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1. Introduction. There are many equivalent characterizations of EP elements
in a ring or C∗-algebra (see, for example, [10, 19, 21, 23, 24, 27]), many more still for
Banach or Hilbert space operators and matrices (see [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 18,
22, 26]). In [30], Tian and Wang defined weighted–EP matrices and presented char-
acterizations of weighted–EP matrices using various rank formulas for matrices. In
this paper, weighted–EP elements of C∗-algebras are studied using different methods,
extending the results from [30] to more general settings.

Let A be a unital C∗–algebra with the unit 1. An element a ∈ A is regular if there
exists some b ∈ A satisfying aba = a. The set of all regular elements of A is denoted
by A−. An element a ∈ A satisfying a∗ = a is called symmetric (or Hermitian). An
element x ∈ A is positive if x = y∗y for some y ∈ A. Alternatively, x ∈ A is positive
if x is Hermitian and σ(x) ⊆ [0, +∞), where the spectrum of element x is denoted by
σ(x).

An element a ∈ A is group invertible if there exists a# ∈ A such that

aa#a = a, a#aa# = a#, aa# = a#a.

Recall that a# is uniquely determined by these equations. The group inverse a# exists
if and only if aA = a2A and Aa = Aa2 if and only if a ∈ a2A ∩ Aa2 (see [12, 28]).
We use A# to denote the set of all group invertible elements of A. The group inverse
a# double commutes with a, that is, ax = xa implies a#x = xa# [6, 11].

An element a† ∈ A is the Moore–Penrose inverse (or MP-inverse) of a ∈ A, if
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the following hold [29]:

aa†a = a, a†aa† = a†, (aa†)∗ = aa†, (a†a)∗ = a†a.

There is at most one a† such that above conditions hold (see [14, 17]). The set of all
Moore–Penrose invertible elements of A will be denoted by A†.

Theorem 1.1. [14] In a unital C∗–algebra A, a ∈ A is MP-invertible if and only
if a is regular.

Definition 1.2. Let A be a unital C∗–algebra, and let e, f be invertible positive
elements in A. The element a ∈ A has the weighted MP-inverse with weights e, f if
there exists b ∈ A such that

aba = a, bab = b, (eab)∗ = eab, (fba)∗ = fba.

The unique weighted MP-inverse with weights e, f , will be denoted by a†e,f if it exists
[6]. The set of all weighted MP-invertible elements of A with weights e, f , will be
denoted by A†e,f .

Theorem 1.3. [6] Let A be a unital C∗–algebra and let e, f be positive invertible
elements of A. If a ∈ A is regular, then the unique weighted MP-inverse a†e,f exists
and

a†e,f = f−1/2(e1/2af−1/2)†e1/2.

Define the mapping x 7→ x∗e,f = e−1x∗f , for all x ∈ A. Notice that (∗, e, f) :
A → A is not an involution, because in general (xy)∗e,f 6= y∗e,fx∗e,f . Now, we
formulate the following result which can be proved directly by the definition of the
weighted MP-inverse.

Theorem 1.4. Let A be a unital C∗–algebra and let e, f be positive invertible
elements of A. For any a ∈ A−, the following is satisfied:

(a) (a†e,f )†f,e = a;
(b) (a∗f,e)†f,e = (a†e,f )∗e,f ;
(c) a∗f,e = a†e,faa∗f,e = a∗f,eaa†e,f ;
(d) a∗f,e(a†e,f )∗e,f = a†e,fa;
(e) (a†e,f )∗e,fa∗f,e = aa†e,f ;
(f) (a∗f,ea)†f,f = a†e,f (a†e,f )∗e,f ;
(g) (aa∗f,e)†e,e = (a†e,f )∗e,fa†e,f ;
(h) a†e,f = (a∗f,ea)†f,fa∗f,e = a∗f,e(aa∗f,e)†e,e;
(i) (a∗e,f )†f,e = a(a∗f,ea)†f,f = (aa∗f,e)†e,ea.
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For a ∈ A consider two annihilators

a◦ = {x ∈ A : ax = 0}, ◦a = {x ∈ A : xa = 0}.

Notice that,

(a∗)◦ = a◦ ⇔ ◦(a∗) = ◦a, aA = a∗A ⇔ Aa = Aa∗.

Lemma 1.5. [10] For a ∈ A, a ∈ A− ⇔ A = (a∗A)⊕ a◦.

The following result is very useful in the rest of paper and can be checked using
properties of the weighted MP-inverse.

Lemma 1.6. Let a ∈ A−, and let e, f be invertible positive elements in A. Then

(a) a†e,fA = a†e,faA = f−1a∗A;
(b) (a†e,f )∗A = (aa†e,f )∗A = eaA;
(c) a◦ = (ea)◦;
(d) (a∗)◦ = (f−1a∗)◦;
(e) (a†e,f )◦ = [(ea)∗]◦;
(f) [(a†e,f )∗]◦ = (af−1)◦;

Now, we state an important result related to the weighted Moore-Penrose inverse.
In [19, Lemma 1.5], the following result is proved for the ordinary Moore-Penrose
inverse. Observe that conditions (1.1) and (1.2) appear in the proof of [15, Theorem
10] also for the ordinary Moore-Penrose inverse.

Lemma 1.7. Let a ∈ A−, and let e, f be invertible positive elements in A. Then

a†e,f = (a∗f,ea + 1− a†e,fa)−1a∗f,e = a∗f,e(aa∗f,e + 1− aa†e,f )−1,(1.1)

a∗f,eA−1 = a†e,fA−1 and A−1a∗f,e = A−1a†e,f ,(1.2)

(a∗f,e)◦ = (a†e,f )◦ and ◦(a∗f,e) = ◦(a†e,f ).(1.3)

Proof. By Theorem 1.4, we can verify

a∗f,e = (a∗f,ea + 1− a†e,fa)a†e,f = a†e,f (aa∗f,e + 1− aa†e,f ),

(a∗f,ea + 1− a†e,fa)−1 = a†e,f (a†e,f )∗e,f + 1− a†e,fa
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and

(aa∗f,e + 1− aa†e,f )−1 = (a†e,f )∗e,fa†e,f + 1− aa†e,f .

Thus, the part (1.1) holds and it implies the equalities (1.2) and (1.3).

We recall the definition of EP elements.

Definition 1.8. An element a ∈ A− is EP if aa† = a†a.

Lemma 1.9. [19] An element a ∈ A is EP, if a ∈ A− and aA = a∗A (or,
equivalently, if a ∈ A− and a◦ = (a∗)◦).

The condition aA = a∗A gave the EP elements their name for equal projections
onto the range of a and a∗ in the case of matrices and closed range Hilbert space op-
erators. These elements are important since they are characterized by commutativity
with their Moore–Penrose inverse. Also notice that EP elements are those elements
for which the group and the Moore–Penrose inverse exist and coincide.

In this paper, as an extension of EP elements, we are concerned with elements
of a C∗-algebra which commute with their weighted Moore-Penrose inverse. These
elements are called weighted–EP elements. In particular, we give several equivalent
conditions for an element of C∗-algebra to be weighted–EP. The motivation for this
paper is an interesting paper by Tian and Wang [30]. They studied such characteri-
zations for weighted–EP complex square matrices.

We conclude this section with the following results on reverse order law for the
Moore-Penrose inverse of a product, which be used later.

Lemma 1.10. [25, Theorem 2.4] Let A be a unital C∗–algebra and let a, b, ab ∈
A−. Then the following conditions are equivalent:

(a) (ab)† = b†a†;
(b) a∗ab = bb†a∗ab and abb∗ = abb∗a†a;

Theorem 1.11. Let A be a unital C∗–algebra and let a, b, ab ∈ A−. Then
(ab)† = b†a† if and only if a∗abA ⊆ bA and bb∗a∗A ⊆ a∗A.

Proof. =⇒: If (ab)† = b†a†, then, by Lemma 1.10, a∗ab = bb†a∗ab and abb∗ =
abb∗a†a implying

bb∗a∗ = (abb∗) = (abb∗a†a)∗ = a∗(a†)∗bb∗a∗.

Hence, a∗abA ⊆ bA and bb∗a∗A ⊆ a∗A.

⇐=: Conversely, from a∗abA ⊆ bA and bb∗a∗A ⊆ a∗A, we conclude that a∗ab =
bx, for some x ∈ A, and bb∗a∗ = a∗y, for some y ∈ A. Then the equalities

bb†a∗ab = bb†bx = bx = a∗ab
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and

abb∗a†a = (a†abb∗a∗)∗ = (a†aa∗y)∗ = (a∗y)∗ = (bb∗a∗)∗ = abb∗

imply (ab)† = b†a†, by Lemma 1.10.

2. Weighted–EP elements in C∗-algebras. First, we state the definition of
weighted–EP elements in C∗-algebras.

Definition 2.1. An element a ∈ A is said to be weighted–EP with respect to
two invertible positive elements e, f ∈ A (or weighted–EP w.r.t. (e,f)) if both ea and
af−1 are EP, that is a ∈ A−, eaA = (ea)∗A and af−1A = (af−1)∗A.

In the following theorem, a number of necessary and sufficient conditions for an
element to be weighted–EP are presented.

Theorem 2.2. Let A be a unital C∗–algebra, and let e, f be invertible positive
elements in A. For a ∈ A− the following statements are equivalent:

(I) a is weighted–EP w.r.t. (e,f);
(II) a is weighted–EP w.r.t. (f ,e);

(III) a is both weighted–EP w.r.t. (e,e) and w.r.t. (f ,f);
(IV) eaA = faA = a∗A;
(V) e−1a∗A = f−1a∗A = aA;

(VI) a†e,fA = aA and (a†e,f )∗A = a∗A;
(VII) a∗ is weighted–EP w.r.t. (e−1,f−1);

(VIII) aa†e,f = a†e,fa;
(IX) a ∈ A# and ak = a†e,faak = akaa†e,f , for any/some integer k ≥ 1;
(X) a†e,f = a(a†e,f )2 = (a†e,f )2a;

(XI) a ∈ A# and a# = a†e,f ;
(XII) a ∈ A# and both eaa# and faa# are Hermitian;

(XIII) a ∈ A# and a#a†e,f = a†e,fa#;
(XIV) a ∈ A# and aa#a†e,f = a†e,fa#a;
(XV) a ∈ a†e,fA−1 ∩ A−1a†e,f ;

(XVI) a ∈ a†e,fA ∩Aa†e,f ;
(XVII) aA−1 = f−1a∗A−1 and A−1a = A−1a∗e;
(xviii) A−1a∗ = A−1af−1 and a∗A−1 = eaA−1;
(XIX) there exists x ∈ A such that a = e−1a∗xa∗f ;
(XX) a = (ae−1)†ae−1afa(fa)†;

(XXI) a ∈ A# and ak is weighted–EP w.r.t. (e,f), for any/some integer k ≥ 1;
(XXII) aa∗a is weighted–EP w.r.t. (e,f);

(XXIII) a◦ = [(ea)∗]◦ and (a∗)◦ = (af−1)◦;
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(XXIV) A = e−1a∗A⊕ (a∗)◦ = a∗A⊕ (a∗f)◦;
(XXV) a† is weighted–EP w.r.t. (e−1,f−1);

(XXVI) a†e,f is weighted–EP w.r.t. (e,f);
(XXVII) a ∈ A# and a2k−1 = a†e,fa2k+1a†e,f , for any/some integer k ≥ 1;

(XXVIII) a ∈ A# and aa†e,fa†e,fa = a†e,faaa†e,f ;
(XXIX) a ∈ A# and a# is weighted–EP w.r.t. (e,f);
(XXX) a ∈ A# and aa# = aa†e,e = aa†f,f (or aa# = a†e,ea = a†f,fa);

(XXXI) a ∈ A# and aa# = aa†e,f = aa†f,e (or aa# = a†f,ea = a†e,fa);
(XXXII) a ∈ A#, aa†e,ee

−1a∗a = e−1a∗aaa†e,e and aa†f,ff−1a∗a = f−1a∗aaa†f,f ;
(XXXIII) a ∈ A#, aa†e,fe−1a∗a = e−1a∗aaa†e,f and aa†f,ef

−1a∗a = f−1a∗aaa†f,e;
(XXXIV) a ∈ A#, a†e,eaaa∗e = aa∗ea†e,ea and a†f,faaa∗f = aa∗fa†f,fa;
(XXXV) a ∈ A#, a†f,eaaa∗e = aa∗ea†f,ea and a†e,faaa∗f = aa∗fa†e,fa;

(XXXVI) a ∈ A# and akaa†e,f + a†e,faak = 2ak, for any/some integer k ≥ 1;
(XXXVII) a ∈ A# and a†e,fa#a + aa#a†e,f = 2a†e,f ;

(XXXVIII) a ∈ A# and a∗f,e = a∗f,eaa# = a#aa∗f,e;
(XXXIX) a ∈ A# and a∗f,eaa# + a#aa∗f,e = 2a∗f,e;

(XL) a ∈ A# and akaa†e,f + (akaa†e,f )∗ = a†e,faak + (a†e,faak)∗ = ak + (ak)∗, for
any/some integer k ≥ 1;

(XLI) aa†e,f (a + λa†e,f ) = (a + λa†e,f )aa†e,f and a†e,fa(a + λa†e,f ) = (a + λa†e,f )a†e,fa,
for any/some complex number λ 6= 0;

(XLII) ab = ba ⇒ a†e,f b = ba†e,f ;
(XLIII) a†e,f = f(a), for some function f holomorphic in a neighbourhood of σ(a);
(XLIV) (a+λa†e,e)A = (a+λa†f,f )A = (λa+a3)A and A(a+λa†e,e) = A(a+λa†f,f ) =

A(λa + a3), for any/some complex number λ 6= 0;
(XLV) (a + λa†e,f )A = (λa + a3)A and A(a + λa†e,f ) = A(λa + a3), for any/some

complex number λ 6= 0;
(XLVI) (a + λa†e,e)

◦ = (a + λa†f,f )◦ = (λa + a3)◦ and ◦(a + λa†e,e) = ◦(a + λa†f,f ) =
◦(λa + a3), for any/some complex number λ 6= 0;

(XLVII) (a + λa†e,f )◦ = (λa + a3)◦ and ◦(a + λa†f,e) = ◦(λa + a3), for any/some
complex number λ 6= 0;

(XLVIII) a ∈ A# and (a†e,f )2a# = a†e,fa#a†e,f = a#(a†e,f )2;
(XLIX) a ∈ A# and a(a†e,f )2 = a# = (a†e,f )2a;

(L) a ∈ A#, a∗f,ea†e,f = a∗f,ea# and a†e,fa∗f,e = a#a∗f,e;
(LI) a ∈ A# and (a†e,f )2 = (a#)2;

(LII) a∗e,f = a∗e,fa†e,fa = aa†e,fa∗e,f ;
(LIII) a ∈ A# and (a#)∗e,f = aa#(a#)∗e,f = (a#)∗e,fa#a (or (a#)∗f,e = aa#(a#)∗f,e =

(a#)∗f,ea#a);
(LIV) a ∈ A# and a†e,f (a#)2 = (a#)2a†e,f ;
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(LV) a ∈ A# and aka†e,f = a†e,fak, for any/some integer k ≥ 1;
(LVI) aa†e,f (a+λa∗e,f ) = (a+λa∗e,f )aa†e,f and a†e,fa(a+λa∗e,f ) = (a+λa∗e,f )a†e,fa,

for any/some complex number λ 6= 0;
(LVII) a ∈ A#, aa†e,e(aa∗e − e−1a∗a) = (aa∗e − e−1a∗a)aa†e,e and aa†f,f (aa∗f −

f−1a∗a) = (aa∗f − f−1a∗a)aa†f,f ;
(LVIII) a ∈ A#, aa†e,f (aa∗e − e−1a∗a) = (aa∗e − e−1a∗a)aa†e,f and aa†f,e(aa∗f −

f−1a∗a) = (aa∗f − f−1a∗a)aa†f,e;
(LIX) a ∈ A#, a†e,ea(aa∗e − e−1a∗a) = (aa∗e − e−1a∗a)a†e,ea and a†f,fa(aa∗f −

f−1a∗a) = (aa∗f − f−1a∗a)a†f,fa;
(LX) a ∈ A#, a†f,ea(aa∗e − e−1a∗a) = (aa∗e − e−1a∗a)a†f,ea and a†e,fa(aa∗f −

f−1a∗a) = (aa∗f − f−1a∗a)a†e,fa;
(LXI) a ∈ A# and (as+t)† = (as)†e,1(a

t)†1,e = (as)†f,1(a
t)†1,f , for any/some integers

s, t ≥ 1;
(LXII) a ∈ A# and (as+t)†e,f = (as)†f,f (at)†e,f = (as)†e,f (at)†e,e, for any/some integers

s, t ≥ 1.

Proof. (I) ⇒ (II): Assume that a is weighted–EP w.r.t. (e,f), i.e. ea and af−1 are
EP. From eaA = (ea)∗A, we obtain aA = e−1a∗eA = (ae−1)∗eA implying ae−1eA =
(ae−1)∗eA, that is, ae−1A = (ae−1)∗A. In the same way af−1A = (af−1)∗A implies
faA = (fa)∗A. Hence, fa and ae−1 are EP, i.e. a is weighted–EP w.r.t. (f ,e).

(II) ⇒ (I): This implication can be proved in the same way as (I) ⇒ (II).

(III) ⇔ (I): Obviously, because (I) ⇔ (II).

(IV) ⇔ (I): Notice that (ea)∗A = a∗A and af−1A = aA. Now, eaA = faA =
a∗A is equivalent to eaA = a∗eA and aA = f−1a∗A, that is, eaA = (ea)∗A and
af−1A = (af−1)∗A. These equalities mean that ea and af−1 are EP, i.e. a is
weighted–EP w.r.t. (e,f).

(V) ⇔ (IV): This is easy to check.

(VI) ⇔ (I): By Lemma 1.6, a†e,fA = aA and (a†e,f )∗A = a∗A is equivalent to
f−1a∗A = aA and eaA = a∗A which is (af−1)∗A = af−1A and eaA = (ea)∗A.

(VII) ⇔ (V): Using the equivalence (I) ⇔ (V) for a∗, we have that a∗ is weighted–
EP w.r.t. (e−1,f−1) if and only if e−1a∗A = f−1a∗A = aA.

(VIII) ⇒ (VI): The equality aa†e,f = a†e,fa gives

aA = a†e,faaA ⊂ a†e,fA = aa†e,fa†e,fA ⊂ aA,

and

a∗A = (aaa†e,f )∗A ⊂ (a†e,f )∗A = (a†e,fa†e,fa)∗A ⊂ a∗A,
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i.e. a†e,fA = aA and (a†e,f )∗A = a∗A.

(VI) ⇒ (IX): Since a†e,fA = aA, then a = a†e,fy for some y ∈ A. Now,

a = a†e,fy = a†e,fa(a†e,fy) = a†e,faa,

and ak = a†e,faak, for any/some integer k ≥ 1. Analogously, the assumption (a†e,f )∗A =
a∗A implies a∗ = (a†e,f )∗x for some x ∈ A and

a∗ = (a†e,f )∗x = (a†e,faa†e,f )∗x = (aa†e,f )∗(a†e,f )∗x = (aa†e,f )∗a∗ = (aaa†e,f )∗.

Applying involution to this equality, we get a = aaa†e,f and, for any/some integer
k ≥ 1, ak = akaa†e,f . Notice that, from a ∈ a2A ∩Aa2, it follows a# exists.

(IX) ⇒ (VIII): If a ∈ A# and ak = a†e,faak = akaa†e,f , for any/some integer
k ≥ 1, then

aa†e,f = (a#)k(ak+1a†e,f ) = (a#)kak = ak(a#)k = a†e,fak+1(a#)k = a†e,fa.

(X)⇒ (VIII): Applying the equality a†e,f = a(a†e,f )2 = (a†e,f )2a, we obtain a†e,fa =
a((a†e,f )2a) = aa†e,f .

(VIII) ⇒ (X): Obviously.

(VIII) ⇔ (XI) ⇔ (XII): By the uniquely determined group and weighted-MP
inverse.

(XIII) ⇒ (VIII): The hypothesis a#a†e,f = a†e,fa# implies

aa†e,f = a2(a#a†e,f ) = a2a†e,fa# = a2a†e,fa(a#)2 = a2(a#)2 = aa#

and

a†e,fa = (a†e,fa#)a2 = a#a†e,fa2 = (a#)2aa†e,fa2 = a#a.

Therefore, aa†e,f = a†e,fa.

(XI) ⇒ (XIII): From the equality a# = a†e,f , we have a#a†e,f = (a†e,f )2 = a†e,fa#

So, the condition (XIII) holds.

(XIV) ⇒ (VIII): Suppose that a ∈ A# and aa#a†e,f = a†e,fa#a. Then we get the
equality (VIII):

aa†e,f = a(aa#a†e,f ) = aa†e,fa#a = aa†e,faa# = aa#

= a#aa†e,fa = (aa#a†e,f )a = a†e,fa#aa = a†e,fa.
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(XI) ⇒ (XIV): By a# = a†e,f , obviously, the condition (XIV) is satisfied.

(VIII) ⇒ (XV): Using aa†e,f = a†e,fa, we can verify that a = (a2 + 1− a†e,fa)a†e,f

and (a2+1−a†e,fa)−1 = (a†e,f )2+1−a†e,fa. Thus, a ∈ A−1a†e,f . Since aa†e,f = a†e,fa, by
previous equalities, we conclude that a = a†e,f (a2 +1−aa†e,f ) and (a2 +1−aa†e,f )−1 =
(a†e,f )2 + 1− aa†e,f which yields a ∈ a†e,fA−1. Hence, (XV) holds.

(XV) ⇒ (XVI): Obviously.

(XVI) ⇒ (IX): From the condition a ∈ a†e,fA, we have a = a†e,fx, for some x ∈ A,
and ak − a†e,faak = (a†e,f − a†e,faa†e,f )xak−1 = 0, for integer k ≥ 1. In the similar
way, a ∈ Aa†e,f gives ak = akaa†e,f , for integer k ≥ 1. When k = 1, we observe that
a ∈ a2A ∩Aa2 and a# exists. So, the condition (IX) holds.

(XV) ⇔ (XVII): The assumption a ∈ a†e,fA−1 ∩A−1a†e,f is equivalent to aA−1 =
a†e,fA−1 and A−1a = A−1a†e,f . By Lemma 1.7, we observe that these equalities hold
if and only if aA−1 = a∗f,eA−1 = f−1a∗A−1 and A−1a = A−1a∗f,e = A−1a∗e.

(XVII) ⇔ (XVIII): Applying the involution, we check this equivalence.

(XIX) ⇒ (II): Suppose that there exists x ∈ A such that a = e−1a∗xa∗f . Then
a ∈ e−1a∗A∩Aa∗f = a∗e,fA∩Aa∗e,f = a†f,eA∩Aa†f,e, by Lemma 1.7. Now, by (xvi)
⇔ (i), we deduce that a is weighted–EP w.r.t. (f, e).

(II) ⇒ (XIX): If a is weighted–EP w.r.t. (f, e), by the equivalence (I) ⇔ (XVI),
a ∈ a†f,eA∩Aa†f,e = e−1a∗A∩Aa∗f . Therefore, for some y, z ∈ A, a = e−1a∗y = za∗f

and a = aa†f,ea = e−1a∗(ya†f,ez)a∗f . For x = ya†f,ez, the statement (XIX) is satisfied.

(XX) ⇒ (II): Since a = (ae−1)†ae−1afa(fa)†, we conclude that a ∈ (ae−1)†A ∩
A(fa)† = (ae−1)∗A∩A(fa)∗ = a∗e,fA∩Aa∗e,f = a†f,eA∩Aa†f,e. Using (XVI) ⇔ (I),
we observe that a is weighted–EP w.r.t. (f, e).

(II) ⇒ (XX): The condition (II) implies that ae−1 and fa are EP and then

(ae−1)†ae−1afa(fa)† = ((ae−1)†ae−1ae−1)efa(fa)† = ae−1efa(fa)†

= f−1(fafa(fa)†) = f−1fa = a.

Thus, the condition (XX) holds.

(XXI) ⇔ (XII): Applying the equivalence (I) ⇔ (XII) for ak, k ≥ 1, we see
that a ∈ A# and ak is weighted–EP w.r.t. (e,f) if and only if a ∈ A# and eak(ak)#,
fak(ak)# are Hermitian which is equivalent to a ∈ A# and eaa#, faa# are Hermitian,
by (ak)# = (a#)k.

(XXII) ⇔ (IV): Notice that, from a ∈ A−, it follows that aa∗a ∈ A− and
(aa∗a)† = a†(a∗)†a†. Using the equivalence (I) ⇔ (IV) for aa∗a, we observe that
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aa∗a is weighted–EP w.r.t. (e,f) is equivalent to eaa∗aA = faa∗aA = a∗aa∗A. Since
a ∈ A−, then a† exists and ea = eaa†a = eaa∗(a†)∗ = eaa∗aa†(a†)∗. Consequently,
eaa∗aA = eaA and in the same way faa∗aA = faA. By a∗ = a∗aa† = a∗aa†aa† =
a∗aa∗(a†)∗a†, we conclude a∗aa∗A = a∗A. Hence, eaa∗aA = faa∗aA = a∗aa∗A is
equivalent to (IV).

(XXIII) ⇔ (I): Observe that a is weighted–EP w.r.t. (e,f) if and only if elements
ea and af−1 are EP. By the definition of EP elements, this is equivalent to (ea)◦ =
[(ea)∗]◦ and (af−1)◦ = [(af−1)∗]◦ = (f−1a∗)◦, which can be written as a◦ = [(ea)∗]◦

and (af−1)◦ = (a∗)◦, by Lemma 1.6.

(V) ⇒ (XXIV): The condition (V) gives e−1a∗A = aA and its equivalent con-
dition (IV) imply faA = a∗A. For a∗, a∗f ∈ A−, by Lemma 1.5, it follows A =
aA⊕ (a∗)◦ = faA⊕ (a∗f)◦. Thus, A = e−1a∗A⊕ (a∗)◦ = a∗A⊕ (a∗f)◦.

(XXIV) ⇒ (VII): From A = e−1a∗A ⊕ (a∗)◦ = a∗A ⊕ (a∗f)◦, we see that A =
e−1a∗A⊕(e−1a∗)◦ = a∗fA⊕(a∗f)◦. Define the left regular representation La : A → A
by La(x) = ax for all x ∈ A. Now, A = R(Le−1a∗)⊕N(Le−1a∗) = R(La∗f )⊕N(La∗f )
which implies that Le−1a∗ i La∗f are EP operators. According to [3, Remark 12],
necessary and sufficient condition for a ∈ A to be EP is that La ∈ L(A) is EP. So,
elements e−1a∗, a∗f are EP and a∗ is weighted–EP w.r.t. (e−1,f−1).

(XXV)⇔ (V): By the equivalence (I)⇔ (V) for a†, we get that a† is weighted–EP
w.r.t. (e−1,f−1) if and only if e(a†)∗A = f(a†)∗A = a†A. Recall that a†A = a∗A
and (a†)∗A = aA. Now,

e(a†)∗A = a†A ⇔ (a†)∗A = e−1a∗A ⇔ aA = e−1a∗A
and, similarly, f(a†)∗A = a†A ⇔ aA = f−1a∗A.

(XXVI) ⇔ (VI): If we apply the equivalence (I) ⇔ (iv) for a†e,f , then a†e,f is
weighted–EP w.r.t. (e,f) ⇔ ea†e,fA = fa†e,fA = (a†e,f )∗A. By Lemma 1.6, we obtain

ea†e,fA = (a†e,f )∗A ⇔ ea†e,fA = eaA ⇔ a†e,fA = aA
and

fa†e,fA = (a†e,f )∗A ⇔ a∗A = (a†e,f )∗A.

(XXVII)⇒ (VIII): Assume that a ∈ A# and a2k−1 = a†e,fa2k+1a†e,f , for any/some
integer k ≥ 1. Consequently, we have

aa†e,f = (a#)2ka2k+1a†e,f = (a#)2ka(a†e,fa2k+1a†e,f ) = (a#)2kaa2k−1 = a#a

and

a†e,fa = (a†e,fa2k+1a†e,f )a(a#)2k = a2k−1a(a#)2k = aa#
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implying aa†e,f = a†e,fa.

The implication (VIII) ⇒ (XXVII) is easy to check.

(XXVIII) ⇒ (IX): Suppose that a ∈ A# and aa†e,fa†e,fa = a†e,faaa†e,f . Now,
observe that

a†e,faaa†e,f = aa†e,fa†e,fa = aa#(aa†e,fa†e,fa)a#a

= a#aa†e,faaa†e,faa# = a#a.(2.1)

First, if k is a positive integer, then multiplying the equality (2.1) by ak from the left
side, we get akaa†e,f = ak and then multiplying the equality (2.1) by ak from the right
side, we obtain a†e,faak = ak. So, the condition (IX) is satisfied.

The implication (VIII) ⇒ (XXVIII) is obvious.

(XXIX) ⇔ (IV): Using (I) ⇔ (IV) for a#, we deduce that a# is weighted–EP
w.r.t. (e,f) if and only if ea#A = fa#A = (a#)∗A. This is equivalent to (iv), because
a#A = aA, a#A = aA and (a#)∗A = a∗A.

(XXX) ⇒ (XII): From aa# = aa†e,e = aa†f,f we conclude that elements eaa# =
eaa†e,e and faa# = faa†f,f are Hermitian.

(III) ⇒ (XXX): Since a is weighted–EP w.r.t. (e,f) implies a# = a†e,f , then a

is both weighted–EP w.r.t. (e,e) and w.r.t. (f ,f) gives a# = a†e,e = a†f,f . Thus,
aa# = aa†e,e = aa†f,f .

(I) ⇒ (XXXI) ⇒ (XII): This part follows similarly as (III) ⇒ (XXX) ⇒ (XII),
using the equivalence (I) ⇔ (II).

(XXXII) ⇒ (XXX): By the equality aa†e,ee
−1a∗a = e−1a∗aaa†e,e, we have

a∗ = a∗aa† = a∗aaa#a† = e(e−1a∗aaa†e,e)aa#a†

= eaa†e,ee
−1a∗aaa#a† = eaa†e,ee

−1a∗.(2.2)

Applying the involution to (2.2), we obtain a = ae−1eaa†e,e = aaa†e,e which yields
a#a = aa†e,e. In the same way, the assumption aa†f,ff−1a∗a = f−1a∗aaa†f,f implies
a#a = aa†f,f . Therefore, the condition (XXX) holds.

(III) ⇒ (XXXII): The condition (III) gives that a# = a†e,e = a†f,f . Then we get

aa†e,ee
−1a∗a = e−1eaa†e,ee

−1a∗a = e−1(ae−1eaa†e,e)
∗a

= e−1(aaa#)∗a = e−1a∗a = e−1a∗aaa†e,e

and similarly aa†f,ff−1a∗a = f−1a∗aaa†f,f .
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The implications (I) ⇒ (XXXIII) ⇒ (XXX), (III) ⇒ (XXXIV) ⇒ (XXX) and (I)
⇒ (XXXV) ⇒ (XXX) can be proved in the same way as (III) ⇒ (XXXII) ⇒ (XXX).

(XXXVI) ⇒ (VIII): Multiplying akaa†e,f + a†e,faak = 2ak, k ≥ 1, from the right
side by (a#)k, we obtain

akaa†e,f (a#)k + a†e,faaa# = 2aa#.

Further, the equality

akaa†e,fa(a#)k+1 + a†e,fa = 2aa#,

gives aa#+a†e,fa = 2aa#, i.e. a†e,fa = aa#. Similarly, multiplying akaa†e,f +a†e,faak =
2ak from the left side by (a#)k, we show that aa†e,f = aa#. So, a†e,fa = aa†e,f .

(VIII) ⇒ (XXXVI) ∧ (XXXVII): We can easily check this implication.

(XXXVII) ⇒ (VIII): Multiplying the equality a†e,fa#a + aa#a†e,f = 2a†e,f by a

first from the right side, we get a#a = a†e,fa and then from the left side, we obtain
aa# = a†e,fa. Hence, we deduce that a†e,fa = aa†e,f .

(XXXVIII) ⇒ (XII): The condition a∗f,e = a∗f,eaa# = a#aa∗f,e is equivalent to
a∗ = a∗eaa#e−1 = fa#af−1a∗. Then, from

(eaa#)∗ = (a#)∗a∗e = (a#)∗a∗eaa#e−1e = (aa#)∗eaa#

and

(fa#a)∗ = a∗(a#)∗f = fa#af−1a∗(a#)∗f = fa#af−1(a#a)∗f,

we conclude that elements eaa# and fa#a are Hermitian.

(XII) ⇒ (XXXVIII): If eaa# is Hermitian, then

a∗f,eaa# = f−1a∗eaa# = f−1(eaa#a)∗ = f−1(ea)∗ = f−1a∗e = a∗f,e.

In the same way, since faa# is Hermitian, it follows a∗f,e = a#aa∗f,e.

(XXXIX) ⇒ (XXXVIII): Multiplying the equality a∗f,eaa# + a#aa∗f,e = 2a∗f,e

by aa†e,f from the right side, we get

a∗f,eaa†e,f + a#aa∗f,eaa†e,f = 2a∗f,eaa†e,f .

By Theorem 1.4, we have a∗f,e + a#aa∗f,e = 2a∗f,e, which implies a#aa∗f,e = a∗f,e.
Similarly, multiplying the equality a∗f,eaa# + a#aa∗f,e = 2a∗f,e from the left side by
a and then by a†e,f , we obtain a∗f,eaa# = a∗f,e. Hence, (XXIX) is satisfied.
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The implication (XXXVIII) ⇒ (XXXIX) is obvious.

(XL) ⇒ (IX): Multiplying the condition akaa†e,f +(akaa†e,f )∗ = ak +(ak)∗, k ≥ 1,
by a from the right side, we see that

(akaa†e,f )∗a = (ak)∗a.(2.3)

Applying the involution to (2.3), we obtain

a∗akaa†e,f = a∗ak,

which gives

akaa†e,f = aa†akaa†e,f = (a†)∗(a∗akaa†e,f ) = (a†)∗a∗ak = ak.

In the same way, multiplying the hypothesis a†e,faak +(a†e,faak)∗ = ak +(ak)∗, k ≥ 1,
by a from the left side, we show a†e,faak = ak. Thus, (ix) holds.

The implication (VIII) ⇒ (XL) ∧ (XLI) is obvious.

(XLI) ⇒ (VIII): The equality aa†e,f (a + λa†e,f ) = (a + λa†e,f )aa†e,f is equivalent to

a + λaa†e,fa†e,f = aaa†e,f + λa†e,f .(2.4)

Multiplying (2.4) from the left side by a†e,f , we get

a†e,fa + λa†e,fa†e,f = a†e,faaa†e,f + λa†e,fa†e,f ,

which yields a†e,fa = a†e,faaa†e,f . Analogously, a†e,fa(a + λa†e,f ) = (a + λa†e,f )a†e,fa

implies aa†e,f = a†e,faaa†e,f . Therefore, a†e,fa = aa†e,f .

(XLII) ⇒ (VIII): Assume that ab = ba implies a†e,f b = ba†e,f . If b = a, then
a†e,fa = aa†e,f .

(XI) ⇒ (XLII): By a# = a†e,f and the double commutativity of a#, from ab = ba

we obtain a#b = ba#, i.e. a†e,f b = ba†e,f .

(XLIII) ⇒ (VIII): Let a†e,f = f(a), for some function f holomorphic in a neigh-
bourhood of σ(a). By a property of the holomorphic calculus, a†e,f commutes with
a.

(XI) ⇒ (XLIII): From a†e,f = a# and, by [20, Theorem 4.4], a# = f(a), where
f is holomorphic in a neighbourhood of σ(a), and f(λ) = 0 in a neighbourhood of 0,
f(λ) = λ−1 in a neighbourhood of σ(a)\{0}, it follows (XLIII).



14 D. Mosić and D.S Djordjević

(XLIV) ⇒ (III): Since (a + λa†e,e)A = (λa + a3)A, λ 6= 0, then a + λa†e,e =
(λa + a3)x, for some x ∈ A. Now, from

a + λaa†e,ea
†
e,e = aa†e,e(a + λa†e,e) = aa†e,e(λa + a3)x

= (λa + a3)x = a + λa†e,e,

we conclude that aa†e,ea
†
e,e = a†e,e. In the same way, A(a + λa†e,e) = A(λa + a3) gives

a†e,ea
†
e,ea = a†e,e. So, a†e,e = aa†e,ea

†
e,e = a†e,ea

†
e,ea, which implies that a is weighted–EP

w.r.t. (e,e), by (I) ⇔ (X).

Similarly, from the equalities (a + λa†f,f )A = (λa + a3)A and A(a + λa†f,f ) =
A(λa + a3), for λ 6= 0, we can show that a is weighted–EP w.r.t. (f ,f).

(III) ⇒ (XLIV): The condition (III) implies a# = a†e,e = a†f,f . Then, for λ 6= 0,
by

a + λa†e,e = a + λa# = (a3 + λa)(a#)2 ∈ (a3 + λa)A(2.5)

and

a3 + λa = (a + λa#)a2 = (a + λa†e,e)a
2 ∈ (a + λa†e,e)A,(2.6)

we deduce (a+λa†e,e)A = (λa+a3)A. In the same way, it follows the rest of condition
(XLIV).

(XI) ⇒ (XLV) ⇒ (X): It follows in the same way as the part (III) ⇔ (XLIV).

(XLVI) ⇒ (XXIII): Assume that (a + λa†e,e)
◦ = (λa + a3)◦, λ 6= 0. If ax = 0,

for some x ∈ A, then (λa + a3)x = 0 implies (a + λa†e,e)x = 0. Now, we conclude
a†e,ex = 0 and a◦ ⊂ (a†e,e)

◦. Therefore, by Lemma 1.6, a◦ ⊂ [(ea)∗]◦.

Let ◦(a+λa†e,e) = ◦(λa+a3), λ 6= 0 and (ea)∗x = 0, for some x ∈ A. Applying the
involution, we see that x∗ea = 0 which gives x∗e(λa+a3) = 0. Then x∗e(a+λa†e,e) = 0
and, consequently, x∗ea†e,e = 0, i.e. (a†e,e)

∗ex = 0. By this equality, we have

ax = ae−1(ea†e,ea)∗x = ae−1a∗(a†e,e)
∗ex = 0.

Hence, [(ea)∗]◦ ⊂ a◦ and a◦ = [(ea)∗]◦.

The equalities (a+λa†f,f )◦ = (λa+a3)◦ and ◦(a+λa†f,f ) = ◦(λa+a3), for λ 6= 0,
imply (a∗)◦ = (af−1)◦ in the similar way.

(III) ⇒ (XLVI): The assumption (III) gives a# = a†e,e = a†f,f , so by (2.5) and
(2.6), we deduce ◦(a + λa†e,e) = ◦(λa + a3), for λ 6= 0. Similarly, we can prove the
rest of (XLVI).

(III) ⇒ (XLVII) ⇒ (XXIII): Similarly as (III) ⇒ (XLVI) ⇒ (XXIII).
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(XLVIII) ⇒ (VIII): Using the equality (a†e,f )2a# = a†e,fa#a†e,f , first we get

(a†e,f )2a# = ((a†e,f )2a#)aa# = a†e,fa#a†e,faa#

= a†e,f (a#)2aa†e,faa# = a†e,f (a#)2

and then

aa†e,f = a3(a#)2a†e,f = a3a†e,fa(a#)2a†e,f = a3(a†e,fa#a†e,f )

= a3((a†e,f )2a#) = a3a†e,f (a#)2 = a3a†e,fa(a#)3 = aa#.

We can show that a†e,fa#a†e,f = a#(a†e,f )2 implies a†e,fa = aa# in the same way. Thus,
a†e,fa = aa†e,f .

The implication (XI) ⇒ (XLVIII) ∧ (XLIX) is obvious.

(XLIX) ⇒ (VIII): From the hypothesis a(a†e,f )2 = a# = (a†e,f )2a, we have

aa†e,f = aa#aa†e,f = aa(a†e,f )2aa†e,f = a(a(a†e,f )2) = aa#

and

a†e,fa = a†e,faa#a = a†e,fa(a†e,f )2aa = ((a†e,f )2a)a = a#a.

Therefore, we deduce that a†e,fa = aa†e,f .

(L) ⇒ (XLIX): The equalities a∗f,ea†e,f = a∗f,ea# and a†e,fa∗f,e = a#a∗f,e are
equivalent to a∗ea†e,f = a∗ea# and a†e,ff−1a∗ = a#f−1a∗. By a∗ea†e,f = a∗ea#, we
obtain

a(a†e,f )2 = e−1(eaa†e,f )∗a†e,f = e−1(a†e,f )∗(a∗ea†e,f ) = e−1(a†e,f )∗a∗ea#

= e−1eaa†e,fa# = aa†e,fa(a#)2 = a#.

Analogously, from a†e,ff−1a∗ = a#f−1a∗, we get a# = (a†e,f )2a. So, the condition
(XLIX) holds.

The implication (XI) ⇒ (L) ∧ (LI) is obvious.

(LI) ⇒ (XLIX): Multiplying (a†e,f )2 = (a#)2 by a first from the left side and then
from the right side, we observe that (XLIX) is satisfied.

(LII) ⇔ (VIII): The assumption a∗e,f = a∗e,fa†e,fa = aa†e,fa∗e,f is equivalent to
a∗f = a∗fa†e,fa and e−1a∗ = aa†e,fe−1a∗. Applying the involution to these equalities,
we see that they are equivalent to fa = fa†e,faa and ae−1 = ae−1eaa†e,fe−1, i.e.
a = a†e,faa = aaa†e,f ⇔ a†e,fa = aa†e,f .
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(LIII) ⇒ (XII): Since (a#)∗e,f = aa#(a#)∗e,f = (a#)∗e,fa#a can be written as
(a#)∗ = eaa#e−1(a#)∗ = (a#)∗fa#af−1, we get

(eaa#)∗ = (a#)∗a∗e = eaa#e−1(a#)∗a∗e = eaa#e−1(eaa#)∗

and

(fa#a)∗ = a∗(a#)∗f = a∗(a#)∗fa#af−1f = (a#a)∗fa#a.

So, we conclude that eaa# and fa#a are Hermitian.

(XI) ⇒ (LIII): It is easy to check this part, by Theorem 1.4.

(LIV) ⇒ (XII): The condition a†e,f (a#)2 = (a#)2a†e,f gives

eaa# = ea3a†e,fa(a#)3 = ea3(a†e,f (a#)2) = ea3(a#)2a†e,f = eaa†e,f

and

fa#a = f(a#)3aa†e,fa3 = f((a#)2a†e,f )a3 = fa†e,f (a#)2a3 = fa†e,fa.

Therefore, eaa# and fa#a are Hermitian elements.

The implication (XI) ⇒ (LIV) ∧ (LV)is obvious.

(LV) ⇒ (VIII): Suppose that a ∈ A# and aka†e,f = a†e,fak, for any/some integer
k ≥ 1. Then

aa†e,f = (a#)k−1(aka†e,f ) = (a#)k−1a†e,fak = (a#)kaa†e,fak = a#a

and

a†e,fa = (a†e,fak)(a#)k−1 = aka†e,f (a#)k−1 = aka†e,fa(a#)k = aa#.

Hence, aa†e,f = a†e,fa.

(LVI) ⇒ (VIII): The equality aa†e,f (a + λa∗e,f ) = (a + λa∗e,f )aa†e,f , for λ 6= 0, is
equivalent to

a + λaa†e,fa∗e,f = aaa†e,f + λa∗e,faa†e,f .(2.7)

Multiplying (2.7) from the right side by a, we observe that

aa†e,fa∗e,fa = e−1a∗e,f .(2.8)

Multiplying (2.8) from the right side by a†f,e, we get aa†e,fa∗e,f = a∗e,f .



Weighted–EP elements in C∗-algebras 17

Similarly, from a†e,fa(a + λa∗e,f ) = (a + λa∗e,f )a†e,fa, for λ 6= 0, we obtain
a∗e,fa†e,fa = a∗e,f . Thus, the condition (LII) is satisfied.

(VIII) ⇒ (LVI): If a†e,fa = aa†e,f , then

(a + λa∗e,f )aa†e,f = a + λe−1a∗fa†e,fa = a + e−1(fa†e,faa)∗

= a + λe−1a∗f = a + λe−1(ae−1eaa†e,f )∗f

= a + λaa†e,fe−1a∗f = aa†e,f (a + λa∗e,f ).

The second equality follows similarly.

(LVII) ⇔ (XXXII): Notice that the assumption aa†e,e(aa∗e− e−1a∗a) = (aa∗e−
e−1a∗a)aa†e,e is equivalent to aa∗e−aa†e,ee

−1a∗a = aa∗e−e−1a∗aaa†e,e, i.e. aa†e,ee
−1a∗a =

e−1a∗aaa†e,e.

In the same way, the equality aa†f,f (aa∗f−f−1a∗a) = (aa∗f−f−1a∗a)aa†f,f holds
if and only if aa†f,ff−1a∗a = f−1a∗aaa†f,f .

The equivalences (LVIII) ⇔ (XXXIII), (LIX) ⇔ (XXXIV) and (L) ⇔ (XXXV)
follow similarly as (LVII) ⇔ (XXXII).

(LXI) ⇔ (IV): For s, t ≥ 1 and a ∈ A#, notice that as, at, as+t ∈ A# and
then as, at, as+t ∈ A−. By Theorem 1.3, (as+t)† = (as)†e,1(a

t)†1,e is equivalent to
[(ate−1/2)(e1/2as)]† = (e1/2as)†(ate−1/2)† which holds, by Theorem 1.11, if and only
if e−1/2(at)∗as+tA ⊆ e1/2asA and e1/2as(as+t)∗A ⊆ e−1/2(at)∗A, i.e. (at)∗as+tA ⊆
easA and eas(as+t)∗A ⊆ (at)∗A. By elementary computations, this is equivalent to
a∗A ⊆ eaA and eaA ⊆ a∗A, that is a∗A = eaA. Analogy, (as+t)† = (as)†f,1(a

t)†1,f ,
s, t ≥ 1 ⇔ a∗A = faA.

(LXII) ⇔ (IV): Observe that, for s, t ≥ 1, (as+t)†e,f = (as)†f,f (at)†e,f is equivalent
to [(e1/2atf−1/2)(f1/2asf−1/2)]† = (f1/2asf−1/2)†(e1/2atf−1/2)†, by Theorem 1.3.
Using Theorem 1.11, the previous equality is equivalent to f−1/2(at)∗eat+sf−1/2A ⊆
f1/2asf−1/2A and f1/2asf−1(at+s)∗e1/2A ⊆ f−1/2(at)∗e1/2A, that is, (at)∗eat+sA ⊆
fasA and fasf−1(at+s)∗A ⊆ (at)∗A. It follows, by elementary computations, that
this is equivalent to a∗A ⊆ faA and faA ⊆ a∗A, i.e. a∗A = faA. Similarly,
(as+t)†e,f = (as)†e,f (at)†e,e, s, t ≥ 1 if and only if a∗A = eaA.

From the previous theorem, we can get the following result.

Corollary 2.3. Let A be a unital C∗–algebra, and let e, f be invertible positive
elements in A. For a ∈ A− the following statements are equivalent:

(a) a is weighted–EP w.r.t. (e,f);
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(b) a∗f,eA = a∗e,fA = aA (or a∗f,eA = aA and Aa∗f,e = Aa);
(c) (a∗f,e)◦ = a◦ and ◦(a∗f,e) = ◦a;
(d) aA−1 = a∗f,eA−1 and A−1a = A−1a∗f,e;
(e) A−1a∗ = A−1(a∗f,e)∗ and a∗A−1 = (a∗f,e)∗A−1;

Acknowledgment. We are grateful to the referee for helpful comments concern-
ing the paper.
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