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1 Introduction

The Drazin inverse has applications in a number of areas such as control the-
ory, Markov chains, singular differential and difference equations, iterative
methods in numerical linear algebra, etc. Representations for the Drazin in-
verse of block matrices under certain conditions where given in the literature
[1, 3, 4, 5, 6, 7, 9, 14, 17].

In this paper, we present formulas for the generalized Drazin inverse of
block matrix with generalized Schur complement being group invertible in
Banach algebra. Moreover, necessary and sufficient conditions for the exis-
tence as well as the expressions for the group inverse of triangular matrices
are obtained.

Let A be a complex unital Banach algebra with unit 1. For a ∈ A, we
use σ(a) and ρ(a), respectively, to denote the spectrum and the resolvent
set of a. The sets of all nilpotent and quasinilpotent elements (σ(a) = {0})
of A will be denoted by Anil and Aqnil, respectively.

The generalized Drazin inverse of a ∈ A (or Koliha–Drazin inverse of a)
is the element b ∈ A which satisfies

bab = b, ab = ba, a− a2b ∈ Aqnil.

∗The authors are supported by the Ministry of Education and Science, Republic of
Serbia, grant no. 174007.
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If the generalized Drazin inverse of a exists, it is unique and denoted by ad,
and a is generalized Drazin invertible (see [11]). Recall that p = 1 − aad

is the spectral idempotent of a corresponding to the set {0}, and it will be
denoted by aπ. The set of all generalized Drazin invertible elements of A is
denoted by Ad. The Drazin inverse is a special case of the generalized Drazin
inverse for which a−a2b ∈ Anil instead of a−a2b ∈ Aqnil. Obviously, if a is
Drazin invertible, then it is generalized Drazin invertible. The group inverse
is the Drazin inverse for which the condition a− a2b ∈ Anil is replaced with
a = aba. We use a# to denote the group inverse of a, and we use A# to
denote the set of all group invertible elements of A.

Let p = p2 ∈ A be an idempotent. Then we can represent element a ∈ A
as

a =
[

a11 a12

a21 a22

]
,

where a11 = pap, a12 = pa(1− p), a21 = (1− p)ap, a22 = (1− p)a(1− p).
We use the following lemmas.

Lemma 1.1. Let b ∈ Ad and a ∈ Aqnil.

(i) [2, Corollary 3.4] If ab = 0, then a+b ∈ Ad and (a+b)d =
∞∑

n=0
(bd)n+1an.

(ii) If ba = 0, then a + b ∈ Ad and (a + b)d =
∞∑

n=0
an(bd)n+1.

Specializing [2, Corollary 3.4] (with multiplication reversed) to bounded
linear operators Castro–González et al. [2] recovered [8, Theorem 2.2] which
is a spacial case of Lemma 1.1(ii).

By the following lemma, Castro–González et al. [2] recovered [10, The-
orem 2.1] for matrices and [8, Theorem 2.3] for bounded linear operators.

Lemma 1.2. [2, Example 4.5] Let a, b ∈ Ad and let ab = 0. Then

(a + b)d =
∞∑

n=0

(bd)n+1anaπ +
∞∑

n=0

bπbn(ad)n+1.

The following result is well-known for complex matrices (see [16]) and it
is proved for elements of Banach algebra in [12].

Lemma 1.3. [12, Lemma 2.2] Let x =
[

a b
c d

]
∈ A relative to the idempo-

tent p ∈ A, a ∈ (pAp)d and let w = aad + adbcad be such that aw ∈ (pAp)d.
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If caπ = 0, aπb = 0 and the generalized Schur complement s = d − cadb is
equal to 0, then

xd =
[

p 0
cad 0

] [
[(aw)d]2a 0

0 0

] [
p adb
0 0

]
. (1)

Let

x =
[

a b
c d

]
∈ A (2)

relative to the idempotent p ∈ A, a ∈ (pAp)d and let the generalized Schur
complement s = d − cadb ∈ ((1 − p)A(1 − p))#. The generalized Schur
complement s plays an important role in the representations for xd in many
cases [9, 14, 15, 17].

Hartwig et al. [9] presented representations for the Drazin inverse of a
2×2 block matix under conditions which involve W = AAD+ADBCAD and
that the generalized Schur complement is equal to 0. Li [13] investigated a
representation for the Drazin inverse of block matrices with a singular and
group invertible generalized Schur complement, recovering the formula (1)
for complex matrices [16].

We investigate representations of the generalized Drazin inverse of a
block matrix x in (2) with a group invertible generalized Schur complement
s = d− cadb under different conditions. Thus, we extend some results from
[13, 16] to more general settings. Also, we obtain equivalent condition for
the existence and representations for the group inverse of triangular matrices
in Banach algebra.

The paper’s aim is to further weaken the conditions on the elements
needed to produce explicit formulae for the generalized Drazin inverse of
x compared to those known from the literature. Such formulae are very
complicated, but the main goal is to establish that x has the generalized
Drazin inverse, and the formulae are the means to produce that result.

2 Results

In this section, we assume that

(i) the element x is defined as in (2) relative to the idempotent p ∈ A,

(ii) a ∈ (pAp)d,

(iii) s = d− cadb and s ∈ ((1− p)A(1− p))#,
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(iv) w = aad + adbsπcad.

First, we give a formula for the generalized Drazin inverse of block matrix
x in (2) in terms of w = aad + adbsπcad and the group invertible Schur
complement s.

Theorem 2.1. If aw ∈ (pAp)d,

aπb = 0, bsπcaπ = 0, wbss# = 0, ss#cadbss# = 0, (3)

then x ∈ Ad and

xd =
(

1 +
[

0 bs#

0 cadbs#

])([
0 0

−s#cw[(aw)d]2a s# − s#cw[(aw)d]2bsπ

]

+
∞∑

n=1

[
0 0

(s#)n+1can−1aπ + vna vnbsπ

])

+
[

p −bs#

0 (1− p)− ds#

]
r, (4)

where vn = (s#)n+1cad(aw)n−1(aw)π, (n = 1, 2, . . . ), and

r =
[

[(aw)d]2a [(aw)d]2bsπ

cad[(aw)d]2a cad[(aw)d]2bsπ

]
.

Proof. Using the equalities aad + aπ = p, ss# + sπ = 1 − p and ssπ = 0,
note that

x =
[

a2ad bsπ

caad cadbsπ

]
+

[
aaπ bss#

caπ dss#

]
:= y + z.

By adaπ = 0 and (3), we obtain

yz =
[

bsπcaπ awbss#

cadbsπcaπ cwbss#

]
= 0.

To check that y ∈ Ad, set Ay ≡ a2ad, By ≡ bsπ, Cy ≡ caad and Dy ≡
cadbsπ. Since (a2ad)# = ad, Ay ∈ (pAp)# and Sy ≡ Dy − CyA

#
y By = 0.

Also, Aπ
yBy = aπbsπ = 0, CyA

π
y = 0 and Wy = AyA

#
y + A#

y ByCyA
#
y = w.

Applying Lemma 1.3, observe that y ∈ Ad and

yd =
[

p 0
cad 0

] [
[(aw)d]2a 0

0 0

] [
p adbsπ

0 0

]
= r.
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In order to prove that z ∈ Ad, we write

z =
[

aaπ 0
caπ 0

]
+

[
0 0
0 s

]
+

[
0 bss#

0 cadbss#

]

:= z1 + z2 + z3.

Recall that, for u =
[

m t
0 n

]
,

λ ∈ ρpAp(m) ∩ ρ(1−p)A(1−p)(n) ⇒ λ ∈ ρ(u),

i.e.
σ(u) ⊆ σpAp(m) ∪ σ(1−p)A(1−p)(n).

From aaπ ∈ (pAp)qnil and s ∈ A#, we conclude that z1 ∈ Aqnil, z2 ∈ A# and

z#
2 =

[
0 0
0 s#

]
. Using Lemma 1.1(i), by z1z2 = 0, we get z1 + z2 ∈ Ad and

(z1+z2)d =
∞∑

n=0
(z#

2 )n+1zn
1 . Further, z2

3 = 0, i.e. z3 ∈ Anil and (z1+z2)z3 = 0.

By Lemma 1.1(ii), z ∈ Ad and zd = (z1 + z2)d + z3[(z1 + z2)d]2.
Therefore, by Lemma 1.2, we deduce that x ∈ Ad and

xd =
∞∑

n=0

(zd)n+1ynyπ +
∞∑

n=0

zπzn(yd)n+1

=
∞∑

n=0

(1 + z3(z1 + z2)d)[(z1 + z2)d]n+1ynyπ +
∞∑

n=0

zπzn(yd)n+1

:= X1 + X2, (5)

where

X1 = (1 + z3(z1 + z2)d)x1y
π, x1 =

∞∑

n=0

[(z1 + z2)d]n+1yn,

X2 = zπyd +
∞∑

n=1

zπzn(yd)n+1.
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Since z1y = 0, then (z1 + z2)dy =
[

0 0
0 s#

]
y = z#

2 y and

x1 = (z1 + z2)d +
∞∑

n=1

[(z1 + z2)d]nz#
2 yn

= (z1 + z2)d +
∞∑

n=1

(
z#
2 +

∞∑

k=1

(z#
2 )k+1zk

1

)n

z#
2 yn

= (z1 + z2)d +
∞∑

n=1

(
(z#

2 )n + (z#
2 )n−1

∞∑

k=1

(z#
2 )k+1zk

1

)
z#
2 yn

=
∞∑

n=0

(z#
2 )n+1zn

1 +
∞∑

n=1

(z#
2 )n+1yn.

Now, we have

X1 =

(
1 +

[
0 b
0 cadb

] ∞∑

k=0

(z#
2 )k+1zk

1

)( ∞∑

n=0

(z#
2 )n+1zn

1 +
∞∑

n=1

(z#
2 )n+1yn

)
yπ

=

(
1 +

[
0 b
0 cadb

] [
z#
2 +

∞∑

k=1

(z#
2 )k+1zk

1

])
z#
2

×
( ∞∑

n=0

(z#
2 )nzn

1 +
∞∑

n=1

(z#
2 )nyn

)
yπ

=
(

1 +
[

0 bs#

0 cadbs#

])(
z#
2 yπ +

∞∑

n=1

(z#
2 )n+1zn

1 yπ +
∞∑

n=1

(z#
2 )n+1ynyπ

)

=
(

1 +
[

0 bs#

0 cadbs#

])(
z#
2 yπ +

∞∑

n=1

(z#
2 )n+1zn

1 +
∞∑

n=1

(z#
2 )n+1ynyπ

)
.(6)

Observe that aad(aw) = aw = (aw)aad,

yπ = 1− yyd =
[

p− (aw)da −(aw)dbsπ

−cw[(aw)d]2a (1− p)− cw[(aw)d]2bsπ

]

and

ynyπ =
[

aad(aw)n−1(aw)πa (aw)n−1(aw)πbsπ

cad(aw)n−1(aw)πa cad(aw)n−1(aw)πbsπ

]
(n = 1, 2, . . . ).
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Hence, these equalities and (6) give

X1 =
(

1 +
[

0 bs#

0 cadbs#

])([
0 0

−s#cw[(aw)d]2a s# − s#cw[(aw)d]2bsπ

]

+
∞∑

n=1

[
0 0
0 (s#)n+1

] [
anaπ 0

can−1aπ 0

]

+
∞∑

n=1

[
0 0

(s#)n+1cad(aw)n−1(aw)πa (s#)n+1cad(aw)n−1(aw)πbsπ

])

=
(

1 +
[

0 bs#

0 cadbs#

])([
0 0

−s#cw[(aw)d]2a s# − s#cw[(aw)d]2bsπ

]

+
∞∑

n=1

[
0 0

(s#)n+1can−1aπ + vna vnbsπ

])
. (7)

From

zzdy = [(z1 + z2)(z1 + z2)d + z3(z1 + z2)d]y = (z1 + z2)z
#
2 y + z3z

#
2 y

= (z2 + z3)z
#
2 y,

we get zzdyd = (z2 + z3)z
#
2 yd and zπyd =

[
p −bs#

0 (1− p)− ds#

]
r. Thus, by

z

[
p −bs#

0 (1− p)− ds#

]
= z1 and aπ(aw)d = aπaadaw[(aw)d]2 = 0, notice

that zzπyd = z

[
p −bs#

0 (1− p)− ds#

]
r = z1r = 0 and

X2 = zπyd +
∞∑

n=1

znzπ(yd)n+1 = zπr. (8)

So, (5), (7) and (8) imply (4).

Our conditions aπb = 0, bsπcaπ = 0, wbss# = 0, ss#cadbss# = 0 in
Theorem 2.1 can be formulated geometrically as

bA ⊂ aA, sπcaπA ⊂ b◦, bss#A ⊂ w◦, cadbss#A ⊂ s◦,

where e◦ = {f ∈ A : ef = 0}.
If we assume that a is a group invertible and w = 1 in Theorem 2.1, we

obtain the following result as a consequence.
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Corollary 2.1. Let a ∈ (pAp)# and let w = aa# +a#bca# = 1. If aπb = 0,
bcaπ = 0 and bss# = 0, then x ∈ Ad and

xd =
[

a# (a#)2b
−s#ca# + (s#)2caπ + sπc(a#)2 s# − s#c(a#)2b + sπc(a#)3b

]
.

In the following theorem, the other formula for the generalized Drazin
inverse of block matrix is presented.

Theorem 2.2. If aw ∈ (pAp)d,

caπ = 0, aπbsπc = 0, ss#cw = 0, ss#cadbss# = 0,

then x ∈ Ad and

xd =
([

0 −(aw)dbs#

0 s# − sπcad(aw)dbs#

]

+
∞∑

n=1

[
0 an−1aπb(s#)n+1 + aad(aw)n−1(aw)πb(s#)n+1

0 sπcad(aw)n−1(aw)πb(s#)n+1

])

×
(

1 +
[

0 0
s#c s#cadb

])
+ t

[
p 0

−s#c (1− p)− s#d

]
, (9)

where

t =
[

[(aw)d]2a [(aw)d]2b
sπcad[(aw)d]2a sπcad[(aw)d]2b

]
.

Proof. If we write

x =
[

a2ad aadb
sπc sπcadb

]
+

[
aaπ aπb
ss#c ss#d

]
:= y + z,

then zy = 0. Using Lemma 1.3, we conclude that y ∈ Ad and yd = t.
To show that z ∈ Ad, let

z =
[

aaπ aπb
0 0

]
+

[
0 0
0 s

]
+

[
0 0

ss#c ss#cadb

]
:= z1 + z2 + z3.

Then z1 ∈ Aqnil, z2 ∈ A# and z2z1 = 0. By Lemma 1.1(ii), z1 + z2 ∈ Ad

and (z1 + z2)d =
∞∑

n=0
zn
1 (z#

2 )n+1. From z2
3 = 0, z3(z1 + z2) = 0 and Lemma

1.1(i), z ∈ Ad and zd = (z1 + z2)d + [(z1 + z2)d]2z3.
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Applying Lemma 1.2, observe that x ∈ Ad and

xd =
∞∑

n=0

(yd)n+1znzπ +
∞∑

n=0

yπyn(zd)n+1 := X1 + X2. (10)

The equalities yz1 = 0 and y(z1 + z2)d = yz#
2 imply ydzπ =

t

[
p 0

−s#c (1− p)− s#d

]
and ydzπz = 0.

X1 = ydzπ +
∞∑

n=1

(yd)n+1zπzn = tzπ. (11)

Next, we obtain

X2 =
∞∑

n=0

yπyn(zd)n+1 =
∞∑

n=0

yπyn[(z1 + z2)d]n+1(1 + (z1 + z2)dz3)

=

(
yπ(z1 + z2)d +

∞∑

n=1

yπynz#
2 [(z1 + z2)d]n

)
(1 + (z1 + z2)dz3)

=

[
yπ

∞∑

n=0

zn
1 (z#

2 )n+1 +
∞∑

n=1

yπynz#
2

(
(z#

2 )n +
∞∑

k=1

zk
1 (z#

2 )k+n

)]

×
(

1 + z#
2 z3 +

∞∑

n=1

zn
1 (z#

2 )n+1z3

)

=

[
yπ

∞∑

n=0

zn
1 (z#

2 )n+1 +
∞∑

n=1

yπyn(z#
2 )n+1

]
(1 + z#

2 z3)

=

[
yπz#

2 +
∞∑

n=1

zn
1 (z#

2 )n+1 +
∞∑

n=1

yπyn(z#
2 )n+1

]
(1 + z#

2 z3).

Since yπ =
[

p− (aw)da −(aw)db
−sπcad(aw)da (1− p)− sπcad(aw)db

]
and

ynyπ =
[

aad(aw)n−1(aw)πa aad(aw)n−1(aw)πb
sπcad(aw)n−1(aw)πa sπcad(aw)n−1(aw)πb

]
(n = 1, 2, . . . ),
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we get

X2 =
([

0 −(aw)dbs#

0 s# − sπcad(aw)dbs#

]

+
∞∑

n=1

[
0 an−1aπb(s#)n+1 + aad(aw)n−1(aw)πb(s#)n+1

0 sπcad(aw)n−1(aw)πb(s#)n+1

])

×
(

1 +
[

0 0
s#c s#cadb

])
(12)

Thus, from (10), (11) and (12), we obtain (9).

Notice that explicit formulae (4) and (9) for the generalized Drazin in-
verse of x are complicated, but the conditions on the elements needed to
produce these formulae are weaken than those known from the literature
and x has the generalized Drazin inverse under these conditions.

In Theorem 2.2, supposing that a ∈ (pAp)# and w = 1, the next corol-
lary follows.

Corollary 2.2. Let a ∈ (pAp)# and let w = aa# +a#bca# = 1. If caπ = 0,
aπbc = 0 and ss#c = 0, then x ∈ Ad and

xd =
[

a# −a#bs# + aπb(s#)2 + (a#)2bsπ

sπc(a#)2 s# − c(a#)2bs# + sπc(a#)3bsπ

]
.

The following result is a consequence of Theorem 2.1 and Theorem 2.2.

Corollary 2.3. If aw ∈ (pAp)d, s = 0 and if one of the following conditions
holds:

(i) aπb = 0 and caπ = 0,

(ii) aπb = 0 and bcaπ = 0,

(iii) caπ = 0 and aπbc = 0,

then x ∈ Ad and

xd =
[

[(aw)d]2a [(aw)d]2b
cad[(aw)d]2a cad[(aw)d]2b

]
.

Notice that, the preceding corollary recover Lemma 1.3 for elements of
Banach algebra and the analogy result for matrices [16].

We will use Theorem 2.1 to find the group inverse of a triangular block
matrix. Precisely, for b = 0 in Theorem 2.1, we obtain the next result.
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Theorem 2.3. Let x =
[

a 0
c s

]
∈ A relative to the idempotent p ∈ A,

a ∈ (pAp)d and s ∈ ((1− p)A(1− p))#. Then

(i) x ∈ Ad and

xd =
[

ad 0
sπc(ad)2 − s#cad s#

]
+

∞∑

n=1

[
0 0

(s#)n+1can−1aπ 0

]
; (13)

(ii) x ∈ A# if and only if a ∈ (pAp)# and sπcaπ = 0. Furthermore, if
a ∈ (pAp)# and sπcaπ = 0, then

x# =
[

a# 0
sπc(a#)2 − s#ca# + (s#)2caπ s#

]
.

Proof. (i) If b = 0 in Theorem 2.1, then s = d, w = aad, aw = a2ad ∈
(pAp)#, (aw)# = ad and ad(aw)π = adaπ = 0 implying (13).

(ii) By the part (i), note that

x2xd =




a2ad 0

caad +
∞∑

n=1
s2(s#)n+1can−1aπ s


 .

Consequently, x2xd = x ⇔ a2ad = a and caad +
∞∑

n=1
s(s#)ncan−1aπ = c.

Hence, x ∈ A# is equivalent to a ∈ (pAp)# and ss#caπ = caπ.

In the same manner as in the proof of Theorem 2.3, if c = 0 in Theorem
2.2, we verify the following theorem in which necessary and sufficient condi-
tion for the existence and representation of the group inverse are considered.

Theorem 2.4. Let x =
[

a b
0 s

]
∈ A relative to the idempotent p ∈ A,

a ∈ (pAp)d and s ∈ ((1− p)A(1− p))#. Then

(i) x ∈ Ad and

xd =
[

ad (ad)2bsπ − adbs#

0 s#

]
+

∞∑

n=1

[
0 an−1aπb(s#)n+1

0 0

]
;
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(ii) x ∈ A# if and only if a ∈ (pAp)# and aπbsπ = 0. Furthermore, if
a ∈ (pAp)# and aπbsπ = 0, then

x# =
[

a# (a#)2bsπ − a#bs# + aπb(s#)2

0 s#

]
.

Observe that the part (i) of Theorem 2.3 and the same part of Theorem
2.4 are the special cases of [2, Theorem 2.3] for Banach algebra elements
and [8, Theorem 2.2] for bounded linear operators.

Finally, we give an example to illustrate our results.

Example 2.1. In Banach algebra A, if x =
[

p b
0 0

]
∈ A (or x =

[
p 0
c 0

]
∈ A) relative to the idempotent p ∈ A, then ad = a = p, aπ = 0,

s = 0 = s#, sπ = 1 − p and w = p = aw = (aw)d. Using Theorem 2.1 or

Theorem 2.2, we get that x ∈ Ad and xd =
[

p b
0 0

]
(or xd =

[
p 0
c 0

]
).
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[2] N. Castro–González, J.J. Koliha, New additive results for the g-Drazin
inverse, Proc. Roy. Soc. Edinburgh Sect. A 134 (2004) 1085-1097.
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verse of certain block matrices in Banach algebras, (preprint).

[13] X. Li, A representation for the Drazin inverse of block matrices with a
singular generalized Schur complement, Appl. Math. Comput. 217(18)
(2011) 7531–7536.

[14] X. Li, Y. Wei, A note on the representations for the Drazin inverse of
2× 2 block matrix, Linear Algebra Appl. 423 (2007) 332-338.

[15] M.F. Mart́ınez-Serrano, N. Castro-González, On the Drazin inverse of
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