

# Hemija prelaznih metala sa koordinacionom hemijom

Školska: 2018/2019. godina

Prof. dr Nenad S. Krstić



### Boja kompleksnih jedinjenja

- Boja se javlja kao rezultat apsorpcije svetlosti određene talasne dužine iz spektra bele svetlosti
- Na osnovu boje supstance ne može se pouzdano zaključiti koji deo spektra je apsorbovan, a koji nije.
- Snimljeni apsorpcioni spektar pokazuje pouzdano koji deo spektra je apsorbovan, a koji propušten







# Boje hidrata $[M(H_2O)_6]^{n+}$ kompleksnih jedinjenja metala I prelazne serije elektronske konfiguracije d<sup>1</sup>-d<sup>9</sup>

| d <sup>n</sup> | jon                                                | boja             | ۸ <sub>max</sub> [nm] |
|----------------|----------------------------------------------------|------------------|-----------------------|
| d1             | [Ti(H <sub>2</sub> O) <sub>6</sub> ] <sup>3+</sup> | ljubičasta       | 493                   |
| d <sup>2</sup> | [V(H₂O) <sub>6</sub> ]³+                           | plava            | 389, 562              |
| d <sup>3</sup> | [Cr(H <sub>2</sub> O) <sub>6</sub> ] <sup>3+</sup> | ljubičasta       | 407, 580              |
| d <sup>5</sup> | [Fe(H <sub>2</sub> O) <sub>6</sub> ] <sup>3+</sup> | bezbojan         | 1                     |
| d <sup>6</sup> | [Fe(H <sub>2</sub> O) <sub>6</sub> ] <sup>2+</sup> | svetlo-zelena    | 960                   |
| d <sup>7</sup> | [Co(H <sub>2</sub> O) <sub>6</sub> ] <sup>2+</sup> | ružičasta        | 515, 625, 1220        |
| d <sup>8</sup> | [Ni(H <sub>2</sub> O) <sub>6</sub> ] <sup>2+</sup> | zelena           | 395, 741, 1175        |
| d <sup>9</sup> | [Cu(H <sub>2</sub> O) <sub>6</sub> ] <sup>2+</sup> | plava            | 794                   |
| d <sup>9</sup> | [CuCl <sub>4</sub> ] <sup>2-</sup>                 | žuto-narandžasta | 650                   |



### Primeri obojenih kompleksnih jedinjenja

Za svaki spektar karakteristični podaci su: ≻položaj apsorpcionog maksimuma, ≻širina,

≻intenzitet.



#### Intenzitet traka

- ➢ Pri snimanju elektronskih spektara kompleksa prelaznih metala u UV i VIS oblasti dobija se jedna ili više traka relativno slabog intenziteta. Te trake se pripisuju *d→d prelazima*, tzv. *d-d trake*. Kako ti prelazi nastaju i pod uticajem liganada, nazivaju se još i *prelazima ligandnog polja*.
- U UV oblasti, spektar obično sadrži nekoliko traka visokog intenziteta. Te trake odgovaraju elektronskim prelazima u ligandima (unutrašnje ligandni prelazi) i prenosu naelektrisanja sa centralnog jona metala na ligande sa liganada na jon metala i obratno (prenos naelektrisanja), pa se zajedno nazivaju ligandne trake.
- Kad dolazi do prelaza elektrona sa nivoa koji ima preovlađujuće ligandni karakter na nivo koji ima energiju blisku energiji slobodnog jona metala odgovarajući prelaz je *ligandno-metalni prenos naelektrisanja (LMPN)*.
- Kod nekih kompleksa dolazi do prenosa elektrona sa metala ka ligandu pa se takav prelaz naziva se metalo-ligandni prenos naelektrisanja (MLPN).

- ➢ Prema teoriji ligandnog polja za proučavanje osobina jona metala i koordinacionih jedinjenja od interesa su pre svega d→d prelazi.
- Isti su relativno slabog intenziteta, odvijaju se između podnivoa orbitala iste parnosti (istih simetrijskih karakteristika) i nominalno su zabranjeni. Međutim dolazi do odstupanja od te zabrane, te se neki prelazi se realizuju.
- Jedno od objašnjenja zasniva se na mešanju (interferenciji) talasnih funkcija d orbitala sa talasnim funkcijama druge parnosti (npr. p orbitale). Takva interferencija talasnih funkcija je moguća kod molekula kompleksa koji nema centar inverzije.
- Oktaedarski kompleksi imaju centar inverzije, ali se njihova simetrija narušava uvođenjem talasnih funkcija koje se odnose na vibracije liganada ili kombinaciju vibracionih i elektronskih talasnih funkcija.
- ➤ Zato oktaedarski kompleksi imaju d→d trake sa niskim molarnim koeficijentom apsorpcije (apsorptivnost). Sa druge strane taj nizak intenzitet traka ukazuje na zabranjeni karakter d→d prelaza.

Energija cepanja se računa po obrascu:

$$\underline{\Lambda}_{\mathbf{0}} = \mathbf{E} = \frac{\mathbf{h} \cdot \mathbf{v}}{\lambda} \cdot \mathbf{N}_{\mathbf{A}}$$

gde je:

 $\mathbf{E}$  – energija cepanja,  $\mathbf{h}$  – Plankova konstanta,  $\mathbf{v}$  – frekvencija zračenja,  $\lambda$  – talasna dužina,  $\mathbf{N}_{\mathbf{A}}$  – Avogadrov broj



# Dijagrami energetskih nivoa *d* elektrona u ligandnom polju i UV/VIS spektri

**Orgelovi dijagrami** - data je energetska zavisnost atoma/jona date elektronske konfiguracije (spektralnih termova) od energije cepanja u ligandnom polju počev od stanja sa najnižom energijom. Ovi dijagrami uvek počinju od terma koji je najniži po energiji.

**Tanabe-Sugano dijagrami** - umesto apsolutnih jedinica energije, koriste se parametri međuelektronskog odbijanja B, parametar Rack-a, koji ima različite vrednosti za različite metale. Ovi dijagrami počinju od nule.

Bitne karakteristike svih dijagrama su:

- 1) linije stanja istih simbola se ne seku,
- 2) sva stanja imaju istu multipletnost u kristalnom polju kao i u slobodnom jonu

### Cepanje termova osnovnog stanja jona metala u Oh i Td ligandnom polju

| Term slobodnog jona | O <sub>h</sub> ligandno polje    | T <sub>d</sub> ligandno polje |
|---------------------|----------------------------------|-------------------------------|
| S                   | A <sub>1g</sub>                  | A <sub>1</sub>                |
| Р                   | T <sub>1u</sub>                  | T <sub>1</sub>                |
| D                   | $E_g + T_{2g}$                   | E+T <sub>2</sub>              |
| F                   | $A_{2g} + T_{1u} + T_{2g}$       | $A_2 + T_1 + T_2$             |
| G                   | $A_{1g} + E_g + T_{1u} + T_{2g}$ | $A_1 + E + T_1 + T_2$         |
| Н                   | $E_g + 2T_{1u} + T_{2g}$         | $E+2T_1+T_2$                  |
|                     |                                  |                               |
|                     |                                  |                               |



Elektronska struktura i spektar kompleksa jona d<sup>1</sup> elektronske konfiguracije

- Joni d<sup>1</sup> elektronske konfiguracije: Ti<sup>3+</sup>, V<sup>4+</sup>, VO<sup>2+</sup> (dioksovanadijum(IV) jon, vanadil jon)
- ➢ Jon Ti<sup>3+</sup> gradi heksaakva kompleks [Ti(H<sub>2</sub>O)<sub>6</sub>]<sup>3+</sup> crveno-ljubičaste boje
- Rastvor ovog kompleksnog jona apsorbuje svetlost u oblasti talasnih dužina od 450-600 nm (žuto-zelena), a propušta sve fotone koji odgovaraju ljubičastoj (380-450 nm) i crvenoj boji (600-700 nm).
- ➢ Apsorpcioni maksimum odgovara veličini rascepa  $\Delta o = 20 \ 400 \ \text{cm}^{-1}$ .



 $[Ti(H_2O)_6]^{3+}$ 





## Elektronska struktura i spektar kompleksa jona d<sup>2</sup> elektronske konfiguracije







Dijagram energetskih nivoa za d<sup>2</sup> konfiguraciju u O<sub>h</sub> ligandnom polju

- Na osnovu dijagrama energetskih nivoa mogu se izračunati energije ova tri prelaza, za jon V<sup>3+</sup> (Δ<sub>o</sub> = 21500 cm<sup>-1</sup>) oni se ostvaruju na 17 300, i 25 500 38 600 cm<sup>-1</sup>.
- Eksperimentalno dobijeni spektar jona [V(H<sub>2</sub>O)<sub>6</sub>]<sup>3+</sup> prikazan je na slici. U ovom spektru eksperimentalno su dobijene tri trake 17 000, 25 000 i 38 000 cm<sup>-1</sup>, što je u skladu sa teorijskim proračunavanjima.





Apsorpcioni spektar V(III) u 1M rastvoru NaCl na različitim pH vrednostima<sup>[Pajdowski, 1965]</sup>

# Elektronska struktura i spektar kompleksa jona d<sup>3</sup> elektronske konfiguracije



➢ U kompleksima ovog jona hroma postoje tri po spinu dozvoljena prelaza i to <sup>4</sup>A<sub>2</sub>→<sup>4</sup>T<sub>2</sub>, <sup>4</sup>A<sub>2</sub>→<sup>4</sup>T<sub>1</sub> i <sup>4</sup>A<sub>2</sub>→<sup>4</sup>T<sub>1</sub>(P) i u spektru [Cr(H<sub>2</sub>O)<sub>6</sub>]<sup>3+</sup> registruju se tri apsorciona maksimuma (17400, 24700 i 37000 cm<sup>-1</sup>).

- Osnovni term Cr<sup>3+</sup>-jona je <sup>4</sup>F i on se u polju *Oh* simetrije cepa na 4A<sub>2</sub> nivo i nivoe <sup>4</sup>T<sub>2</sub> i 4T<sub>1</sub>.
- ➤ U kompleksima ovog jona hroma postoje tri po spinu dozvoljena prelaza i to  ${}^{4}A_{2} \rightarrow {}^{4}T_{2}$ ,  ${}^{4}A_{2} \rightarrow {}^{4}T_{1}$  i  ${}^{4}A_{2} \rightarrow {}^{4}T_{1}(P)$  i u spektru [Cr(H<sub>2</sub>O)<sub>6</sub>]<sup>3+</sup> očekuju se tri apsorciona maksimuma na oko 17400 cm<sup>-1</sup>, 24700 cm<sup>-1</sup> i 37000 cm<sup>-1</sup>.
- UV/VIS spektar [Cr(NH<sub>3</sub>)<sub>6</sub>]<sup>3+</sup> karakterišu dve trake na oko 25000 cm<sup>-1</sup> koje su rezultat prelaza u kojima su uključeni d elektroni



UV/VIS spektar i prikaz dozvoljenih prelaza za kompleks  $[Cr(NH_3)_6]^{3+}$ 



### Elektronska struktura i spektar kompleksa jona d<sup>4</sup> elektronske konfiguracije

jedinjenja Mn(III) jona.

- Kompleksi u kojima centralni jon metala vezuje 6 liganada imaju konfiguraciju metalnog jona t<sub>2g</sub><sup>3</sup> e<sub>g</sub><sup>1</sup> što ogdovara stanju <sup>5</sup>E.
- ▷ U skladu sa teoremom Jan-Teler-a ova struktura trpi jako izobličenje zbog samo jednog elektrona u  $e_g$  podnivoima  $(e_g^{-1})$ , što smanjuje simetriju nagrađenog sistema (kompleksa), a time se i ukida degeneracija nivoa  $e_g$ .
- Iz tog razloga dolazi do udaljavanja dva liganda u *trans*-položaju tako da više nisu sve šest veze M-L iste duzine i molekul trpi tetragonalnu deformaciju.

Iz dijagrama se vidi da mogu postojati i niskospinski i visokospinski O<sub>h</sub> kompleksi jona d<sup>4</sup> konfiguracije.

Solution So



➤ U spektrima [Mn(H<sub>2</sub>O)<sub>6</sub>]<sup>3+</sup>, [Mn(ox)<sub>6</sub>]<sup>3-</sup> i [Mn(acac)<sub>3</sub>], registruje se široka apsorciona traka na oko 20 000 cm<sup>-1</sup> (500 nm) tako da su svi joni ove konfiguracije obojeni, a boja je od crvene do braon nijanse.





- Solution Stanie Stanie Jona d<sup>5</sup> elektronske konfiguracije je <sup>6</sup>S.
- ➢ Najznačajniji joni sa ovom elektronskom konfiguracijom su Mn<sup>2+</sup> i Fe<sup>3+</sup>.
- U literaturi su jedinjenja Mn<sup>2+</sup> mnogo detaljnije proučena nego jedinjenja Fe<sup>3+</sup>.
- Uzrok tome je što jon Fe<sup>3+</sup> ima izrazitu tendenciju da ostvaruje prelaze sa prenosom naelektrisanja u bliskoj UV oblasti, a odgovarajuće apsorcione trake su intenzivne i protežu se i u oblasti nižih energija (u vidljivoj oblasti), i u većini slučajeva potpuno prekrivaju slabe apsorcione trake koje nastaju kao rezultat, po spinu zabranjenih, d–d prelaza.

Osnovno stanje ovog jona u ligandnom polju je <sup>6</sup>A, sa pet nesparenih elektrona, po jedan u svakom d podnivou, to stanje je spinski sekstet i nema pobuđenih sekstetnih stanja, svaka promena elektronske konfiguracije t<sub>2g</sub><sup>3</sup> e<sub>g</sub><sup>2</sup> vodi do sparivanja elektrona, a to daje kvartetna ili dubletna stanja.





Uprošćeni i dijagram energetskih nivoa jona d<sup>5</sup> elektrona

- U visokospinskim kopleksnim jedinjenjima d<sup>5</sup> elektronske konfiguracije nema po spinu dozvoljenih prelaza i to je uzrok vrlo slabe apsorcije u rastvorima ovih jedinjenja.
- Zato su sva jedinjenja Mn<sup>2</sup> +bezbojna u vodenom rastvoru, i bledo roze obojena u kristalnom stanju, a odgovarajuće apsorpcione trake u spektru vrlo slabog intenziteta



Spektar jona  $[Mn(H_2O)_6]^{2+}$  (----) u vodenom rastvoru perhlorata u vidljivoj oblasti  $[MnBr_4]^{2-}$  (----)

Osnovne karakteristike ovog spektra su:
1)mali intezitet apsorpcionih traka,
2)veliki broj traka ,
3)jedna traka je izrazito uska.

Teorijska razmatranja pokazuju da je širina spektralnih linija, koje nastaju usled d-d prelaza, proporcionalna nagibu linija koje opisuju više energetsko stanje, u odnosu na liniju osnovnog stanja u dijagramima Tanabe-Sugano.

U slucaju jona d<sup>5</sup> konfiguracije energija osnovnog stanja ne zavisi od jačine ligandnog polja (<sup>6</sup>A<sub>1</sub> prava linija) pa su linije viših stanja pod malim uglom, a odgovarajuće apsorpcione trake su uske ili čak vrlo uske (prelazi u stanja nultog nagiba).

- Objašnjenje: Pošto atomi liganada neprekidno osciluju, parametar Δ<sub>o</sub> koji određuje jačinu polja menja vrednost i varira oko neke srednje vrednosti koja odgovara nekom srednjem položaju liganada.
- Ako energetska razlika osnovnog i pobudenog stanja dosta zavisi od veličine Δ<sub>o</sub> onda će se i ona menjati zajedno sa promenom Δ<sub>o</sub> u skladu sa promenom rastojanja Mn<sup>2+</sup>–L.
- ➢ Kada energetska razlika malo zavisi od jačine polja  $\Delta_0$  onda se i energija prelaza slabo menja sa promenom rastojanja Mn<sup>2+</sup>−L.

Tetraedarski kompleksi Mn(II) su žutozelene boje i jače obojeni nego  $O_h$ kompleksi istog jona, intenzivnijih traka, a koeficijent molarne apsorpcije istih je za dva reda veličine veći. Trake su slične kao i kod kompleksa [Mn(H<sub>2</sub>O)<sub>6</sub>]<sup>2+</sup> samo su u ovom slučaju one međusobno bliže.



- Najintenzivnija apsorpciona traka, za nižu vrednost energije, odgovara prelazu elektrona na nivo <sup>4</sup>E, <sup>4</sup>A<sub>1</sub>, a njegova energija ne zavisi od jačine polja i traka je uska, bez obzira na to što se prekriva delom sa dve susedne iz iste grupe.
- U T<sub>d</sub> kompleksima ova traka je na oko 22 000 cm<sup>-1</sup>, a u O<sub>h</sub> kompleksima ~25 000 cm<sup>-1</sup>, što govori o jakom nefeloakustičnom efektu u slučaju T<sub>d</sub> kompleksa u poređenju sa O<sub>h</sub> kompleksima.

#### Niskospinski kompleksi Mn<sup>2+</sup>

- Sa dijagrama energetskih nivoa jona d<sup>5</sup> konfiguracije vidi se da sa porastom energije ligandnog polja energija kvartetnog stanja <sup>4</sup>T<sub>1</sub> opada, kao i energetski nivo dubletnog stanja i za neku vrednost Δ<sub>o</sub> seče liniju osnovnog stanja <sup>6</sup>A<sub>1</sub>(<sup>6</sup>S) pa osnovna konfiguracija postaje t<sub>2g</sub><sup>5</sup> sa jednim nesparenim elektronom.
- Znači kod Mn(II) do sparivanja elektrona dolazi samo u koordinacionim jedinjenjima sa malim brojem liganada i to su ligandi sa kojima metalni jon gradi jake π-veze kao što su CN<sup>-</sup>, NO<sup>+</sup> ili izonitrili.



Dijagram energetskih nivoa za d<sup>5</sup> konfiguraciju

#### UV/VIS spektri kompleksa Mn<sup>2+</sup> jona sa Schiff-ovim bazama

N,N'-*bis*(quinoxaline-2-carboxalidene)hydrazine (qch)



#### N,N'-*bis*(quinoxaline-2-carboxalidene)-1,2-diaminoethane (qce)



N,N'-*bis*(quinoxaline-2-carboxalidene)-1,3-diaminopropane (qcp)

### UV/VIS spektri kompleksa Mn<sup>2+</sup> jona sa Schiff-ovim bazama

| Complex                | Absorption Maxima |                  | log ɛ                                | Band                                   |
|------------------------|-------------------|------------------|--------------------------------------|----------------------------------------|
| Complex                | nm                | cm <sup>-1</sup> | L mol <sup>-1</sup> cm <sup>-1</sup> | Assignment                             |
|                        | 205               | 48780            | 3.90                                 | $\pi \rightarrow \pi^*$                |
|                        | 241               | 41490            | 3.86                                 | $\pi \rightarrow \pi^{\star}$          |
| [Mp/gch]+Cl-]+2H+O     | 270               | 37040            | 2.70                                 | $\pi \rightarrow \pi^{\star}$          |
| [IVIII(UCII)2GI2]*2H2O | 323               | 30960            | 2.30                                 | $\pi \rightarrow \pi^{\star}$          |
| '                      | 444               | 22520            | 1.48                                 | ${}^{6}A_{1} \rightarrow {}^{4}T_{2g}$ |
|                        | 536               | 18660            | 0.95                                 | ${}^{6}A_{1} \rightarrow {}^{4}T_{1g}$ |
|                        | 207               | 48310            | 3.84                                 | $\pi \rightarrow \pi^*$                |
| [Mp/gco)Cl/H=0\]Cl     | 241               | 41490            | 3.97                                 | $\pi \rightarrow \pi^{\star}$          |
|                        | 317               | 31540            | 3.39                                 | $\pi \rightarrow \pi^*$                |
| 2                      | 357               | 28010            | 2.84                                 | $\pi \rightarrow \pi^*$                |
|                        | 207               | 48310            | 3.85                                 | $\pi \rightarrow \pi^*$                |
| [Mn(qcp)(H20)2]Cl2     | 238               | 42020            | 3.72                                 | $\pi \rightarrow \pi^*$                |
| 3                      | 317               | 31540            | 3.46                                 | $\pi \rightarrow \pi^*$                |

