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Abstract

In this paper we study several equivalent conditions related to the
reverse order law for the Moore–Penrose inverse in C∗-algebras. We ex-
tend some well-known results to more general settings. Then we apply
this result to obtain the reverse order rule for the weighted Moore-
Penrose inverse in C∗-algebras.
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1 Introduction

Let S be a semigroup with the unit 1. If a, b ∈ S are invertible, then
ab is invertible too and the inverse of the product ab satisfied the reverse
order law (ab)−1 = b−1a−1. This formula cannot trivially be extended to
the Moore–Penrose inverse of the product ab. In this paper we investigate
necessary and sufficient conditions which are related to the reverse order
law for the Moore–Penrose inverse. The reverse order law for the weighted
Moore–Penrose inverse in C∗-algebras follows as a corollary.

Let A be a unital C∗–algebra. An element a ∈ A is regular if there exists
some b ∈ A satisfying aba = a. The set of all regular elements of A will be
denoted by A−. An element p ∈ A is idempotent if p2 = p. An element
a ∈ A is self-adjoint if a∗ = a. An element x ∈ A is positive if x = x∗

and σ(x) ⊆ [0, +∞), where the spectrum of element x is denoted by σ(x).
Notice that, positive elements are self-adjoint. If x ∈ A, then x∗x is positive
element.

∗The authors are supported by the Ministry of Science, Republic of Serbia, grant no.
174007.
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The Moore–Penrose inverse (or MP-inverse) of a ∈ A is the element
b ∈ A, if the following equations hold [13]:

(1) aba = a, (2) bab = b, (3) (ab)∗ = ab, (4) (ba)∗ = ba.

There is at most one b such that above conditions hold (see [13]), and such
b is denoted by a†. The set of all Moore–Penrose invertible elements of A
will be denoted by A†. If a is invertible, then a† coincides with the ordinary
inverse of a.

Definition 1.1. Let A be a unital C∗–algebra and e, f two invertible pos-
itive elements in A. We say that the element a ∈ A has the weighted
MP-inverse with weights e, f if there exists b ∈ A such that

(1) aba = a, (2) bab = b, (3e) (eba)∗ = eba, (4f) (fab)∗ = fab.

The unique weighted MP-inverse with weights e, f , will be denoted by
a†e,f if it exists [11]. The set of all weighted MP-invertible elements of A
with weights e, f , will be denoted by A†e,f .

If δ ⊂ {1, 2, 3, 4, 3e, 4f} and b satisfies the equations (i) for all i ∈ δ,
then b is an δ–inverse of a. The set of all δ–inverse of a is denote by a{δ}.
If b ∈ a{1}, then a is regular. If b ∈ a{1, 2} and ab = ba, then a is group
invertible.

LetR be a ring with involution. An element a ∈ R is: left *-cancellable if
a∗ax = a∗ay implies ax = ay; it is right *-cancellable if xaa∗ = yaa∗ implies
xa = ya; and it is *-cancellable if it is both left and right *-cancellable. We
observe that a is left *-cancellable if and only if a∗ is right *-cancellable. In
C∗-algebras all elements are *-cancellable. A ring R is called *-reducing if
every element of R is *-cancellable. This is equivalent to the implication
a∗a = 0 ⇒ a = 0 for all a ∈ R.

Now we formulate the following result, which is well-known and fre-
quently used in the rest of the paper.

Theorem 1.1. [6, 12] For any a ∈ A†, the following is satisfied:

(a) (a†)† = a;

(b) (a∗)† = (a†)∗;

(c) (a∗a)† = a†(a†)∗;

(d) (aa∗)† = (a†)∗a†;
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(f) a∗ = a†aa∗ = a∗aa†;

(g) a† = (a∗a)†a∗ = a∗(aa∗)†;

(h) (a∗)† = a(a∗a)† = (aa∗)†a.

Theorem 1.2. [8] In a unital C∗–algebra A, a ∈ A is MP-invertible if and
only if a is regular.

It is useful to express the weighted MP-inverse in terms of the ordinary
MP-inverse.

Theorem 1.3. [11] Let A be a unital C∗–algebra and let e, f be positive
invertible elements of A. If a ∈ A is regular, then the unique weighted
MP-inverse a†e,f exists and

a†e,f = e−1/2(f1/2ae−1/2)†f1/2.

In [7], Greville proved that (ab)† = b†a† holds for complex matrices if
and only if a†a commutes with bb∗ and bb† commutes with aa∗. Bouldin
[2, 3] and Izumino [10] generalized this result for closed range operators on
Hilbert spaces. Their proofs are based on operator theoretical methods and
use properties of ranges of operators and gaps between subspaces. In [11], a
proof of the reverse order rule for the Moore-Penrose inverse in the setting
of rings with involution is presented, extending the results for Hilbert space
operators from [2, 3, 10]. This result is formulated as follows.

Theorem 1.4. [11] Let R be a ring with involution, let a, b ∈ R be MP–
invertible and let (1− a†a)b be left *-cancellable. Then the following condi-
tions are equivalent:

(a) ab is MP–invertible and (ab)† = b†a†;

(b) a†abb∗ = bb∗a†a and bb†a∗a = a∗abb†.

Necessary and sufficient conditions for the reverse order rule for the
weighted MP-inverse for matrices were given by Sun and Wei in [14] in terms
of the inclusion of matrix ranges (column spaces). In [11], the result for the
reverse order rule for the weighted Moore-Penrose inverse in C∗-algebras is
proved, generalizing the matrix results in [14].

Tian [15, 16] studied a group of rank equalities related to the Moore–
Penrose inverse of products of two matrices, which implies necessary and
sufficient conditions for (ab)† = b†a†. The extensions of these results to the
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weighted Moore–Penrose inverse are considered too. The operator analogues
of these results for the Moore–Penrose inverse are proved in [4, 5] for linear
bounded operators on Hilbert spaces, using the matrix form of operators
induced by some natural decomposition of Hilbert spaces.

In this paper we present a purely algebraic proof of some equivalent con-
ditions related to the reverse order law for the Moore–Penrose inverse in C∗–
algebras, extending the known results for matrices [15, 16] and Hilbert space
operators [4, 5]. We show that neither the rank (in the finite dimensional
case) nor the properties of operator matrices (in the infinite dimensional
case) are necessary for the proof of the reverse order rule for the Moore–
Penrose inverse valid under certain conditions on regular elements. Thus
we extend some recent results to more general settings. As a corollary we
obtain the reverse order law for the weighted Moore–Penrose inverse.

2 Reverse order law in C∗–algebras

In this section, we present necessary and sufficient conditions for the reverse
order law for the Moore–Penrose inverse to hold. The first list of some
equivalent statements is given below.

Theorem 2.1. Let A be a unital C∗–algebra and let a, b ∈ A−. Then the
following conditions are equivalent:

(a) abb†a†ab = ab;

(b) b†a†abb†a† = b†a†;

(c) a†abb† = bb†a†a;

(d) a†abb† is an idempotent;

(e) bb†a†a is an idempotent;

(f) b†(a†abb†)†a† = b†a†;

(g) (a†abb†)† = bb†a†a.

Proof. We can easy get that ab ∈ A− ⇔ a†abb† ∈ A−.
(a) ⇒ (c): From abb†a†ab = ab, we obtain a†abb†(1− a†a)b = 0 and

a†a(b†)∗((1− a†a)b)∗(1− a†a)b = a†a(b†)∗b∗(1− a†a)(1− a†a)b
= a†abb†(1− a†a)b
= 0. (1)
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Because all elements are *-cancellable in C∗-algebra, we get

a†a(b†)∗((1− a†a)b)∗ = 0.

This equality implies a†abb†(1− a†a) = 0, i.e.

a†abb† = a†abb†a†a. (2)

Now, by (2), we have

a†abb† = a†abb†a†a = (a†abb†a†a)∗ = (a†abb†)∗ = bb†a†a.

Hence, the condition (c) holds.
(c) ⇒ (d): By the equality a†abb† = bb†a†a, we get the condition (d):

a†a(bb†a†a)bb† = a†aa†abb†bb† = a†abb†.

(d) ⇒ (a): Multiplying the assumption

a†abb† = a†abb†a†abb†

by a from the left side and by b from the right side, we have that ab =
abb†a†ab. Therefore, the condition (a) is satisfied.

(d) ⇔ (e): Applying the involution to a†abb† = a†abb†a†abb†, we get
bb†a†a = bb†a†abb†a†a. The opposite implication is analogous.

(b) ⇒ (e): The condition b†a†abb†a† = b†a† implies

b(b†a†)a = bb†a†abb†a†a.

(e) ⇒ (b): Multiplying the hypothesis

bb†a†a = bb†a†abb†a†a

by b† from the left side and by a† from the right side, we get that the
condition (b) holds: b†a† = b†a†abb†a†.

(d) ⇒ (g): Assume that a†abb† = a†abb†a†abb†. Then the condition (c)
holds, so (g) follows trivially.

(g) ⇒ (d): Using the assumption (a†abb†)† = bb†a†a, we have

a†abb†a†abb† = a†abb†(bb†a†a)a†abb† = a†abb†(a†abb†)†a†abb† = a†abb†.

(g) ⇒ (f): If (a†abb†)† = bb†a†a, then

b†(a†abb†)†a† = b†bb†a†aa† = b†a†.
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(f) ⇒ (g): Suppose that b†(a†abb†)†a† = b†a† holds. Then

a†abb†(bb†a†a)a†abb† = a†ab(b†a†)abb† = a†abb†(a†abb†)†a†abb† = a†abb†,

bb†a†a(a†abb†)bb†a†a = b(b†a†)ab(b†a†)a = bb†(a†abb†)†a†abb†(a†abb†)†a†a
= b(b†(a†abb†)†a†)a = bb†a†a,

(a†abb†bb†a†a)∗ = a†abb†bb†a†a,

(bb†a†aa†abb†)∗ = bb†a†aa†abb†.

Hence, (a†abb†)† = bb†a†a holds.

The second list of equivalent statements follows.

Theorem 2.2. Let A be a unital C∗–algebra and let a, b, ab ∈ A−. Then
the following conditions are equivalent:

(a) ab(ab)† = abb†a†;

(b) a∗ab = bb†a∗ab;

(c) a∗abb† = bb†a∗a;

(d) b†a† ∈ (ab){1, 2, 3};
(e) b†a† ∈ (ab){1, 3};
(f) b{1, 3} · a{1, 3} ⊆ (ab){1, 3};
(g) ab(ab)†a = abb†;

(h) (abb†)† = bb†a†;

(i) b†(abb†)† = b†a†.

Proof. Observe that ab ∈ A− ⇔ abb† ∈ A−.
(a) ⇒ (b): Since ab(ab)† = abb†a† and ab(ab)† is self-adjoint, then

abb†a† = (abb†a†)∗ = (a†)∗bb†a∗

and

a∗ab = a∗ab(ab)†ab = a∗(abb†a†)ab = a∗(a†)∗bb†a∗ab = a†abb†a∗ab. (3)
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Using the hypothesis ab(ab)† = abb†a†, we get abb†a†ab = ab(ab)†ab = ab.
This equality implies, by Theorem 2.1 (parts (a) and (c)), a†abb† = bb†a†a.
Now, from (3), we obtain

a∗ab = (a†abb†)a∗ab = bb†a†aa∗ab = bb†a∗ab.

(b) ⇒ (c): If a∗ab = bb†a∗ab, we have

a∗abb† = bb†a∗abb† = (abb†)∗abb†. (4)

The right hand side of (4) is self-adjoint, which implies

a∗abb† = (a∗abb†)∗ = bb†a∗a.

(c) ⇒ (d): From a∗abb† = bb†a∗a, we obtain

abb†a† = aa†abb†a† = (a†)∗(a∗abb†)a† = (a†)∗bb†a∗aa† = (a†)∗bb†a∗. (5)

Then
(abb†a†)∗ = ((a†)∗bb†a∗)∗ = abb†a†. (6)

Using (5) and (c), we get

(abb†a†)ab = (a†)∗(bb†a∗a)b = (a†)∗a∗abb†b = ab. (7)

Also,

b†a†abb†a† = b†a∗(a†)∗bb†a†aa† = b†a∗((a†)∗bb†a∗)(a†)∗a†

= b†(a∗abb†)a†(a†)∗a† = b†bb†a∗aa†(a†)∗a†

= b†a∗(a†)∗a† = b†a†. (8)

By (6), (7) and (8), we conclude that b†a† ∈ (ab){1, 2, 3}.
(d) ⇒ (e): This part is obvious.
(e) ⇒ (f): Suppose that a(1,3) ∈ a{1, 3} and b(1,3) ∈ b{1, 3}. Notice that

aa(1,3) = (aa(1,3))∗ = (a(1,3))∗a∗ = (a(1,3))∗(aa†a)∗

= (a(1,3))∗a∗aa† = aa(1,3)aa† = aa†. (9)

Since abb†a†ab = ab, by Theorem 2.1 (parts (a) and (c)), we have a†abb† =
bb†a†a. From this equality and (9), we get

abb(1,3)a(1,3) = a(a†abb†)a(1,3) = abb†a†aa(1,3) = abb†a†aa† = abb†a†. (10)
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Because b†a† ∈ (ab){3}, then the element abb†a† is self-adjoint and we de-
duce, from (10), that abb(1,3)a(1,3) is self-adjoint. So, b(1,3)a(1,3) ∈ (ab){3}.
Using the equality (10) and the assumption b†a† ∈ (ab){1}, we get

abb(1,3)a(1,3)ab = abb†a†ab = ab,

i.e. b(1,3)a(1,3) ∈ (ab){1}. Hence, the condition (f) holds.
(f) ⇒ (a): Since b† ∈ b{1, 3} and a† ∈ a{1, 3}, by the hypothesis b{1, 3} ·

a{1, 3} ⊆ (ab){1, 3}, it follows that b†a† ∈ (ab){1, 3}. This implies

ab(ab)† = (ab(ab)†)∗ = (abb†a†ab(ab)†)∗

= (ab(ab)†)∗(abb†a†)∗ = ab(ab)†abb†a†

= abb†a†.

(a) ⇒ (g): The equality ab(ab)† = abb†a† gives abb†a† = (a†)∗bb†a∗ and
(c), by the previous part of the proof. Now

ab(ab)†a = (abb†a†)a = (a†)∗(bb†a∗a) = (a†)∗a∗abb† = abb†.

(g) ⇒ (b): Applying ab(ab)†a = abb†, we have

a∗ab = a∗ab(ab)†ab = (ab(ab)†a)∗ab = (abb†)∗ab = bb†a∗ab.

(d) ⇒ (h): Suppose that b†a† ∈ (ab){1, 2, 3}. Then

abb†(bb†a†)abb† = (abb†a†ab)b† = abb†,

bb†a†(abb†)bb†a† = b(b†a†abb†a†) = bb†a†,

(abb†bb†a†)∗ = (abb†a†)∗ = abb†a†,

(bb†a†abb†)∗ = bb†a†abb†.

Hence, (abb†)† = bb†a†.
(h) ⇒ (d): The condition (abb†)† = bb†a† implies

abb†a†ab = (abb†bb†a†abb†)b = abb†b = ab,

b†a†abb†a† = b†(bb†a†abb†bb†a†) = b†bb†a† = b†a†,

(abb†a†)∗ = (abb†bb†a†)∗ = abb†bb†a† = abb†a†.

Thus, b†a† ∈ (ab){1, 2, 3}.
(h) ⇒ (i): Obvious.
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(i) ⇒ (h): Assume that b†(abb†)† = b†a† holds. Now, we have

abb†bb†a†abb† = ab(b†a†)abb† = abb†(abb†)†abb† = abb†,

bb†a†abb†bb†a† = b(b†a†)ab(b†a†) = bb†(abb†)†abb†(abb†)†

= b(b†(abb†)†) = bb†a†,

(abb†bb†a†)∗ = (ab(b†a†))∗ = (abb†(abb†)†)∗ = abb†(abb†)†

= abb†a† = abb†bb†a†,

(bb†a†abb†)∗ = bb†a†abb†.

So, we deduce that (abb†)† = bb†a† holds.

Theorem 2.3. Let A be a unital C∗–algebra and let a, b, ab ∈ A−. Then
the following conditions are equivalent:

(a) (ab)†ab = b†a†ab;

(b) abb∗ = abb∗a†a;

(c) bb∗a†a = a†abb∗;

(d) b†a† ∈ (ab){1, 2, 4};
(e) b†a† ∈ (ab){1, 4};
(f) b{1, 4} · a{1, 4} ⊆ (ab){1, 4};
(g) b(ab)†ab = a†ab;

(h) (a†ab)† = b†a†a;

(i) (a†ab)†a† = b†a†.

Proof. Notice that ab ∈ A− ⇔ a†ab ∈ A−.
(a) ⇒ (b): Since (ab)†ab = b†a†ab and (ab)†ab is self-adjoint, it follows

that
b†a†ab = (b†a†ab)∗ = b∗a†a(b†)∗.

Then

abb∗ = ab(ab)†abb∗ = ab(b†a†ab)b∗ = abb∗a†a(b†)∗b∗ = abb∗a†abb†. (11)
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Using the assumption (ab)†ab = b†a†ab, we obtain abb†a†ab = ab(ab)†ab =
ab. By Theorem 2.1 (parts (a) and (c)), this equality gives a†abb† = bb†a†a.
So, from (11), we get

abb∗ = abb∗(a†abb†) = abb∗bb†a†a = abb∗a†a.

(b) ⇒ (c): By the condition abb∗ = abb∗a†a, we have

a†abb∗ = a†abb∗a†a = a†ab(a†ab)∗. (12)

The right hand side of (12) is self-adjoint, which gives

a†abb∗ = (a†abb∗)∗ = bb∗a†a.

(c) ⇒ (d): The hypothesis bb∗a†a = a†abb∗ gives

b†a†ab = b†a†abb†b = b†(a†abb∗)(b†)∗ = b†bb∗a†a(b†)∗ = b∗a†a(b†)∗. (13)

Now
(b†a†ab)∗ = (b∗a†a(b†)∗)∗ = b†a†ab. (14)

From the equalities (13) and (c), we obtain

ab(b†a†ab) = a(bb∗a†a)(b†)∗ = aa†abb∗(b†)∗ = ab (15)

and

b†a†abb†a† = b†bb†a†a(b†)∗b∗a† = b†(b†)∗(b∗a†a(b†)∗)b∗a†

= b†(b†)∗b†(a†abb∗)a† = b†(b†)∗b†bb∗a†aa†

= b†(b†)∗b∗a† = b†a†. (16)

Hence, by (14), (15) and (16), it follows that b†a† ∈ (ab){1, 2, 4}.
(d) ⇒ (e): Obviously.
(e) ⇒ (f): Assume that a(1,4) ∈ a{1, 4} and b(1,4) ∈ b{1, 4}. Observe

that

a(1,4)a = (a(1,4)a)∗ = a∗(a(1,4))∗ = (aa†a)∗(a(1,4))∗

= a†aa∗(a(1,4))∗ = a†aa(1,4)a = a†a. (17)

It is well known that the hypothesis b†a† ∈ (ab){1} implies a†abb† = bb†a†a.
By this and (17), we obtain

b(1,4)a(1,4)ab = b(1,4)(a†abb†)b = b(1,4)bb†a†ab = b†bb†a†ab = b†a†ab. (18)
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Now the condition b†a† ∈ (ab){4} implies that b(1,4)a(1,4) ∈ (ab){4}. From
the equality (18) and the assumption b†a† ∈ (ab){1}, we get

abb(1,4)a(1,4)ab = abb†a†ab = ab.

Thus, b(1,4)a(1,4) ∈ (ab){1} and the condition (f) is satisfied.
(f) ⇒ (a): Because b† ∈ b{1, 4} and a† ∈ a{1, 4}, from the assumption

b{1, 4} · a{1, 4} ⊆ (ab){1, 4}, we get b†a† ∈ (ab){1, 4}. Then

(ab)†ab = ((ab)†ab)∗ = ((ab)†abb†a†ab)∗

= (b†a†ab)∗((ab)†ab)∗ = b†a†ab(ab)†ab

= b†a†ab.

(a) ⇒ (g): The equality (ab)†ab = b†a†ab implies b†a†ab = b∗a†a(b†)∗

and (c), by the previous part of the proof. Then

b(ab)†ab = b(b†a†ab) = (bb∗a†a)(b†)∗ = a†abb∗(b†)∗ = a†ab.

(g) ⇒ (b): From b(ab)†ab = a†ab, we obtian

abb∗ = ab(ab)†abb∗ = ab(b(ab)†ab)∗ = ab(a†ab)∗ = abb∗a†a.

(d) ⇒ (h): Assume that b†a† ∈ (ab){1, 2, 4}. Now

a†abb†a†aa†ab = a†(abb†a†ab) = a†ab,

b†a†aa†abb†a†a = (b†a†abb†a†)a = b†a†a,

(a†abb†a†a)∗ = a†abb†a†a,

(b†a†aa†ab)∗ = (b†a†ab)∗ = b†a†ab = b†a†aa†ab.

Thus, by definition, (a†ab)† = b†a†a.
(h) ⇒ (d): If (a†ab)† = b†a†a, then

abb†a†ab = a(a†abb†a†aa†ab) = aa†ab = ab,

b†a†abb†a† = (b†a†aa†abb†a†a)a† = b†a†aa† = b†a†,

(b†a†ab)∗ = (b†a†aa†ab)∗ = b†a†aa†ab = b†a†ab.

Therefore, b†a† ∈ (ab){1, 2, 4}.
(h) ⇒ (i): Obvious.
(i) ⇒ (h): Applying the equality (a†ab)†a† = b†a†, we have

a†abb†a†aa†ab = a†ab(b†a†)ab = a†ab(a†ab)†a†ab = a†ab,
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b†a†aa†abb†a†a = (b†a†)ab(b†a†)a = (a†ab)†a†ab(a†ab)†a†a
= ((a†ab)†a†)a = b†a†a,

(a†abb†a†a)∗ = a†abb†a†a,

(b†a†aa†ab)∗ = ((b†a†)ab)∗ = ((a†ab)†a†ab)∗ = ((a†ab)†a†)ab

= b†a†ab = b†a†aa†ab.

Hence, (a†ab)† = b†a†a.

The combination of Theorem 2.2 and Theorem 2.3 yields a group of
equivalent conditions for (ab)† = b†a† to hold. Notice that the equivalences
(c) and (d) of the following theorem appear in [9, Lemma 5].

Theorem 2.4. Let A be a unital C∗–algebra and let a, b, ab ∈ A−. Then
the following conditions are equivalent:

(a) (ab)† = b†a†;

(b) ab(ab)† = abb†a† and (ab)†ab = b†a†ab;

(c) a∗ab = bb†a∗ab and abb∗ = abb∗a†a;

(d) a∗abb† = bb†a∗a and bb∗a†a = a†abb∗;

(e) b†a† ∈ (ab){1, 3, 4};
(f) b{1, 3} · a{1, 3} ⊆ (ab){1, 3} and b{1, 4} · a{1, 4} ⊆ (ab){1, 4};
(g) ab(ab)†a = abb† and b(ab)†ab = a†ab;

(h) (abb†)† = bb†a† and (a†ab)† = b†a†a;

(i) b†(abb†)† = b†a† and (a†ab)†a† = b†a†.

Remark. The preceding theorems hold in rings with involution assum-
ing that (1 − a†a)b is left *-cancellable. This hypothesis is automatically
satisfied in C∗ and *-reducing rings. Hence we recover the results in [4, 5]
for Hilbert space operators. The results of Tian [16] are obtained as a special
case of our results.

In the following theorem, we prove another group of equivalent conditions
for (ab)† = b†a† to be satisfied.
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Theorem 2.5. Let A be a unital C∗–algebra and let a, b, ab ∈ A−. Then
(ab)† = b†a† if and only if (ab)† = b†(a†abb†)†a† and any one of the following
equivalent conditions holds:

(a) abb†a†ab = ab;

(b) b†a†abb†a† = b†a†;

(c) a†abb† = bb†a†a;

(d) a†abb† is an idempotent;

(e) bb†a†a is an idempotent;

(f) b†(a†abb†)†a† = b†a†;

(g) (a†abb†)† = bb†a†a.

Proof. =⇒ : From the equality (ab)† = b†a†, we get abb†a†ab = ab. Thus,
by Theorem 2.1, the conditions (a)-(g) are satisfied and (ab)† = b†a† =
b†(a†abb†)†a†.

⇐= : Conversely, the conditions (a)-(g) imply b†a† = b†(a†abb†)†a†.
Now the hypothesis (ab)† = b†(a†abb†)†a† gives (ab)† = b†a†.

The condition (ab)† = b†(a†abb†)†a† in Theorem 2.5 can be replaced by
some equivalent conditions, as it can be seen in the following theorem.

Theorem 2.6. Let A be a unital C∗–algebra and let a, b, ab ∈ A−. Then
the following statements are equivalent:

(a) (ab)† = b†(a†abb†)†a†;

(b) (a†abb†)† = b(ab)†a;

(c) (ab)† = (a†ab)†a† = b†(abb†)†;

(d) (a†ab)† = (ab)†a and (abb†)† = b(ab)†;

(e) (a†ab)† = b†(a†abb†)† and (abb†)† = (a†abb†)†a†;

(f) (ab)† = b∗(a∗abb∗)†a∗;

(g) (a∗abb∗)† = (b∗)†(ab)†(a∗)†.
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Proof. We can easily see that ab ∈ A− ⇔ a∗abb∗ ∈ A−.
(a) ⇒ (e): By the hypothesis (ab)† = b†(a†abb†)†a†, we have

a†abb†(a†abb†)†a†ab = a†ab(ab)†ab = a†ab,

b†(a†abb†)†a†abb†(a†abb†)† = b†(a†abb†)†,

(a†abb†(a†abb†)†)∗ = a†abb†(a†abb†)†,

(b†(a†abb†)†a†ab)∗ = ((ab)†ab)∗ = (ab)†ab = b†(a†abb†)†a†ab.

So, (a†ab)† = b†(a†abb†)†.
Similarly

abb†(a†abb†)†a†abb† = ab(ab)†abb† = abb†,

(a†abb†)†a†abb†(a†abb†)†a† = (a†abb†)†a†,

(abb†(a†abb†)†a†)∗ = (ab(ab)†)∗ = ab(ab)† = abb†(a†abb†)†a†,

((a†abb†)†a†abb†)∗ = (a†abb†)†a†abb†.

Thus, (abb†)† = (a†abb†)†a†.
(e)⇒ (a): The conditions (a†ab)† = b†(a†abb†)† and (abb†)† = (a†abb†)†a†

imply

abb†(a†abb†)†a†ab = aa†abb†(a†abb†)†a†abb†b = aa†abb†b = ab,

b†(a†abb†)†a†abb†(a†abb†)†a† = b†(a†abb†)†a†,

(abb†(a†abb†)†a†)∗ = abb†(a†abb†)†a†,

(b†(a†abb†)†a†ab)∗ = b†(a†abb†)†a†ab,

i.e. (ab)† = b†(a†abb†)†a†.
(b) ⇒ (a): From the equality (a†abb†)† = b(ab)†a, we get

abb†(a†abb†)†a†ab = abb†b(ab)†aa†ab = ab(ab)†ab = ab,

b†(a†abb†)†a†abb†(a†abb†)†a† = b†b(ab)†aa†abb†b(ab)†aa†

= b†b(ab)†ab(ab)†aa†

= b†b(ab)†aa†

= b†(a†abb†)†a†,
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(abb†(a†abb†)†a†)∗ = (abb†b(ab)†aa†)∗ = (ab(ab)†aa†)∗

= aa†ab(ab)† = ab(ab)† = (ab(ab)†)∗

= (aa†ab(ab)†)∗ = ab(ab)†aa†

= abb†b(ab)†aa† = abb†(a†abb†)†a†,

(b†(a†abb†)†a†ab)∗ = (b†b(ab)†aa†ab)∗ = (b†b(ab)†ab)∗

= (ab)†abb†b = (ab)†ab = ((ab)†ab)∗

= ((ab)†abb†b)∗ = b†b(ab)†ab

= b†b(ab)†aa†ab = b†(a†abb†)†a†ab.

Therefore, (ab)† = b†(a†abb†)†a†.
(a) ⇒ (c): Assume that (ab)† = b†(a†abb†)†a† holds. Then the condition

(e) holds and (ab)† = (a†ab)†a† = b†(abb†)†.
(c) ⇒ (d): The hypothesis (ab)† = (a†ab)†a† implies

a†ab(ab)†aa†ab = a†ab(ab)†ab = a†ab,

(ab)†aa†ab(ab)†a = (ab)†ab(ab)†a = (ab)†a,

(a†ab(ab)†a)∗ = (a†ab(a†ab)†a†a)∗ = a†aa†ab(a†ab)†

= a†ab(a†ab)† = (a†ab(a†ab)†)∗

= (a†aa†ab(a†ab)†)∗ = a†ab(a†ab)†a†a
= a†ab(ab)†a,

((ab)†aa†ab)∗ = ((ab)†ab)∗ = (ab)†ab = (ab)†aa†ab.

Thus, (a†ab)† = (ab)†a. By an analogy, from (ab)† = b†(abb†)†, we obtain

abb†b(ab)†abb† = ab(ab)†abb† = abb†,

b(ab)†abb†b(ab)† = b(ab)†ab(ab)† = b(ab)†,

(abb†b(ab)†)∗ = (ab(ab)†)∗ = ab(ab)† = abb†b(ab)†,

(b(ab)†abb†)∗ = (bb†(abb†)†abb†)∗ = (abb†)†abb†bb†

= (abb†)†abb† = ((abb†)†abb†)∗

= ((abb†)†abb†bb†)∗ = bb†(abb†)†abb†

= b(ab)†abb†.
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So, we deduce that (abb†)† = b(ab)†.
(d) ⇒ (g): Suppose that (a†ab)† = (ab)†a and (abb†)† = b(ab)†. Now,

a∗abb∗(b∗)†(ab)†(a∗)†a∗abb∗ = a∗abb†b(ab)†aa†abb∗

= a∗ab(ab)†abb∗

= a∗abb∗,

(b∗)†(ab)†(a∗)†a∗abb∗(b∗)†(ab)†(a∗)† = (b∗)†(ab)†aa†abb†b(ab)†(a∗)†

= (b∗)†(ab)†ab(ab)†(a∗)†

= (b∗)†(ab)†(a∗)†,

(a∗abb∗(b∗)†(ab)†(a∗)†)∗ = (a∗abb†b(ab)†(a∗)†)∗ = (a∗ab(ab)†(a∗)†)∗

= a†ab(ab)†a = (a†ab(ab)†a)∗

= a∗ab(ab)†(a∗)† = a∗abb†b(ab)†(a∗)†

= a∗abb∗(b∗)†(ab)†(a∗)†,

((b∗)†(ab)†(a∗)†a∗abb∗)∗ = ((b∗)†(ab)†aa†abb∗)∗ = ((b∗)†(ab)†abb∗)∗

= b(ab)†abb† = (b(ab)†abb†)∗

= (b∗)†(ab)†abb∗ = (b∗)†(ab)†aa†abb∗

= (b∗)†(ab)†(a∗)†a∗abb∗

Therefore, (a∗abb∗)† = (b∗)†(ab)†(a∗)†.
(g) ⇒ (f): From the condition (a∗abb∗)† = (b∗)†(ab)†(a∗)†, we get

b∗(a∗abb∗)†a∗ = b∗(b∗)†(ab)†(a∗)†a∗ = b†b(ab)†aa†. Then, in the same way
as in the proof of (b) ⇒ (a), we conclude (ab)† = b∗(a∗abb∗)†a∗.

(f) ⇒ (b): If (ab)† = b∗(a∗abb∗)†a∗, then

a†abb†b(ab)†aa†abb† = a†ab(ab)†abb† = a†abb†,

b(ab)†aa†abb†b(ab)†a = b(ab)†ab(ab)†a = b(ab)†a,

(a†abb†b(ab)†a)∗ = (a†ab(ab)†a)∗ = a∗ab(ab)†(a†)∗

= a∗abb∗(a∗abb∗)†a∗(a†)∗ = (a†aa∗abb∗(a∗abb∗)†)∗

= (a∗abb∗(a∗abb∗)†)∗ = a∗abb∗(a∗abb∗)†

= a†aa∗abb∗(a∗abb∗)† = (a∗abb∗(a∗abb∗)†a∗(a†)∗)∗

= (a∗ab(ab)†(a†)∗)∗ = a†ab(ab)†a
= a†abb†b(ab)†a,
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(b(ab)†aa†abb†)∗ = (b(ab)†abb†)∗ = (b†)∗(ab)†abb∗

= (b†)∗b∗(a∗abb∗)†a∗abb∗ = ((a∗abb∗)†a∗abb∗bb†)∗

= ((a∗abb∗)†a∗abb∗)∗ = (a∗abb∗)†a∗abb∗

= (a∗abb∗)†a∗abb∗bb† = ((b†)∗b∗(a∗abb∗)†a∗abb∗)∗

= ((b†)∗(ab)†abb∗)∗ = b(ab)†abb†

= b(ab)†aa†abb†.

Hence, (a†abb†)† = b(ab)†a.

3 Reverse order law for the weighted MP-inverse

We can also consider reverse order law for the weighted Moore-Penrose in-
verse. Based on the results in Section 2, we now can establish various
equivalent conditions related to the weighted MP-inverse of a product of
elements in C∗–algebra.

Corollary 3.1. Let A be a unital C∗–algebra and let e, f , h be positive in-
vertible elements of A. If a, b ∈ A are regular, then the following conditions
are equivalent:

(a) abb†e,fa†f,hab = ab;

(b) b†e,fa†f,habb†e,fa†f,h = b†e,fa†f,h;

(c) a†f,habb†e,f = bb†e,fa†f,ha;

(d) a†f,habb†e,f is an idempotent;

(e) bb†e,fa†f,ha is an idempotent;

(f) b†e,f (a†f,habb†e,f )†f,fa†f,h = b†e,fa†f,h;

(g) (a†f,habb†e,f )†f,f = bb†e,fa†f,ha.

Proof. (a) ⇔ (b): Suppose that a1 = h1/2af−1/2 and b1 = f1/2be−1/2. Then
a1b1 = h1/2abe−1/2 and a1, b1 are regular if and only if a, b are regular,
respectively. From Theorem 1.3, we have a†f,h = f−1/2(h1/2af−1/2)†h1/2 =

f−1/2a†1h
1/2 and b†e,f = e−1/2(f1/2be−1/2)†f1/2 = e−1/2b†1f

1/2.
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It is easy to verify that the condition abb†e,fa†f,hab = ab holds if and

only if a1b1b
†
1a
†
1a1b1 = a1b1. By Theorem 2.1, this is necessary and suffi-

cient condition for the equality b†1a
†
1a1b1b

†
1a
†
1 = b†1a

†
1 which is equivalent to

b†e,fa†f,habb†e,fa†f,h = b†e,fa†f,h.

The rest of the proof follows analogously. We only mention that a†f,habb†e,f
is regular ⇔ f−1/2a†1a1b1b

†
1f

1/2 is regular ⇔ a†1a1b1b1 is regular and, by The-
orem 1.3, (a†f,habb†e,f )†f,f = (f−1/2a†1a1b1b

†
1f

1/2)†f,f = f−1/2(a†1a1b1b
†
1)
†f1/2.

In order to prove Corollary 3.1 (and other corollaries in this section)
in ring with involution we need to assume that (1 − a†f,ha)b is left *e,f -
cancellable where the function *e,f is not general an involution. Hence, it is
not enough to assume that an element is just cancellable.

Let e, f be positive invertible elements of a unital C∗–algebra A and
define x∗e,f = e−1x∗f .

Corollary 3.2. Let A be a unital C∗–algebra and let e, f , h be positive
invertible elements of A. If a, b, ab ∈ A are regular, then the following
conditions are equivalent:

(a) ab(ab)†e,h = abb†e,fa†f,h;

(b) a∗f,hab = bb†e,fa∗f,hab;

(c) a∗f,habb†e,f = bb†e,fa∗f,ha;

(d) b†e,fa†f,h ∈ (ab){1, 2, 4h};

(e) b†e,fa†f,h ∈ (ab){1, 4h};
(f) b{1, 4f} · a{1, 4h} ⊆ (ab){1, 4h};

(g) ab(ab)†e,ha = abb†e,f ;

(h) (abb†e,f )†f,h = bb†e,fa†f,h;

(i) b†e,f (abb†e,f )†f,h = b†e,fa†f,h.

Proof. (a) ⇔ (b): Let a1 = h1/2af−1/2 and b1 = f1/2be−1/2 as in the
previous corollary. Thus a1b1 = h1/2abe−1/2 and a1, b1, a1b1 are regular
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if and only if a, b, ab are regular, respectively. By Theorem 1.3, we get
(ab)†e,h = e−1/2(a1b1)†h1/2 and b†e,fa†f,h = e−1/2b†1a

†
1h

1/2.
Now, by Theorem 2.2,

ab(ab)†e,h = abb†e,fa†f,h ⇔ a1b1(a1b1)† = a1b1b
†
1a
†
1

⇔ a∗1a1b1 = b1b
†
1a
∗
1a1b1

⇔ a∗f,hab = bb†e,fa∗f,hab.

The rest of the proof follows analogously.

Corollary 3.3. Let A be a unital C∗–algebra and let e, f , h be positive
invertible elements of A. If a, b, ab ∈ A are regular, then the following
conditions are equivalent:

(a) (ab)†e,hab = b†e,fa†f,hab;

(b) abb∗e,f = abb∗e,fa†f,ha;

(c) bb∗e,fa†f,ha = a†f,habb∗e,f ;

(d) b†e,fa†f,h ∈ (ab){1, 2, 3e};

(e) b†e,fa†f,h ∈ (ab){1, 3e};
(f) b{1, 3e} · a{1, 3f} ⊆ (ab){1, 3e};

(g) b(ab)†e,hab = a†f,hab;

(h) (a†f,hab)†e,f = b†e,fa†f,ha;

(i) (a†f,hab)†e,fa†f,h = b†e,fa†f,h.

Proof. Let a1 and b1 be the same as in the previous corollary. For conditions
(a)–(g) we can find the equivalent expressions in terms of a1 and b1, and
apply Theorem 2.3 to finish the proof.

The combination of Corollary 3.2 and Corollary 3.3 gives a list of equiv-
alent conditions for (ab)†e,h = b†e,fa†f,h to hold.

Corollary 3.4. Let A be a unital C∗–algebra and let e, f , h be positive
invertible elements of A. If a, b, ab ∈ A are regular, then the following
conditions are equivalent:
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(a) (ab)†e,h = b†e,fa†f,h;

(b) ab(ab)†e,h = abb†e,fa†f,h and (ab)†e,hab = b†e,fa†f,hab;

(c) a∗f,hab = bb†e,fa∗f,hab and abb∗e,f = abb∗e,fa†f,ha;

(d) a∗f,habb†e,f = bb†e,fa∗f,ha and bb∗e,fa†f,ha = a†f,habb∗e,f ;

(e) b†e,fa†f,h ∈ (ab){1, 3e, 4h};
(f) b{1, 3e} · a{1, 3f} ⊆ (ab){1, 3e} and b{1, 4f} · a{1, 4h} ⊆ (ab){1, 4h};

(g) ab(ab)†e,ha = abb†e,f and b(ab)†e,hab = a†f,hab;

(h) (abb†e,f )†f,h = bb†e,fa†f,h and (a†f,hab)†e,f = b†e,fa†f,ha;

(i) b†e,f (abb†e,f )†f,h = b†e,fa†f,h and (a†f,hab)†e,fa†f,h = b†e,fa†f,h.

Corollary 3.5. Let A be a unital C∗–algebra and let e, f , h be positive
invertible elements of A. If a, b, ab ∈ A are regular, then the following
statements are equivalent:

(a) (ab)†e,h = b†e,f (a†f,habb†e,f )†f,fa†f,h;

(b) (a†f,habb†e,f )†f,f = b(ab)†e,ha;

(c) (ab)†e,h = (a†f,hab)†e,fa†f,h = b†e,f (abb†e,f )†f,h;

(d) (a†f,hab)†e,f = (ab)†e,ha and (abb†e,f )†f,h = b(ab)†e,h;

(e) (a†f,hab)†e,f = b†e,f (a†f,habb†e,f )†f,f and (abb†e,f )†f,h = (a†f,habb†e,f )†f,fa†f,h;

(f) (ab)†e,h = b∗e,f (a∗f,habb∗e,f )†f,fa∗f,h;

(g) (a∗f,habb∗e,f )†f,f = (b†)∗f,e(ab)†e,h(a†)∗h,f .

Proof. Let a1 and b1 be the same as in Corollary 3.1. Applying Theorem 2.6
to the equivalent expressions, in terms of a1 and b1, for conditions (a)–(g)
we prove this corollary.

In the result result we present again some equivalent conditions for the
reverse order rule for the weighted Moore-Penrose inverse.
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Corollary 3.6. Let A be a unital C∗–algebra and let e, f , h be positive
invertible elements of A. If a, b, ab ∈ A are regular, then (ab)†e,h = b†e,fa†f,h

if and only if (ab)†e,h = b†e,f (a†f,habb†e,f )†f,fa†f,h and any one of the following
equivalent conditions holds::

(a) abb†e,fa†f,hab = ab;

(b) b†e,fa†f,habb†e,fa†f,h = b†e,fa†f,h;

(c) a†f,habb†e,f = bb†e,fa†f,ha;

(d) a†f,habb†e,f is an idempotent;

(e) bb†e,fa†f,ha is an idempotent;

(f) b†e,f (a†f,habb†e,f )†f,fa†f,h = b†e,fa†f,h;

(g) (a†f,habb†e,f )†f,f = bb†e,fa†f,ha.

Proof. This proof follows from Corollary 3.1 in the same way as in the proof
of Theorem 2.5.

Notice that in Corollary 3.6 the condition (ab)†e,h = b†e,f (a†f,habb†e,f )†f,fa†f,h

can be replaced with some equivalent conditions from Corollary 3.5.
Arghiriade [1] proved that (ab)† = b†a† holds if and only if a∗abb∗ is EP,

i.e. a∗abb∗ commutes with its Moore-Penrose inverse. The conjecture is: Is
there a similarly result involving weighted MP inverse?

4 Conclusions

In this paper we consider a number of necessary and sufficient conditions re-
lated to the reverse order law for the Moore–Penrose inverse in C∗–algebras.
Applying this result we obtain the equivalent conditions for the reverse order
rule for the weighted Moore-Penrose inverse of elements in C∗-algebras. All
of these results are already known for complex matrices and some of them
for closed range linear bounded operators on Hilbert spaces. However, we
used the different technique in proving the results. In the theory of com-
plex matrices various authors used the matrix rank to prove the equivalent
conditions related to the reverse order law. In the case of linear bounded
operators on Hilbert spaces, it seems that the method of operator matrices
is very useful. In this paper we applied a purely algebraic technique. It
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could be interesting to extend this work to the Moore–Penrose inverse and
the weighted Moore-Penrose inverse of a triple product.

Acknowledgement. We are grateful to the referee for helpful com-
ments concerning the paper.
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