3.1. Skiciranje faznog portreta dvodimenzionalnog nelinearnog DS

Uputstvo za skiciranje faznog portreta nelinearnog DS

Za običnu DJ prvog reda y' = f(x, y) IZOKLINA je geometrijsko mesto tačaka u kojima polje pravaca ima istu vrednost, odnosno

$$\{(x,y) : f(x,y) = k, k = const\}$$

Analogno tome za DS

(1)
$$\frac{dx}{dt} = f(x,y), \qquad \frac{dy}{dt} = g(x,y)$$

gde je $f, g \in C^1(\mathbb{R}^2), t \in \mathbb{R}$, definišu se pojmovi:

- x-NULA-IZOKLINA je skup tačaka u faznoj ravni za koje je dx/dt = 0, tj. f(x,y) = 0
 - geometrijski duž x-nula-izokline je tangentni vektor (f, g) = (0, y'), pa su zato vektori vektorskog polja u faznom portretu paralelni sa y-osom:
 - \uparrow ako je y' > 0
 - \downarrow ako je y' < 0
- y-NULA-IZOKLINA je skup tačaka u faznoj ravni za koje je dy/dt = 0, tj. g(x,y) = 0
 - geometrijski duž y-nula-izokline je tangentni vektor (f, g) = (x', 0), pa su zato vektori vektorskog polja u faznom portretu paralelni sa x-osom:
 - \rightarrow ako je x' > 0 \leftarrow ako je x' < 0

U delovima fazne ravni između nula-izoklina vektore vektorskog polja određujemo na sledeći način:

	f(x,y)>0	f(x,y)=0	f(x,y)<0	
g(x,y)>0	/	≜	◄	
g(x,y)=0		0	-	
g(x,y)<0		¥	-	

Primer 3.8. Skicirati fazni portret DS

$$\frac{dx}{dt} = x + e^{-y}$$
$$\frac{dy}{dt} = -y.$$

REŠENJE. Jedini položaj ravnoteže sistema je (-1, 0). Matrica Jakobijana je

$$J(x,y) = \begin{pmatrix} 1 & -e^{-y} \\ 0 & -1 \end{pmatrix}$$
$$J_1 = J(-1,0) = \begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix} \implies q = \det J_1 = -1 < 0$$

(sopstvene vrednosti matrice J_1 su $\lambda_1 = -1$, $\lambda_2 = 1$ i sopstveni vektori su $v_1 = (1,2)^T$ i $v_2 = (1,0)^T$). Dakle, PR je sedlo linearizovanog sistema, odnosno prema Teoremi 3.4. PR je nelinearno sedlo, čija je stabilna mnogostrukost tangentna u PR na pravac vektora v_1 , a nestabilna mnogostrukost je tangentna u PR na x-osu.

Kako je
$$y' = 0 \iff y = 0, x$$
-osa je y -nula-izoklina. Za $y = 0$ je

- x' = x + 1 > 0 za x > -1 : \rightarrow
- x' = x + 1 < 0 za x < -1: \leftarrow

Dakle, y = 0, x > -1 i y = 0, x < -1 su pravolinijske trajektorije, odnosno ako pođemo iz bilo koje tačke x-ose, izuzev PR (-1,0), ostajemo na x-osi i udaljavamo se od PR (poluprave su nestabilne mnogostrukosti sedla).

Dalje, $x' = 0 \iff y = -\ln(-x)$, ta kriva je *x*-nula-izoklina i duž gornjeg dela krive za x > -1 je $y' = \ln(-x) < 0$, a duž donjeg dela krive za x < -1 je $y' = \ln(-x) > 0$:

Slika 11: Primer 3.8. \sim (a) nula-izokline i vektorsko polje; (b) fazni portret

- za x > -1 je $y' = \ln(-x) < 0$: \downarrow
- za x < -1 je je $y' = \ln(-x) > 0$: \uparrow

Nula-izokline dele ravan na oblasti u kojima se menja znak od x' i y' (Slika 11-(a)). Fazni portret DS prikazan je na Slici 11-(b) i Slici 12.

Slika 12: Primer 3.8. \sim fazni portret nelinearnog DS

Primer 3.9. Skicirati fazni portret DS

$$\frac{dx}{dt} = y - x^2$$
$$\frac{dy}{dt} = x - 2.$$

REŠENJE. x-nula-izoklina je parabola $y = x^2$, a y-nula-izoklina je prava x = 2. Presek nula-izoklina je PR (2,4). Matrica Jakobijana je

$$J = \left(\begin{array}{cc} -2x & 1\\ 1 & 0 \end{array}\right) \ .$$

Za tačku (2,4) je

$$J_1 = J(2,4) = \begin{pmatrix} -4 & 1 \\ 1 & 0 \end{pmatrix} \Rightarrow q = \det J_1 = -1 < 0$$

(sopstvene vrednosti matrice J_1 su $\lambda_1 = -2 - \sqrt{5}$, $\lambda_2 = -2 + \sqrt{5}$ i sopstveni vektori su $v_1 = (-2 + \sqrt{5}, 1)^T$, $v_2 = (-2 - \sqrt{5}, 1)^T$). Dakle, PR je sedlo linearizovanog sistema, odnosno prema Teoremi 3.4. PR je nelinearno sedlo, sa stabilnom mnogostrukosti koja je tangentna u PR na pravac vektora v_2 i nestabilnom mnogostrukosti koja je tangentna u PR na pravac vektora v_1 .

Duž x-nula-izokline $y = x^2$ je

- y' = x 2 > 0 za x > 2 : \uparrow
- y' = x 2 < 0 za x < 2: \downarrow

Duž y-nula-izokline x = 2 je

- x' = y 4 > 0 za y > 4 : \rightarrow
- x' = y 4 < 0 za y < 4 : \leftarrow

Smer strelica u faznom portretu prikazan je na Slici 13.

Slika 13: Primer 3.9. \sim nula-izokline i vektorsko polje

Nula-izokline dele \mathbb{R}^2 na četiri oblasti A, B, C, D. Sve trajektorije koje polaze iz neke tačke oblasti B ostaju u toj oblasti i teže ∞ kada $t \to \infty$ u severoistočnom pravcu \nearrow (Slika 13-(c)). Sve trajektorije koje polaze iz neke tačke oblasti D ostaju u toj oblasti i teže $-\infty$ kada $t \to \infty$ u jugozapadnom pravcu \swarrow . Sve trajektorije koje polaze iz neke tačke unutar oblasti A i C mogu da "biraju" : mogu preseći nula-izoklinu i ući unutar oblasti B ili D gde ostaju, ili se približavaju sedlu (2, 4) do nekog vremenskog trenutka, nakon čega počinju da se udaljavaju od nestabilnog

Slika 14: Primer 3.9. \sim fazni portret nelinearnog DS

PR u pravcu njegove nestabilne mnogostrukosti. Fazni portret prikazan je na Slici 14. $\hfill \boxtimes$

Primer 3.10. Ispitati tip položaja ravnoteže DS

$$\frac{dx}{dt} = x (3 - x - 2y)$$
$$\frac{dy}{dt} = y (2 - x - y) .$$

REŠENJE. Položaji ravnoteže sistema su: $P_1(0,0), P_2(0,2), P_3(3,0)$ i $P_4(1,1)$. Matrica Jakobijana je

$$J(x,y) = \begin{pmatrix} 3 - 2x - 2y & -2x \\ -y & 2 - x - 2y \end{pmatrix}$$

Za PR $P_1(0,0)$: sopstvene vrednosti matrice

$$J_2 = J(0,0) = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$$

su $\lambda_1 = 3, \lambda_2 = 2$, a sopstveni vektori su $v_1 = (1, 0)^T$, $v_2 = (0, 1)^T$. PR (0,0) je NESTABILAN ČVOR linearizovanog sistema, odnosno prema Teoremi 3.5. PR je nelinearan nestabilan čvor. Fazni portret linearizovanog sistema je prikazan na Slici 15-(a). Trajektorije "napuštaju" koordinatni početak tangentno na pravac odredjen sporim sopstvenim vektorom v_2 , tj. tangentno na y-osu. Fazni portret nelinearnog sistema u okolini (0,0) izgleda kao na Slici 15-(b).

Slika 15: Primer 3.10. \sim PR (0,0) je nestabilan čvor

Za PR $P_2(0,2)$: sopstvene vrednosti matrice

$$J_1 = J(0,2) = \begin{pmatrix} -1 & 0\\ -2 & -2 \end{pmatrix}$$

su $\lambda_1 = -2$, $\lambda_2 = -1$, a sopstveni vektori su $v_1 = (0, 1)^T$, $v_2 = (-1, 2)^T$. PR (0, 2)je STABILAN ČVOR linarizovanog sistema, odnosno prema Teoremi 3.4. (0, 2) je NELINEARAN STABILAN ČVOR. Fazni portret linearizovanog sistema je prikazan na Slici 16-(a). Trajektorije se približavaju PR (0, 2) tangentno na pravac određen sporim sopstvenim vektorom v_2 . Fazni portret nelinearnog sistema u okolini (0, 2)izgleda kao na Slici 16-(b).

Slika 16: Primer 3.10. \sim PR (0, 2) je stabilan čvor

Za PR $P_3(3,0)$: sopstvene vrednosti matrice

$$J_4 = J(3,0) = \begin{pmatrix} -3 & -6 \\ 0 & -1 \end{pmatrix}$$

su $\lambda_1 = -3, \lambda_2 = -1$, a sopstveni vektori su $v_1 = (1, 0)^T, v_2 = (-3, 1)^T$. PR (3, 0) je STABILAN ČVOR linearizovanog sistema, odnosno Prema Teormi 3.4. (3, 0) je

Slika 17: Primer 3.10. \sim PR (3,0) je stabilan čvor

NELINEARAN STABILAN ČVOR. Fazni portret linearizovanog sistema je prikazan na Slici 18-(a). Trajektorije se približavaju stabilnom čvoru tangentno na spori pravac određen sopstvenim vektorom v_2 . Fazni portret nelinearnog sistema u okolini (3,0) izgleda kao na Slici 18-(b).

Za PR (1,1): sopstvene vrednosti matrice

$$J_3 = J(1,1) = \begin{pmatrix} -1 & -2 \\ -1 & -1 \end{pmatrix}$$

su $\lambda_1 = -1 - \sqrt{2}$, $\lambda_2 = -1 + \sqrt{2}$, a sopstveni vektori su $v_1 = (\sqrt{2}, 1)^T$, $v_2 = (-\sqrt{2}, 1)^T$. PR (1, 1) je SEDLO linearizovanog sistema, odnosno prema Teormi 3.4. (1, 1) je NELINEARNO SEDLO. Pravci određeni sopstvenim vektorom v_1 su stabilni, a pravci određeni sopstvenim vektorom v_2 su nestabilni pravci sedla. Fazni portret linearizovanog sistema i fazni portret nelinearnog sistema u okolini (1, 1) je prikazan na Slici 17-(b).

Slika 18: Primer 3.10. \sim PR (1,1) je sedlo

Duž x-nula-izokline x = 0 je

• y' = y(2 - y) > 0 za 0 < y < 2: \uparrow

• y' = y(2-y) < 0 za y < 0 i y > 2 : \downarrow

Duž x-nula-izokline x + 2y = 3 je

- y' = y(y-1) > 0 za y < 0 i y > 1 : \uparrow
- y' = y(y-1) < 0 za 0 < y < 1 : \downarrow

Duž y-nula-izokline y = 0 je

- x' = x(3-x) > 0 za $0 < x < 3 : \to$
- x' = x(3-x) < 0 za x < 0 i x > 3 : \leftarrow

Duž y-nula-izokline x + y = 2 je

- x' = x(x-1) > 0 za x < 0 i x > 1 : \rightarrow
- x' = x(x-1) < 0 za 0 < x < 1 : \leftarrow

Kako su sva četiri PR nehiperbolična fazni portet nelinearnog DS biće u okolini tih PR topološki konjugovan faznom portretu odgovarajućeg linearizovanog sistema. Korišćenjem sve četiri slike možemo skicirati fazni portret (Slika 19-(a).) Primetimo da koordinatne ose sadrže pravolinijske trajektorije, jer je x' = 0 za x = 0 i y' = 0 za y = 0. Dalje prema osećaju možemo dopuniti ostatak faznog portreta (Slika 19-(b).). Pre svega, trajektorije koje polaze iz neke tačke u okolini (0,0) koji je nestabilan PR, približavaće se stabilnom čvoru $P_3(3,0)$ na x-osi, a neke se približavaju stabilnom čvoru $P_2(0,2)$ na y-osi. U sredini mora postojati trajektorija koja kao da "ne može da se odluči" na koju stranu da krene, tako da završava u sedlu (1,1). Te dve trajektorije su **stabilne mnogostrukosti sedla**, prikazane na Slici 19-(b).

Slika 19: Primer 3.10.

Dati DS ima dva stabilna PR P_2 , P_3 . Takvu karakteristiku DS nazivano bistabilnost DS. U slučaju bistabilnosti DS od posebnog interesa je odrediti oblasti privlačnosti $\mathcal{B}(P_i)$, i = 2, 3, za dva stabilna PR, odnosno za dva atraktora DS. Oblast privlačnosti stabilnog PR sadrže sve tačke fazne ravni za koje važi da trajektorija koja polazi iz te tačke se približava PR kada $t \to \infty$. Trajektorije koje polaze ispod stabilne mnogostrukosti sedla približavaće se stabilnom čvoru $P_3(3,0)$ na x-osi, dok sve trajektorije koje polaze iznad stabilne mnogostrukosti sedla približavaće se stabilnom čvoru $P_2(0,2)$ na y-osi. Dakle, stabilne mnogostrukosti sedla predstavljaju separatrise između oblasti privlačnosti $\mathcal{B}(P_2)$ i $\mathcal{B}(P_3)$.

Slika 20: Primer 3.10. \sim fazni portret nelinearnog DS

Primer 3.11. Skicirati fazni portret DS

$$\frac{dx}{dt} = x^2 - 1$$
$$\frac{dy}{dt} = -xy.$$

REŠENJE. x-nula-izokline su prave $x = \pm 1$, a y-nula-izoklina su prave x = 0, y = 0. Položaji ravnoteže su (1,0), (-1,0).

Matrica Jakobijana je

$$J = \left(\begin{array}{cc} 2x & 0\\ -y & -x \end{array}\right) \,.$$

Za PR je

$$J(1,0) = \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix}, \qquad J(-1,0) = \begin{pmatrix} -2 & 0 \\ 0 & 1 \end{pmatrix}$$

Dakle, oba PR su sedla linearizovanog DS, pa i nelinearna sedla datog DS. Za sedlo (1,0) x-osa je nestabilan pravac, a y-osa je stabilan pravac, dok za sedlo (-1,0) x-osa je stabilan pravac, a y-osa je nestabilan pravac.

Duž x-nula-izokline x = 1 je

• y' = -y > 0 za y < 0 : \uparrow

Slika 21: Primer 3.11. \sim (a) nula-izokline i vektorsko polje; (b) fazni portret

•
$$y' = -y < 0$$
 za $y > 0$: \downarrow

Dakle, x = 1, y < 0 i x = 1, y > 0 su pravolinijske trajektorije, odnosno ako pođemo iz bilo koje tačke prave x = 1, izuzev PR (1,0), ostajemo na toj pravoj i približavamo se PR (poluprave su stabilne mnogostrukosti sedla).

Duž x-nula-izokline x = -1 je

• y' = y > 0 za y > 0 : \uparrow

•
$$y' = y < 0$$
 za $y < 0$: \downarrow

Dakle, x = -1, y < 0 i x = -1, y > 0 su pravolinijske trajektorije, odnosno ako pođemo iz bilo koje tačke prave x = -1, izuzev PR (-1,0), ostajemo na toj pravoj i udaljavamo se od PR (poluprave su nestabilne mnogostrukosti sedla).

Duž y-nula-izokline x = 0 je

• x' = -1 < 0 za svako $x : \leftarrow$

Duž y-nula-izokline y = 0 je

- $x' = x^2 1 > 0$ za x < -1 i x > 1 : \rightarrow
- $x' = x^2 1 < 0$ za $x \in (-1, 1)$: \leftarrow

Dakle,

$$y = 0, x < -1,$$
 $y = 0, -1 < x < 1,$ $y = 0, x > 1$

su pravolinijske trajektorije. Ako pođemo iz bilo koje tačke x-ose, za x < -1 ostajemo na toj pravoj i približavamo se PR (-1,0) (poluprava je stabilna mnogostrukost sedla). Ako pođemo iz bilo koje tačke x-ose, za x > 1 ostajemo na toj pravoj i udaljavamo se od PR (1,0) (poluprava je nestabilna mnogostrukost sedla). Deo x-ose za $x \in (-1,1)$ pripada stabilnoj mnogostrukosti PR (-1,0)ali i nestabilnoj mnogostrukosti PR (1,0), odnosno sve trajektorije koje polaze sa neke tačke x-ose za $x \in (-1,1)$ udaljavaju se od PR (1,0) i približavaju se PR (-1,0). Takvu trajektoriju nazivamo *heterociklična* trajektorija odnosno *heterociklična veza* PR (-1,0) i (1,0).

Nula-izokline i smer strelica u faznom portretu, kao i fazni portret prikazani su na Slici 21 i Slici 22. $\ interface{2}$

Slika 22: Primer 3.11. \sim fazni portret nelinearnog DS

Slika 23: (a) homociklična trajektorija PR x^0 ; (b) heterociklična trajektorija PR x^1 i x^2 .

Definicija 9 [Heterociklična trajektorija] Neka su \hat{x}_1 i \hat{x}_2 položaji ravnoteže DS. Trajektorija $\gamma_{x_0} = \{\Phi^t(x_0), t \in I_{x_0}\}$ kroz tačku $x_0 \in \mathbb{E}$ naziva se heterociklična veza između položaja ravnoteže \hat{x}_1 i \hat{x}_2 (Slika 23 – (b)) ako je

$$\lim_{t \to \infty} \Phi^t(x_0) = \hat{x_2}, \qquad \lim_{t \to -\infty} \Phi^t(x_0) = \hat{x_1}$$

Trajektorija $\gamma_{x_0} \subset \mathcal{W}^u(\hat{x}_1)$ i $\gamma_{x_0} \subset \mathcal{W}^s(\hat{x}_2)$, gde je $\mathcal{W}^u(\hat{x}_1)$ nestabilna mnogostrukost PR \hat{x}_1 , a $\mathcal{W}^s(\hat{x}_2)$ stabilna mnogostrukost PR \hat{x}_2 .

Primer 3.12. Skicirati fazni portret DJ $x'' + x^3 - x = 0$. REŠENJE. Datu DJ možemo da napišemo u obliku DS

(2)
$$\frac{\frac{dx}{dt} = y}{\frac{dy}{dt} = x - x^3}$$

PR su (0,0), $(\pm 1,0)$. Matrica Jakobijana je

$$J = \left(\begin{array}{cc} 0 & 1\\ 1 - 3x^2 & 0 \end{array}\right) \,.$$

$$J_{1} = J(\pm 1, 0) = \begin{pmatrix} 0 & 1 \\ -2 & 0 \end{pmatrix} \Rightarrow q = \det J_{1} = 2 > 0, p = \operatorname{tr} J_{1} = 0,$$
$$J_{2} = J(0, 0) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \Rightarrow q = \det J_{2} = -1 < 0$$

(sopstvene vrednosti matrice $J(\pm 1, 0)$ su $\pm i\sqrt{2}$, a sopstvene vrednosti matrice J(0, 0) su ± 1 i odgovarajući sopstveni vektori su $v_{1,2} = (\pm 1, 1)^T$). Dakle, (0, 0) je sedlo linearizovanog sistema, pa kako je $F \in C^1(\mathbb{R})$, PR (0, 0) je nelinearno sedlo sa stabilnom mnogostrukosti tangentnom u PR na pravac vektora $(-1, 1)^T$ i nestabilnom mnogostrukosti tangentnom u PR na pravac vektora $(1, 1)^T$. PR $(\pm 1, 0)$ su centri linearizovanog DS. O stabilnosti nehiperboličnih PR $(\pm 1, 0)$ ne možemo doći do zaključka primenom teoreme Hatman-Grobmana. Napominjemo da prema Primeru 3.4. dodavanjem nelinearnog člana centar linearizovanog sistema može biti transformisan u stabilan ili nestabilan fokus, tako da u ovom slučaju treba biti pažljiv. U ovom primeru se to neće desiti i centar linearizovanog sistema ostaće centar nelinearnog sistema ostaće centar nelinearnog sistema ostaće centar nelinearnog sistema - videti Primer 3.12A.).

x-nula-izoklina je x-osa, a y-nula-izokline su prave $x = 0, x = \pm 1$.

Slika 24: Primer 3.12. \sim (a) nula-izokline i vektorsko polje; (b) fazni portret

Duž x-nula-izokline y = 0 je

- $y' = x(1 x^2) > 0$ za x < -1 ili $x \in (0, 1)$: \uparrow
- $y' = x(1-x^2) < 0$ za $x \in (-1,0)$ ili x > 1: \downarrow

Duž y-nula-izoklina $x = 0, x = \pm 1$ je

- x' = y > 0 za y > 0 : \rightarrow
- x' = y < 0 za y < 0 : \leftarrow

Slika 25: Primer 3.12. \sim fazni portret nelinearnog DS

Svaki od centara okružen je zatvorenim trajektorijama koje odgovaraju periodičnim rešenjima. Postoje takođe veće zatvorene trajektorije unutar kojih se nalaze sva tri PR. Specijalno, imamo dve trajektorije koje izgledaju kao da polaze iz sedla u koordinatnom početku u pravcu nestabilne mnogostrukosti, ali se nakon izvesnog vremena vraćaju i približavaju koordinatnom početku u pravcu stabilne mnogostrukosti sedla. Tačnije te trajektorije se približavaju (0,0) kada $t \to \pm \infty$. Takve trajektorije se nazivaju *homociklične* trajektorije PR (0,0).

Definicija 10 [Homociklična trajektorija] Neka je \hat{x}_1 položaj ravnoteže DS. Trajektorija $\gamma_{x_0} = \{\Phi^t(x_0), t \in I_{x_0}\}$ kroz tačku $x_0 \in \mathbb{E}$ naziva se homociklična trajektorija položaja ravnoteže \hat{x}_1 (Slika 23 – (a)) ako je

$$\lim_{t \to \pm \infty} \Phi^t(x_0) = \hat{x_1}$$

Trajektorija $\gamma_{x_0} \subset \mathcal{W}^u(\hat{x}_1)$ i $\gamma_{x_0} \subset \mathcal{W}^s(\hat{x}_1)$, gde su $\mathcal{W}^s(\hat{x}_1)$ i $\mathcal{W}^u(\hat{x}_1)$ stabilna i nestabilna mnogostrukost PR \hat{x}_1 .

Primer 3.13. Skicirati fazni portret DJ $x'' - x^3 + x = 0$. REŠENJE. Datu DJ možemo da napišemo u obliku DS

(3)
$$\begin{aligned} \frac{dx}{dt} &= y\\ \frac{dy}{dt} &= x^3 - x \end{aligned}$$

PR su (0,0), $(\pm 1,0)$. Matrica Jakobijana je

$$J = \begin{pmatrix} 0 & 1 \\ 3x^2 - 1 & 0 \end{pmatrix}.$$
$$J_1 = J(\pm 1, 0) = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix} \implies q = \det J_1 = -2 < 0,$$
$$J_2 = J(0, 0) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \implies q = \det J_2 = 1 > 0, \quad p = \operatorname{tr} J_2 = 0.$$

(sopstvene vrednosti matrice $J(\pm 1, 0)$ su $\pm\sqrt{2}$ i odgovarajući sopstveni vektori su $(\pm\sqrt{2}/2, 1)^T$, a sopstvene vrednosti matrice J(0, 0) su $\pm i$). Dakle, $(\pm 1, 0)$ su sedla, a (0, 0) je centar linearizovanog DS. PR $(\pm 1, 0)$ su nelinearna sedla. Za oba sedla stabilne mnogostrukosti tangentne su u PR na pravac vektora $(-\sqrt{2}/2, 1)^T$, a nestabilne mnogostrukosti su tangentne u PR na pravac vektora $(\sqrt{2}/2, 1)^T$.

Koordinatni početak iako je nehiperbolični PR o čijoj stabilnosti ne možemo doći do zaključka primenom teoreme Hatman-Grobmana ostaće nelinearan centar (videti Primer 3.13A. - dati DS je DS Hamiltona).

x-nula-izoklina je x-osa, a y-nula-izokline su prave $x = 0, x = \pm 1$.

Slika 26: Primer 3.13. \sim fazni portret nelinearnog DS

Duž x-nula-izokline y = 0 je

- $y' = x(x^2 1) > 0$ za $x \in (-1, 0)$ ili x > 1: \uparrow
- $y' = x(x^2 1) < 0$ za x < -1 ili $x \in (0, 1)$: \downarrow

Slika 27: Primer 3.13. \sim nula-izokline i vektorsko polje

Duž y-nula-izoklina $x = 0, x = \pm 1$ je

- x' = y > 0 za y > 0 : \rightarrow
- x' = y < 0 za y < 0 : \leftarrow

Imamo dve heterociklične trajektorije odnosno heterociklične veze između PR (-1,0) i (1,0), duž gornje se sve trajektorije udaljavaju od PR (-1,0) i približavaju PR (1,0), dok se duž donje heterociklične trajektorije sve trajektorije udaljavaju od PR (1,0) i približavaju PR (-1,0).

Slika 28: Primer 3.13. \sim fazni portret nelinearnog DS

Primer 3.14. Skicirati fazni portret DS

$$\frac{dx}{dt} = y + x^2 - y^2$$
$$\frac{dy}{dt} = -x - 2xy.$$

REŠENJE. PR su $P_1(0,0)$, $P_2(0,1)$, $P_3\left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$, $P_4\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$. Matrica Jakobijana je

$$J = \begin{pmatrix} 2x & 1-2y \\ -1-2y & -2x \end{pmatrix}.$$
$$J_1 = J(0,0) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \Rightarrow q = \det J_1 = 1 > 0, \quad p = \operatorname{tr} J_1 = 0$$

Koordinatni početak je centar linearizovanog sistema, dakle nehiperbolični PR o čijoj stabilnosti ne možemo doći do zaključka primenom teoreme Hartman-Grobmana. Dati DS je DS Hamiltona (videti Primer 3.14A.), pa će P_1 biti nelinearan centar.

$$J_{2} = J(0,1) = \begin{pmatrix} 0 & -1 \\ -3 & 0 \end{pmatrix} \Rightarrow q = \det J_{2} = -3 < 0.$$
$$\lambda_{1} = -\sqrt{3}, \quad v_{1} = \left(\frac{\sqrt{3}}{3}, 1\right)^{T}, \quad \lambda_{2} = \sqrt{3}, \quad v_{2} = \left(-\frac{\sqrt{3}}{3}, 1\right)^{T}$$

PR P_2 je sedlo linearizovanog sistema, pa će biti nelinearno sedlo, čija je stabilna mnogostrukost tangentna u P_2 na pravac vektora v_1 i nestabilna mnogostrukost

tangentna na vektor v_2 .

$$J_{3} = J\left(-\frac{\sqrt{3}}{2}, -\frac{1}{2}\right) = \begin{pmatrix} -\sqrt{3} & 2\\ 0 & \sqrt{3} \end{pmatrix} \implies q = \det J_{3} = -3 < 0$$
$$\lambda_{3} = -\sqrt{3}, \quad v_{3} = (1, 0)^{T}, \quad \lambda_{4} = \sqrt{3}, \quad v_{4} = \left(\frac{\sqrt{3}}{3}, 1\right)^{T}$$

PR P_3 je sedlo linearizovanog sistema, pa će biti nelinearno sedlo, čija je stabilna mnogostrukost tangentna u P_3 na pravac vektora v_3 i nestabilna mnogostrukost tangentna na vektor v_4 .

$$J_4 = J\left(-\frac{\sqrt{3}}{2}, -\frac{1}{2}\right) = \left(\begin{array}{cc}\sqrt{3} & 2\\ 0 & -\sqrt{3}\end{array}\right) \implies q = \det J_4 = -3 < 0$$
$$\lambda_5 = -\sqrt{3}, \ v_5 = \left(-\frac{\sqrt{3}}{3}, 1\right)^T, \ \lambda_6 = \sqrt{3}, \ v_6 = (1, 0)^T$$

PR P_4 je sedlo linearizovanog sistema, pa će biti nelinearno sedlo, čija je stabilna mnogostrukost tangentna u P_4 na pravac vektora v_5 i nestabilna mnogostrukost tangentna na vektor v_6 .

x-nula-izokline su krive $x = \pm \sqrt{y^2 - y}$, a y-nula-izokline su prave x = 0, $y = \frac{1}{2}$.

Duž x-nula-izokline $x = \sqrt{y^2 - y}$ je

• $y' = -\sqrt{y^2 - y} (1 + 2y) > 0$ za $y < -\frac{1}{2}$: \uparrow

•
$$y' = -\sqrt{y^2 - y} (1 + 2y) < 0$$
 za $y > -\frac{1}{2}$:

Duž x-nula-izokline $x = -\sqrt{y^2 - y}$ je

•
$$y' = \sqrt{y^2 - y} (1 + 2y) > 0$$
 za $y > -\frac{1}{2}$: \uparrow

•
$$y' = \sqrt{y^2 - y} (1 + 2y) < 0$$
 za $y < -\frac{1}{2}$: \downarrow

Duž y-nula-izokline x = 0 je

- $x' = y y^2 > 0$ za 0 < y < 1 : \rightarrow
- $x' = y y^2 < 0$ za y < 0 i za y > 1 : \leftarrow

Duž y-nula-izokline $y = -\frac{1}{2}$ je

• $x' = x^2 - \frac{3}{4} > 0$ za $x < -\frac{\sqrt{3}}{2}$ i za $x > \frac{\sqrt{3}}{2}$: \rightarrow • $x' = x^2 - \frac{3}{4} < 0$ za $-\frac{\sqrt{3}}{2} < x < \frac{\sqrt{3}}{2}$: \leftarrow

Dakle,

$$t_1: y = -\frac{1}{2}, x < -\frac{\sqrt{3}}{2}, t_2: y = -\frac{1}{2}, -\frac{\sqrt{3}}{2} < x < \frac{\sqrt{3}}{2}, t_3: y = -\frac{1}{2}, x > \frac{\sqrt{3}}{2}$$

su pravolinijske trajektorije. Ako pođemo iz bilo koje tačke poluprave t_1 ostajemo na toj pravoj i približavamo se PR P_3 (poluprava je stabilna mnogostrukost sedla). Ako pođemo iz bilo koje tačke poluprave t_3 ostajemo na toj pravoj udaljavajući se od PR P_4 (poluprava je nestabilna mnogostrukosti sedla). Deo prave y = -1/2 za $x \in (-\sqrt{3}/2, \sqrt{3}/2)$ pripada stabilnoj mnogostrukosti PR P_3 ali i nestabilnoj mnogostrukosti PR P_4 , odnosno sve trajektorije koje polaze sa neke tačke koja pripada t_2 udaljavaju se od PR P_4 i približavaju se PR P_3 . Dakle, t_2 je heterociklična trajektorija, odnosno heterociklična veza PR P_3 i P_4 .

Nula-izokline i fazni portret prikazani su na Slici 29.

Slika 29: Primer 3.14. \sim (a) nula-izokline i fazni portret DS; (b) fazni portret i tri heterociklične veze između sedla

Primetimo da je $v_3 = v_6$, odnosno da se stabilan pravac v_3 sedla P_3 poklapa sa nestabilnim pravcem v_6 sedla P_4 , što ukazuje na postojanje heterociklične veze između ova dva sedla. Kako je takođe $v_1 = v_4$ i $v_2 = v_5$, ispitajmo da li postoje i heterociklične veze između sedla P_2 i P_3 , kao i između sedla P_2 i P_4 . Naime, prava kroz P_2 i P_3 je $y = \sqrt{3}x + 1$ i sadrži stabilan pravac sedla P_2 određen vektorom v_1 i nestabilan pravac sedla P_3 određen vektorom v_4 . Pokažimo da su

$$t_4: y = \sqrt{3} x + 1, x < -\frac{\sqrt{3}}{2},$$

$$t_5: y = \sqrt{3} x + 1, -\frac{\sqrt{3}}{2} < x < 0,$$

$$t_6: y = \sqrt{3} x + 1, x > 0$$

pravolinijske trajektorije DS, odnosno da je $y = \sqrt{3} x + 1$ rešenje obične DJ

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{-x(1+2y)}{y+x^2-y^2} \quad \Leftrightarrow \quad x(1+2y)dx + (y+x^2-y^2)dy = 0$$

Zaista,

$$x(3+2\sqrt{3}x)dx + (-2x^2 - \sqrt{3}x)\sqrt{3}\,dx = x(3+2\sqrt{3}x)dx - x(2\sqrt{3}x+3)dx = 0.$$

Dakle, t_4, t_5, t_6 su pravolinijske trajektorije DS. Poluprava t_4 je nestabilna mnogostrukost sedla P_3 , poluprava t_6 je stabilna mnogostrukost sedla P_2 , dok je t_5 heterociklična veza između sedla P_2 i P_3 i sve trajektorije koje polaze sa neke tačke koja pripada t_5 udaljavaju se od PR P_3 i približavaju se PR P_2 . Analogno se može pokazati da je

$$t_7: y = -\sqrt{3}x + 1, \ 0 < x < \frac{\sqrt{3}}{2},$$

heterociklična veza između sedla P_2 i P_4 i sve trajektorije koje polaze sa neke tačke koja pripada t_7 udaljavaju se od PR P_2 i približavaju se PR P_4 .

Sistemi Hamiltona

Definicija 11 Dvodimenzionalni nelinearni DS naziva se SISTEM HAMILTONA ako postoji funkcija $H \in C^2(E), E \subset \mathbb{R}^2$ tako da se sistem može predstaviti u obliku

(4)
$$\frac{dx}{dt} = \frac{\partial H}{\partial y}, \quad \frac{dy}{dt} = -\frac{\partial H}{\partial x}.$$

Funkcija H(x, y) naziva se HAMILTONIJAN DS.

Teorema 7 Dvodimenzionalni nelinearni DS

(5)
$$\frac{dx}{dt} = f(x,y), \qquad \frac{dy}{dt} = g(x,y), \qquad f,g \in C^1(E), \ t \in \mathbb{R},$$

je sistem Hamiltona u povezanoj oblasti E ako i samo ako

(6)
$$\frac{\partial f}{\partial x}(x,y) = -\frac{\partial g}{\partial y}(x,y), \quad (x,y) \in E.$$

Dokaz. (⇒:) Ako je dvodimenzionalni nelinearni DS (11) sistem Hamiltona, postoji funkcija $H \in C^2(E)$, tako da je

(7)
$$f(x,y) = \frac{\partial H}{\partial y}(x,y), \qquad g(x,y) = -\frac{\partial H}{\partial x}(x,y).$$

Kako su $f,g \in C^1(E),$ diferenciranjem prve jednakosti u (7) pox,a druge poydobija se

$$\frac{\partial f(x,y)}{\partial x} = \frac{\partial H^2(x,y)}{\partial x \partial y}, \quad \frac{\partial g(x,y)}{\partial y} = -\frac{\partial H^2(x,y)}{\partial y \partial x}, \quad (x,y) \in E$$

Kako je $H \in C^2(E)$ sledi jednakost mešovitih parcijalnih izvoda, odnosno (6).

(\Leftarrow :) Obrnuto, ako važi relacija (6) moguće je efektivno odrediti funkciju $H \in C^{(2)}(E)$, tako da važi (7), pa je DS (11) sistem Hamiltona.

Neka je $(x_0, y_0) \in E$ proizvoljna tačka. Kako je E povezana oblast, iz $\frac{\partial H(x,y)}{\partial y} = f(x,y)$ za svako $(x,y) \in E$, sledi

$$H(x,y) = \int_{y_0}^{y} f(x,t) \, dt + \psi(x),$$

gde je ψ proizvoljna neprekidno diferencijabilna funkcija. Funkciju ψ odredjujemo iz relacije

$$\frac{\partial}{\partial x} \left(\int_{y_0}^y f(x,t) \, dt \right) + \psi'(x) = \frac{\partial H(x,y)}{\partial x} = -g(x,y)$$

Zbog neprekidnosti funkcija f i $\frac{\partial f}{\partial y}$ i uslova (6) dobija se

$$\psi'(x) = -g(x,y) - \frac{\partial}{\partial x} \left(\int_{y_0}^y f(x,t) \, dt \right)$$

= $-g(x,y) - \int_{y_0}^y \frac{\partial f(x,t)}{\partial x} \, dt$
= $-g(x,y) + \int_{y_0}^y \frac{\partial g(x,t)}{\partial t} \, dt = -g(x,y_0)$

odakle sledi da je

$$\psi(x) = -\int_{x_0}^x g(t, y_0) \, dt + c_1.$$

Dakle,

(8)
$$H(x,y) = \int_{y_0}^{y} f(x,t) dt - \int_{x_0}^{x} g(t,y_0) dt + c.$$

Kako je $f, g \in C^1(E)$

$$\frac{\partial H(x,y)}{\partial y} = f(x,y),$$

i

$$\frac{\partial H(x,y)}{\partial x} = \int_{y_0}^y \frac{\partial f(x,t)}{\partial x} dt - g(x,y_0) = -\int_{y_0}^y \frac{\partial g(x,t)}{\partial t} dt - g(x,y_0)$$
$$= -g(x,y) + g(x,y_0) - g(x,y_0) = -g(x,y),$$

funkcija H odredjena sa (8) zadovoljava (7)
i $H\in C^{(2)}(E),$ pa je DS (11) sistem Hamiltona. \boxtimes

Teorema 8 Hamiltonijan DS Hamiltona koji nije identički jednak konstanti je integral tog sistema.

DOKAZ. Neka je (x(t), y(t)) proizvoljno rešenje DS (4).

$$\frac{dH(x(t), y(t))}{dt} = \frac{\partial H}{\partial x} x'(t) + \frac{\partial H}{\partial y} y'(t) = \frac{\partial H}{\partial x} \frac{\partial H}{\partial y} + \frac{\partial H}{\partial y} \left(-\frac{\partial H}{\partial x} \right) = 0$$
$$\Rightarrow \quad H(x(t), y(t)) = \text{const}.$$

Dakle, Hamiltonijan ima konstantnu vrednost duž proizvoljnog rešenja (x(t), y(t))i kako je $H \in C^2(E), H \not\equiv const., H(x, y)$ predstavlja integral DS (4). \Box

U primenama sistemi u kojima energija nije funkcija vremena nazivaju se **konzervativni**. Sistem Hamiltona je zapravo konzervativni sistem. Posmatrajmo pravolinijsko kretanje čestice mase m, duž x-ose pod dejstvom nelinearne sile F(x). Diferencijalna jednačina kretanja, prema II Njutnovom zakonu, je mx'' + F(x) = 0. Ako je V(x) potencijalna energija određena sa F(x) = -dV(x)/dx, imamo

$$mx'' + F(x) = 0 \implies mx''x' - \frac{dV(x)}{dx}x' = 0 \implies \frac{d}{dt} \left[\frac{1}{2}m(x')^2 + V(x)\right] = 0$$

Dakle, ukupna energija sistema koja je zbir kinetičke i potencijalne energije ima kao funkcija vremena konstantnu vrednost:

$$\Rightarrow \quad \frac{1}{2}m(x')^2 + V(x) = c \,.$$

Definicija 12 Položaj ravnoteže x^* nelinearnog DS x' = f(x) naziva se **nedegenerativni** ako matrica $Df(x^*)$ nema sopstvene vrednosti jednake nula. Ako je bar jedna sopstvena vrednost matrice Jakobijana $Df(x^*)$ jednaka nuli, položaj ravnoteže x^* nelinearnog DS se naziva **degenerativni**.

Dakle, nedegenerativni PR nelinearnog DS u ravni je ili hiperbolični PR ili centar linearizovanog sistema. Degenerativni PR nelinearnog DS su neizolovani PR linearizovanog sistema.

Teorema 9 Svaki nedegenerativni PR DS Hamiltona je sedlo ili centar odgovarajućeg linearizovanog DS.

DOKAZ. Matrica Jakobijana linearizovanog sistema u PR $M(x_0, y_0)$ je

(9)
$$J_0 = J(x_0, y_0) = \begin{pmatrix} \frac{\partial^2 H}{\partial x \partial y}(x_0, y_0) & \frac{\partial^2 H}{\partial y^2}(x_0, y_0) \\ -\frac{\partial^2 H}{\partial x^2}(x_0, y_0) & -\frac{\partial^2 H}{\partial y \partial x}(x_0, y_0) \end{pmatrix}.$$

Kako je PR nedegenerativni

$$D = \det(J_0) = \frac{\partial^2 H}{\partial x^2}(x_0, y_0) \frac{\partial^2 H}{\partial y^2}(x_0, y_0) - \left(\frac{\partial^2 H}{\partial x \partial y}(x_0, y_0)\right)^2 \neq 0,$$

pa uzevši u obzir da je

$$T = \operatorname{tr}(J_0) = \frac{\partial^2 H}{\partial x \partial y}(x_0, y_0) - \frac{\partial^2 H}{\partial x \partial y}(x_0, y_0) = 0,$$

PR je sedlo akko je D < 0, odnosno PR je centar akko je D > 0.

Primetimo da je svaki PR (x_0, y_0) DS Hamiltona (4) stacionarna tačka Hamiltonijana H(x, y) tog sistema.

Lema 1 Ako je položaj ravnoteže $\mathbf{0} = (0,0)$ DS Hamiltona (4) nelinearan fokus, tada tačka (0,0) ne predstavlja ni strogi lokalni minimum niti strogi lokalni maksimum Hamiltonijana H(x, y) tog sistema. DOKAZ. Ako je **0** nelinearan fokus DS Hamiltona (4), prema Definiciji 3.4. postoji $\delta > 0$ tako da za svako $0 < r_0 < \delta$ i $\theta_0 \in \mathbb{R}$ za rešenje DS u polarnim koordinatama koje zadovoljava početni uslov $r(0) = r_0, \theta(0) = \theta_0$ važi $r(t, r_0, \theta_0) \to 0$ i $|\theta(t, r_0, \theta_0)| \to \infty$ kada $t \to \pm \infty$, odnosno za svako $(x_0, y_0) \in N_{\delta}(\mathbf{0}) \setminus \{\mathbf{0}\}$ je

(10)
$$x(t, x_0, y_0) \to 0, \ y(t, x_0, y_0) \to 0, \quad t \to \pm \infty.$$

Pretpostavimo da je **0** strogi lokalni minimum Hamiltonijana H(x, y), tj. da za svako $(x, y) \in N_{\delta}(\mathbf{0}) \setminus \{\mathbf{0}\}$ je H(x, y) > H(0, 0). Medjutim, prema Teoremi 8 je

$$\lim_{t \to \infty} H(x(t, x_0, y_0), y(t, x_0, y_0)) = H(x_0, y_0),$$

a prema (10) je

$$\lim_{t \to \infty} H(x(t, x_0, y_0), y(t, x_0, y_0)) = H(0, 0) ,$$

za svako $(x_0, y_0) \in N_{\delta}(\mathbf{0}) \setminus \{\mathbf{0}\}$, što je kontradikcija. \Box

Teorema 10 Svaki nedegenerativni PR analitičkog DS Hamiltona (4) je ili nelinearno sedlo ili nelinearan centar.

(i) $PR \ \mathbf{0} = (0,0)$ je nelinearno sedlo DS Hamiltona (4) ako i samo ako tačka (0,0) nije tačka lokalnog ekstremuma Hamiltonijana tog DS.

(ii) ako je (0,0) tačka lokalnog ekstremuma Hamiltonijana tog DS, onda je PR $\mathbf{0} = (0,0)$ nelinearan centar DS Hamiltona (4).

DOKAZ. Pretpostavimo da je $\mathbf{0} = (0, 0)$ nedegenerativni PR DS Hamiltona (4). Tada je $D \neq 0$. Prema Teoremi 8 $\mathbf{0}$ je sedlo ili centar odgovarajućeg linearizovanog DS. Tačka $\mathbf{0}$ je stacionarna tačka funkcije H(x, y) (objasniti zašto?).

(I) Stacionarna tačka **0** funkcije H(x, y) nije tačka lokalnog ekstremuma funkcije H(x, y) akko je D < 0 akko je PR **0** sedlo linearizovanog sistema akko je PR **0** nelinearno sedlo DS Hamiltona (4) (prema Teoremi 3.3. jer je $H \in C^1(E)$).

(II) Ako je **0** tačka lokalnog ekstremuma Hamiltonijana tog DS, onda je D > 0 odnosno onda **0** je centar linearizovanog sistema. Prema Teoremi 3.6., kako je H analitička u E, zaključujemo da je **0** nelinearan fokus ili nelinearan centar DS Hamiltona (4). Ako pretpostavimo da je **0** nelinearan fokus DS (4), prema Lemi 1 (0,0) nije lokalni ekstremum funkcije H(x, y), što je kontradikcija. Dakle, PR **0** mora biti nelinearan centar DS Hamiltona (4). \Box

U pogledu određivanja faznog portreta DS Hamiltona, značajno je prepoznati oblik sistema zbog činjenice da za crtanje faznog portreta je dovoljno nacrtati krive H(x, y) = const, jer H(x, y) = const predstavlja implicitnu jednačinu fazne

trajektorije DS. Orjentaciju faznih trajektorija određujemo preko odgovarajućeg vektorskog polja.

Primer 3.12A. Posmatrajmo DS (2) iz Primera 3.12. Hamiltonijan ovog sistema je

$$H(x,y) = \frac{x^4}{4} - \frac{x^2}{2} + \frac{y^2}{2}$$

Na Slici 30 i Slici 31 prikazane su krive H(x,y) = c za vrednosti

$$c \in \left\{-\frac{1}{5}, -\frac{1}{12}, -\frac{1}{30}, 0, \frac{1}{30}, \frac{1}{8}, \frac{2}{3}\right\}$$

što će zajedno sa orjentacijom vektorskog polja dati upravo fazni portret na Slici 24.

 $PR(\pm 1,0)$ su centri linearizovanog DS. Kako je

$$D(x_0, y_0) = \frac{\partial^2 H}{\partial x^2}(x_0, y_0) \frac{\partial^2 H}{\partial y^2}(x_0, y_0) - \left(\frac{\partial^2 H}{\partial x \partial y}(x_0, y_0)\right)^2 = 3x_0^2 - 1$$

imamo da je $D(\pm 1,0) = 2 > 0$ i $H_{xx}(\pm 1,0) = 2 > 0$, pa su tačke ($\pm 1,0$) tačke lokalnog minimuma funkcije H(x,y), odakle prema Teoremi 10 predstavljaju nelinearan centar.

Primer 3.13A. Posmatrajmo DS (3) iz Primera 3.13. Hamiltonijan ovog sistema je

$$H(x,y) = \frac{x^2}{2} - \frac{x^4}{4} + \frac{y^2}{2}.$$

(0,0) je centar linearizovanog DS. Kako je $D(x_0, y_0) = 1 - 3x_0^2$, imamo da je D(0,0) = 1 > 0, i $H_{xx}(0,0) = 1 > 0$, pa je (0,0) tačka lokalnog minimuma funkcije H(x,y), odakle prema Teoremi 10 predstavlja nelinearan centar.

Primer 3.14A. Posmatrajmo DS iz Primera 3.14. Hamiltonijan ovog sistema je

$$H(x,y) = \frac{x^2}{2} + \frac{y^2}{2} - \frac{y^3}{3} + x^2y.$$

(0,0) je centar linearizovanog DS. Kako je $D(x_0, y_0) = -4x_0^2 + (1+2y_0)^2$, imamo da je D(0,0) = 1 > 0, i $H_{xx}(0,0) = 1 > 0$, pa je (0,0) tačka lokalnog minimuma funkcije H(x,y), odakle prema Teoremi 10 predstavlja nelinearan centar.

Gradijentni sistemi

Definicija 13 Ako postoji funkcija $G \in C^2(E)$, $E \subset \mathbb{R}^n$ tako da se nelinearan DS može predstaviti u obliku

$$x' = -\nabla G(x), \qquad \nabla G = \left(\frac{\partial G}{\partial x_1}, \dots, \frac{\partial G}{\partial x_n}\right)^T$$

DS naziva se gradijenti DS sa potencijalnom funkcijom G.

Teorema 11 Dvodimenzionalni nelinearni DS

(11)
$$\frac{dx}{dt} = f(x,y), \qquad \frac{dy}{dt} = g(x,y), \qquad f,g \in C^1(E), \ t \in \mathbb{R},$$

je gradijentni u povezanoj oblasti E ako i samo ako

(12)
$$\frac{\partial f}{\partial y}(x,y) = \frac{\partial g}{\partial x}(x,y), \qquad (x,y) \in E.$$

Dokaz. (\Rightarrow :) Ako je dvodimenzionalni nelinearni DS (11) gradijentni, postoji funkcija $G \in C^2(E)$, tako da je

(13)
$$f(x,y) = -\frac{\partial G}{\partial x}(x,y), \qquad g(x,y) = -\frac{\partial G}{\partial y}(x,y).$$

Kako su $f,g \in C^1(E),$ diferenciranjem prve jednakosti u (13) po y,a druge po x dobija se

$$\frac{\partial f(x,y)}{\partial y} = -\frac{\partial G^2(x,y)}{\partial y \partial x}, \quad \frac{\partial g(x,y)}{\partial x} = -\frac{\partial G^2(x,y)}{\partial x \partial y}, \quad (x,y) \in E.$$

Kako je $G \in C^2(E)$ sledi jednakost mešovitih parcijalnih izvoda, odnosno (12).

(\Leftarrow :) Obrnuto, ako važi relacija (12) moguće je efektivno odrediti funkciju $G \in C^{(2)}(E)$, tako da važi (13), pa je DS (11) gradijentni.

Neka je $(x_0, y_0) \in E$ proizvoljna tačka. Kako je E povezana oblast, iz $-\frac{\partial G(x,y)}{\partial x} = f(x,y)$ za svako $(x,y) \in E$, sledi

$$-G(x,y) = \int_{x_0}^x f(t,y) \, dt + \psi(y),$$

gde je ψ proizvoljna neprekidno diferencijabilna funkcija. Funkciju ψ odredjujemo iz relacije

$$\frac{\partial}{\partial y} \left(\int_{x_0}^x f(t, y) \, dt \right) + \psi'(y) = -\frac{\partial G(x, y)}{\partial y} = g(x, y)$$

Zbog neprekidnosti funkcija f i $\frac{\partial f}{\partial y}$ i uslova (12) dobija se

$$\psi'(y) = g(x,y) - \frac{\partial}{\partial y} \left(\int_{x_0}^x f(t,y) \, dt \right)$$

= $g(x,y) - \int_{x_0}^x \frac{\partial f(t,y)}{\partial y} \, dt$
= $g(x,y) - \int_{x_0}^x \frac{\partial g(t,y)}{\partial t} \, dt = g(x_0,y)$

odakle sledi da je

$$\psi(y) = \int_{y_0}^y g(x_0, t) \, dt + c_1.$$

Dakle,

(14)
$$G(x,y) = -\int_{x_0}^x f(t,y) \, dt - \int_{y_0}^y g(x_0,t) \, dt + c.$$

Kako je $f,g\in C^1(E)$

$$\frac{\partial G(x,y)}{\partial x} = -f(x,y),$$

i

$$\frac{\partial G(x,y)}{\partial y} = -\int_{x_0}^x \frac{\partial f(t,y)}{\partial y} dt - g(x_0,y) = -\int_{x_0}^x \frac{\partial g(t,y)}{\partial t} dt - g(x_0,y)$$
$$= -g(x,y) + g(x_0,y) - g(x_0,y) = -g(x,y),$$

funkcija G odredjena sa (14) zadovoljava (13)
i $G \in C^2(E),$ pa je DS (11) gradijentni. \boxtimes

Matrica Jakobijana linearizovanog sistema u PR $M(x_0, y_0)$ gradijentnog DS

(15)
$$\frac{dx}{dt} = -\frac{\partial G}{\partial x}(x,y), \qquad \frac{dy}{dt} = -\frac{\partial G}{\partial y}(x,y), \qquad G \in C^2(E), \ t \in \mathbb{R},$$

je

$$J(x_0, y_0) = \begin{pmatrix} -\frac{\partial^2 G}{\partial x^2}(x_0, y_0) & -\frac{\partial^2 G}{\partial x \partial y}(x_0, y_0) \\ -\frac{\partial^2 G}{\partial x \partial y}(x_0, y_0) & -\frac{\partial^2 G}{\partial y^2}(x_0, y_0) \end{pmatrix},$$

što predstavlja simetričnu matricu, odakle zaključujemo da su sve njene sopstvene vrednosti realne. Dakle, nedegenerativni PR gradijentnog DS je ili sedlo ili stabilan (nestabilan) čvor linearizovanog DS. Za matricu $J_0 = J(0,0)$ je

$$D = \det(J_0) = \frac{\partial^2 G}{\partial x^2}(0,0) \frac{\partial^2 G}{\partial y^2}(0,0) - \left(\frac{\partial^2 G}{\partial x \partial y}(0,0)\right)^2,$$
$$T = \operatorname{tr}(J_0) = -\frac{\partial^2 G}{\partial x^2}(0,0) - \frac{\partial^2 G}{\partial y^2}(0,0).$$

Svaki PR gradijentnog DS (15) je stacionarna tačka potencijalne funkcije G(x, y).

Teorema 12 Svaki nedegenerativni PR gradijentnog DS (15) je ili nelinearno sedlo ili nelinearan čvor.

(i) $PR \ \mathbf{0} = (0,0)$ je nelinearno sedlo gradijentnog DS (15) akko (0,0) nije tačka lokalnog ekstremuma potencijalne funkcije $G \in C^2(E)$.

(ii) ako je (0,0) tačka lokalnog minimuma (maksimuma) potencijalne funkcije $G \in C^3(E)$, onda je PR $\mathbf{0} = (0,0)$ nelinearan stabilan (nestabilan) čvor DS (15).

DOKAZ. Pretpostavimo da je $\mathbf{0} = (0, 0)$ nedegenerativni PR DS (15). Tada je $\mathbf{0}$ ili sedlo ili stabilan (nestabilan) čvor ili stabilna (nestabilna) zvezda ili stabilan

(nestabilan) degenerisani čvor odgovarajućeg linearizovanog DS. Dakle, D>0iliD<0.

(I) Stacionarna tačka **0** funkcije G(x, y) nije tačka lokalnog ekstremuma funkcije G(x, y) akko je D < 0 akko je PR **0** sedlo linearizovanog sistema akko je PR **0** nelinearno sedlo DS (15) (prema Teoremi 3.3. jer je $G \in C^1(E)$).

(II) Ako je **0** tačka lokalnog ekstremuma funkcije G(x, y) onda je D > 0. Ako je $T = tr(J_0) < 0$, PR **0** je stabilan čvor ili stabilna zvezda ili stabilan degenerisani čvor linearizovanog sistema, a ako je $T = tr(J_0) > 0$, PR **0** je nestabilan čvor ili nestabilna zvezda ili nestabilan degenerisani čvor linearizovanog sistema. Prema Teoremi 3.4., kako je $G \in C^3(E)$, zaključujemo da je PR **0** stabilan (nestabilan) nelinearan čvor DS (15).

Kako je

$$D > 0 \quad \Rightarrow \quad \frac{\partial^2 G}{\partial x^2}(0,0) \frac{\partial^2 G}{\partial y^2}(0,0) > \left(\frac{\partial^2 G}{\partial x \partial y}(0,0)\right)^2 > 0,$$

zaključujemo da su $G_{xx}(0,0)$ i $G_{yy}(0,0)$ istog znaka. Dakle, ako je $G_{xx}(0,0) < 0$ $\Rightarrow \quad G_{yy}(0,0) < 0, \ (0,0)$ je tačka lokalnog maksimuma funkcije G(x,y), i kako je u tom slučaju T > 0, PR **0** je nestabilan nelinearan čvor DS (15). Ako je $G_{xx}(0,0) > 0 \Rightarrow \quad G_{yy}(0,0) > 0, \ (0,0)$ je tačka lokalnog minimuma funkcije G(x,y), i kako je onda T < 0, PR **0** je stabilan nelinearan čvor DS (15). \Box

Primer 3.15. Nelinearan DS

$$\frac{dx}{dt} = -2x(x-1)(2x-1)$$
$$\frac{dy}{dt} = -2y.$$

je gradijentni sa potencijalnom funkcijom $G(x, y) = x^2(x - 1)^2 + y^2$. PR su $(0,0), (1/2,0), (1,0) \sim (0,0), (1,0)$ su stabilne zvezde linearizovanog DS, a (1/2,0) je sedlo linearizovanog DS. Prema Teoremi 3.4. (0,0), (1,0) su stabilni nelinearni čvorovi, a prema Teoremi 3.3. (1/2,0) je nelinearno sedlo posmatranog DS.

Medjutim, korišćenjem Teoreme 12 do zaključka o tipu PR možemo doći bez linearizacije. Naime, kako je

$$G_{xx}(0,0) = G_{xx}(1,0) = 2 > 0,$$
 $G_{yy}(1,0) = G_{yy}(1,0) = 2 > 0,$
 $G_{xy}(0,0) = G_{xy}(1,0) = 0,$

imamo da je

$$D_{(0,0)} = G_{xx}(0,0)G_{yy}(0,0) - (G_{xy}(0,0))^2 = 4 > 0, \qquad G_{xx}(0,0) = 2 > 0,$$

$$D_{(1,0)} = G_{xx}(1,0)G_{yy}(1,0) - (G_{xy}(1,0))^2 = 4 > 0, \qquad G_{xx}(1,0) = 2 > 0,$$

pa su tačke (0,0) i (1,0) tačke lokalnog minimuma funkcije G(x,y), odnosno prema Teoremi 12 stabilni nelinearni čvorovi datog DS. S druge strane, kako je

$$G_{xx}(1/2,0) = -1,$$
 $G_{yy}(1/2,0) = 2,$ $G_{xy}(1/2,0) = 0$

imamo da je

$$D_{(1/2,0)} = G_{xx}(1/2,0)G_{yy}(1/2,0) - (G_{xy}(1/2,0))^2 = -2 < 0,$$

tako da tačka (1/2, 0) nije tačka lokalnog ekstremuma funkcije G(x, y), i prema Teoremi 12 je nelinearno sedlo datog DS.

Fazni portret DS prikazan je na slici 32. \square

Slika 32: Primer 3.15. \sim fazni portret gradijentnog DS

Primer 3.16. Posmatrajmo funkciju $H(x,y) = x^3 + xy - x + y^2 = G(x,y)$ i formirajmo odgovarajući DS Hamiltona i gradijentni DS

$$(DSH) \begin{cases} \frac{dx}{dt} = \frac{\partial H}{\partial y} = x + 2y \\ \frac{dy}{dt} = -\frac{\partial H}{\partial x} = 1 - 3x^2 - y. \end{cases} \quad (GDS) \begin{cases} \frac{dx}{dt} = -\frac{\partial G}{\partial x} = 1 - 3x^2 - y \\ \frac{dy}{dt} = -\frac{\partial G}{\partial y} = -x - 2y. \end{cases}$$

Oba DS imaju iste PR (-1/2, 1/4), (2/3, -1/3). Linearizacijom utvrđujemo da je za (DSH) : PR (-1/2, 1/4) sedlo, dok je PR (2/3, -1/3) centar (Slika 33-(a)), dok je za (GDS) : PR (-1/2, 1/4) takođe sedlo, a PR (2/3, -1/3) je stabilan čvor (Slika 33-(b)). Primetimo da su fazne trajektorije DS Hamiltona i gradijentnog DS iste funkcije (Hamiltonijan (DSH) i potencijalna funkcija (GDS) je ista funkcija) međusobno ortogonalne (Slika 34).

Slika 33: Primer 3.16. \sim fazni portret i nula izokline (a) DS Hamiltona; (b) gradijentnog DS

Slika 34: Ortogonalnost faznih trajektorija DS Hamiltona i gradijentnog DS iste funkcije - Primer 3.16.

Reversibilni sistemi

Mnogi mehanički sistemi imaju svojstvo simetrije u odnosu na vreme, tj. dinamika sistema je ista bez obzira da li vreme teče unapred ili unazad. Dvodimenzionalni nelinearni DS (11) je REVERSIBILAN ako je ili funkcija f neparna po y, a g parna po y, tj,

$$f(x, -y) = -f(x, y), \quad g(x, -y) = g(x, y)$$

ili funkcija f parna po x, a g neparna po x, tj,

$$f(-x, -y) = f(x, y), \quad g(-x, -y) = -g(x, y)$$

U prvom slučaju trajektorije su simetrične u odnosnu na x-osu, dok u drugom slučaju trajektorije su simetrične u odnosu na y-osu.

Teorema 13 Svaki nedegenerativni PR reversibilnog DS (11) koji je centar linearizovanog DS je nelinearan centar.

Slika 35: Fazni portret reversibilnog DS : (a) Primer 3.17. ; (b) Primer 3.18.

Primer 3.17. Nelinearan DS

$$\frac{dx}{dt} = 4y(1-x^2)$$
$$\frac{dy}{dt} = 1-y^2.$$

je reversibilan. PR su $(1,1), (1,-1), (-1,1), (-1,-1) \sim (1,1)$ je stabilan čvor, (1,-1) je nestabilan čvor, a (-1,-1), (-1,1) su sedla DS. Fazni portret DS prikazan je na slici 35-(a).

Primer 3.18. Nelinearan DS

$$\frac{dx}{dt} = y$$
$$\frac{dy}{dt} = x - x^2$$

je reversibilan. PR su $(0,0), (1,0) \sim (0,0)$ je sedlo, (1,0) je centar linearizovanog DS (nehiperbolični PR). Prema Teoremi 13 (1,0) je nelinearan centar posmatranog DS. Fazni portret DS prikazan je na slici 35-(b).