isometry, by the condition (ii) of Theorem 2.1.
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(iv) Applying the involution to a∗a = aa†, we obtain

a∗(a∗)∗ = (a†)∗a∗ = (a∗)†a∗,

by Theorem 1.2. Hence, a∗ satisfies the condition (iii).
(v) The equality aa∗ = aa# gives

aaa∗ = aaa# = aa#a = aa∗a.

Therefore, a is normal by Theorem 1.4. From Lemma 1.2, a is EP and, by
definition, a# = a†. Now, by (v), aa∗ = aa† and, by the condition (ii) of
Theorem 2.1, a is a partial isometry.

(vi) Applying the involution to a∗a = aa#, we get

a∗(a∗)∗ = (a#)∗a∗ = (a∗)#a∗ = a∗(a∗)#,

by the equality (a#)∗ = (a∗)# [8]. Thus, a∗ satisfies the equality (v).
(vii) Assume that a∗a† = a†a#. Then

aa# = aa(a#)2 = aaa†a(a#)2 = a2(a†a#) = a2a∗a†

= a2(a∗a†)aa† = a2a†a#aa† = aaa†aa#a†

= a2a#a† = aa†.

Since aa† is symmetric, aa# is symmetric too. By Theorem 1.3, a is EP and
a# = a†. Then, by (vii), a∗a# = a†a#, i.e. the condition (i) of Theorem 2.2
is satisfied. Hence, a is a partial isometry.

(viii) Applying the involution to a†a∗ = a#a†, we have

(a∗)∗(a†)∗ = (a†)∗(a#)∗,

i.e.
(a∗)∗(a∗)† = (a∗)†(a∗)#.

So a∗ satisfies the condition (vii).
(ix) The condition a†a∗ = a†a# implies

aa# = aa(a#)2 = aaa†a(a#)2 = a2(a†a#) = a2a†a∗

= a2(a†a∗)aa† = a2a†a#aa† = aaa†aa#a†

= a2a#a† = aa†.

Thus aa# is symmetric, and by Theorem 1.3 a is EP. From a† = a# and
(ix) we get a†a∗ = a#a†, i.e. the equality (viii) holds.
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(x) Applying the involution to a∗a† = a#a†, we get

(a†)∗(a∗)∗ = (a†)∗(a#)∗,

which gives
(a∗)†(a∗)∗ = (a∗)†(a∗)#

i.e. a∗ satisfies the condition (ix).
(xi) Using the assumption a∗a# = a#a†, we have

a∗a = (a∗a#)a2 = a#a†a2 = (a#)2aa†a2 = (a#)2a2 = a#a = aa#.

Hence, the condition (vi) is satisfied.
(xii) If a∗a† = a#a#, then (x) holds, since:

a∗a† = (a∗a†)aa† = a#a#aa† = a#a†.

(xiii) By the equality a∗a# = a†a†, we obtain

a∗aa#a† = (a∗a#)aa† = a†a†aa† = a†a† = a∗a# = a∗a(a#)2,

which implies
a∗a(a#a† − (a#)2) = 0. (4)

Since a ∈ R†, a is *-cancellable by Theorem 1.1. From (4) and *-cancel-
lation, we get a(a#a† − (a#)2) = 0, i.e.

aa#a† = a#. (5)

Multiplying (5) by a from the left side, we have

aa† = aa#.

Therefore, aa# is symmetric, so a is EP by Theorem 1.3. Now, from a† = a#

and (xiii) we get a∗a# = a#a†, i.e. the condition (xi) is satisfied.
(xiv) The assumption a∗a# = a#a# gives

a∗a = (a∗a#)aa = a#a#aa = a#a = aa#.

So the equality (vi) holds.
(xv) From aa∗a† = a†, we get

aa∗ = a#aaa∗ = a#(aa∗a∗)∗ = a#(aa∗a†aa∗)∗

= a#(a†aa∗)∗ = a#(a∗)∗ = a#a = aa#.
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Thus, the equality (v) is satisfied.
(xvi) Multiplying aa∗a† = a# by a† from the left side, we get

a∗a† = a†a#.

Therefore, the condition (vii) holds.
(xvii) Multiplying aa∗a# = a† by a† from the left side, we obtain the

condition (xiii).
(xviii) Suppose that aa†a∗ = a†. Then

aa†a†a = aa†(a†a)∗ = (aa†a∗)(a†)∗ = a†(a†)∗

= a†(aa†a∗)∗ = a†a(aa†)∗ = a†aaa†.

Now, from this equality and (xviii), we have

a#a∗ = a#a#aa∗ = (a#)2aa(a#)2aa∗ = (a#)2a(a†aaa†)a(a#)2aa∗

= a#aa†a†aa#aa∗ = a#aa†a†aa∗ = a#(aa†a∗) = a#a†.

Hence, the equality (ii) of Theorem 2.2 holds and then a is a partial isometry.
From a∗ = a† and (xviii), we obtain

aa∗a† = aa†a∗ = a†,

i.e. the equality (xv) is satisfied.
(xix) Multiplying a∗a2 = a by a# from the right side, we get

a∗a = aa#.

So the condition (vi) holds.
(xx) Multiplying a2a∗ = a by a# from the left side, we have

aa∗ = a#a = aa#.

Thus, the equality (v) is satisfied.
(xxi) Multiplying aa†a∗ = a# by a† from the left side, we obtain

a†a∗ = a†a#.

Hence, a satisfies the condition (ix).
(xxii) Multiplying a∗a†a = a# by a† from the right side, we get

a∗a† = a#a†.

Therefore, the condition (x) holds.
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The following result is well-known for complex matrices (see Theorem 1
in [1]). However, we are not in a position to prove this result for elements
of a ring with involution, so we state it as a conjecture.

Conjecture. Suppose that a ∈ R†. Then a is a partial isometry if and only
if one of the following equivalent conditions holds:

(i) a∗aa∗ = a†;

(ii) aa∗aa∗a = a.

3 EP, star-dagger and group-inverible elements

First, we state the following result concerning sufficient conditions for Moore-
Penrose invertible element a in ring with involution to be star–dagger. This
result is proved for complex matrices in [1].

Theorem 3.1. Suppose that a ∈ R†. Then each of the following conditions
is sufficient for a to be star–dagger:

(i) a∗ = a∗a†;

(ii) a∗ = a†a∗;

(iii) a† = a†a†;

(iv) a∗ = a†a†;

(v) a† = a∗a∗.

Proof. (i) Using the equation a∗ = a∗a†, we get

a∗aa† = a∗ = a∗a† = a∗aa†a†,

i.e.
a∗a(a† − a†a†) = 0. (6)

From a ∈ R†, by Theorem 1.1 we know that a is *-cancellable. Then, by
(6) and *-cancellation, we have

a(a† − a†a†) = 0
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which gives
aa† = aa†a†. (7)

Now, by (i) and (7),

a∗a† = a∗ = a†aa∗ = a†(aa†)aa∗ = a†aa†a†aa∗ = a†a∗.

(ii) Applying the involution to a∗ = a†a∗, we obtain

(a∗)∗ = (a∗)∗(a†)∗ = (a∗)∗(a∗)†.

Since the condition (i) holds for a∗, we deduce that a∗ is star–dagger. Thus
(a∗)∗(a∗)† = (a∗)†(a∗)∗, i.e.

a(a†)∗ = (a†)∗a (8)

Applying the involution to (8), we get a†a∗ = a∗a†.
(iii) The condition a† = a†a† implies

a∗a† = a∗a(a†a†) = a∗aa† = a∗ = a†aa∗ = a†a†aa∗ = a†a∗.

(iv) From the equality a∗ = a†a†, we have

a∗a† = a∗a(a†a†) = a∗aa∗ = a†a†aa∗ = a†a∗.

(v) If a† = a∗a∗, then

a∗a† = a∗a∗a∗ = a†a∗.

Now, we prove an alternative characterization of the group inverse in a
ring. This result is proved for complex matrices in [1] where the authors use
the rank of a matrix.

Theorem 3.2. Let R be an associative ring with the unit 1, and let a ∈ R.
Then b ∈ R is the group inverse of a if and only if

ba2 = a, a2b = a, bR = baR.

Proof. If b = a#, then, by definition, a = ba2 = a2b. It is clear that
baR ⊆ bR. To show that bR ⊆ baR, we assume that y ∈ bR. Then y = bx
for some x ∈ R. Since bab = b, we have y = bx = babx ∈ baR. Hence,
bR = baR.

Suppose that ba2 = a, a2b = a, bR = baR. Now, ab = ba2b = ba and
aba = baa = a. Since b = b1 ∈ bR = baR, then b = bax for some x ∈ R.
Thus, b = bax = ba2bx = ba(bax) = bab and b = a#.
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Finally, we prove the result involving EP elements in a ring.

Theorem 3.3. Suppose that a, b ∈ R. Then the following statements are
equivalent:

(i) aba = a and a is EP;

(ii) a ∈ R† ∩R# and a† = a†ba;

(iii) a ∈ R† ∩R# and a∗ = a∗ba;

(iv) a ∈ R† ∩R# and a∗ = aba∗;

(v) a ∈ R† ∩R# and a† = aba†.

Proof. (i) ⇒ (ii): Let aba = a and let a be EP. We get

a† = a# = (a#)2a = (a#)2aba = a#ba = a†ba,

i.e. the condition (ii) holds.
(ii) ⇒ (iii): From a† = a†ba, we get

a∗ = a∗aa† = a∗aa†ba = a∗ba.

Therefore, the condition (iii) is satisfied.
(iii) ⇒ (ii): The condition a∗ = a∗ba is equivalent to

a∗aa† = a∗aa†ba,

which implies
a∗a(a† − a†ba) = 0. (9)

From a ∈ R† and Theorem 1.1 it follows that a is *-cancellable. Thus, by
(9) and *-cancellation, a(a† − a†ba) = 0 which yields

aa† = aa†ba. (10)

Multiplying (10) by a† from the left side, we obtain a† = a†ba. So the
condition (ii) holds.

(ii) ⇒ (i): If a† = a†ba, then

aa# = aa†aa# = aa†baaa# = aa†ba = aa†.

Hence, aa# is symmetric. By Theorem 1.3, a is EP and a# = a†. Now, by
(ii) we get a# = a#ba and consequently a = a2a# = a2a#ba = aba. Thus,
the condition (i) is satisfied.

(i) ⇒ (iv) ⇒ (v) ⇒ (i): These implications can be proved analogously.

Notice that in the case of complex matrices, the equivalencies (i)⇔(iii)⇔(iv)
are proved in [3], and the equivalencies (i)⇔(ii)⇔(v) are proved in [1].
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4 Conclusions

In this paper we consider Moore-Penrose invertible or both Moore-Penrose
invertible and group invertible elements in rings with involution to charac-
terize partial isometries, EP and star-dagger elements in terms of equations
involving their adjoints, Moore-Penorse and group inverses. All of these re-
sults are already known for complex matrices. However, we demonstrated
the new technique in proving the results. In the theory of complex matri-
ces various authors used an elegant representation of complex matrices and
the matrix rank to characterize partial isometries, EP elements and star-
dagger. In this paper we applied a purely algebraic technique, involving
different characterizations of the Moore-Penrose inverse.

Acknowledgement. We are grateful to the for helpful comments con-
cerning the paper.
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